Programma del Corso di Analisi Funzionale Anno Accademico 2016/2017
Introduction: What Are Partial Differential Equations? . . . . . . . . . . . . . .
The Laplace Equation as the Prototype of an Elliptic
Partial Differential Equation of Second Order..........................
- 2.1 Harmonic Functions: Representation Formula
for the Solution of the Dirichlet Problem on the Ball
(Existence Techniques 0) ............................................ - 2.2 Mean Value Properties of Harmonic Functions.
Subharmonic Functions. The Maximum Principle .................
- 3.1 The Maximum Principle of E. Hopf.................................
- 3.2 The Maximum Principle of Alexandrov and Bakelman ............
- 3.3 Maximum Principles for Nonlinear Differential Equations . . . . . . . .
- 4.1 Difference Methods: Discretization of Differential Equations . . . . .
- 4.2 The Perron Method...................................................
- 4.3 The Alternating Method of H.A. Schwarz ..........................
- 4.4 Boundary Regularity .................................................
of PDEs (Existence Techniques II).......................................
- 5.1 Dirichlet’s Principle ..................................................
- 5.2 The Sobolev Space W 1;2 .............................................
- 5.3 Weak Solutions of the Poisson Equation ............................
- 5.4 Quadratic Variational Problems .....................................
- 5.5 Abstract Hilbert Space Formulation of the Variational
Problem. ............................... - 5.6 Convex Variational Problems ........................................
- 5.1 General Sobolev Spaces. Embedding Theorems
of Sobolev, Morrey, and John–Nirenberg ........................... - 5.2 L2-Regularity Theory: Interior Regularity of Weak
Solutions of the Poisson Equation ................................... - 5.3 Boundary Regularity and Regularity Results
for Solutions of General Linear Elliptic Equations ................. - 5.4 Extensions of Sobolev Functions and Natural
Boundary Conditions................................................. - 5.5 Eigenvalues of Elliptic Operators....................................