In questo tema d'esame possono comparire entrambi gli standard del punto decimale e della virgola decimale. In ogni esercizio in cui nel quesito o nello svolgimento compaiono numeri che in italiano diciamo con la virgola, scrivere all'inizio dello svolgimento se è usato lo standard del punto o della virgola decimale. Ovviamente se nel testo di un quesito c'è qualcuno di quei numeri, lo svolgimento va fatto continuando con lo stesso standard.

Si consideri bene la nota sul punto decimale del regolamento d'esame

Chi si ritira, consegna <u>solo</u> questo foglio: col nome e una grande R. Gli altri, tengono questo foglio, e consegnano la bella copia

RIQUADRARE ovvero incorniciare I RISULTATI

Legenda

- \star è richiesto il valore esatto. Può anche essere $+\infty,\,-\infty,$ o una frase.
- ≈ è richiesta una ragionevole approssimazione.
- % è richiesto il valore in percentuale, se serve ragionevolmente approssimato.
- (R) è richiesto solo il risultato; negli altri esercizi riportare anche i calcoli.

Esercizio 0. Triplice – quesiti basici – chi non risolve almeno 2 non passa l'esame – per ricevere più di 18 risolvere tutti 3.

ESERCIZIO 0 $\mathbf{a}_{\mu^{2025}}$ (R) In una ricerca⁽¹⁾ relativa a un ospedale in Brasile si è stabilito che

$$weight \le -3,767 + 89.11 \times length + 1.237 \times length^2$$
 $40 \le length \le 55$

(con la lunghezza in centimetri e il peso in chilogrammi) rappresenta bene una soglia per il 90% dei neonati. Qual è il peso soglia in grammi per la lunghezza di 50 cm? (Il significato medico ovviamente è questo: per un neonato di 50 cm, un peso maggiore del valore qua calcolato è anormalmente alto, il 90% dei neonati con quella lunghezza peserebbe di meno – secondo questa stima complessiva, globalmente valida per tutte le lunghezze da 40 a 55 centimetri).

¹Bertagnon JR, de Mattos Segre CA, Dall Colletto GM. Weight-for-length relationship at birth to predict neonatal diseases. Sao Paulo Med J. 2003 Jul 1;121(4):149-54. doi: 10.1590/s1516-31802003000400002. Epub 2003 Oct 29. PMID: 14595506; PMCID: PMC11108600.

3781

(Avendo capito – dal numero 89.11 – che viene usato il punto decimale, e che la virgola è solo separatore delle migliaia – poco consigliabile per numeri di 4 cifre – si ha per il peso soglia corrispondente ai 50 cm:

$$-3767 + 89.11 \times 50 + 1.237 \times 50 \times 50$$

che si calcola facilmente con una calcolatrice, facendo attenzione che alcune usano lo standard della virgola decimale invece del punto decimale).

ESERCIZIO 0 $\mathbf{b}_{\mu^{2025}}$ (R) % Qual è la probabilità che 4 monete diano croce?

6.25%

 $(\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = 0.0625$, da esprimere come percentuale).

ESERCIZIO 0c_{μ 2023} (R) * Completare la parola mancante (nel modo più conforme al programma del Corso, senza stranezze): "Molto usato in Statistica è il test del chi quadrato di ... in cui si considerano tabelle 2×2 o più grandi."

indipendenza

ESERCIZIO $\mathbf{1}_{\mu 2025}$ * Trovare il numero di sottoinsiemi dell'insieme dei primi 8 numeri primi.

SVOLGIMENTO

Verrà usato lo standard del punto decimale.

Il numero di sottoinsiemi di un insieme di n elementi è 2^n e con n = 18 il numero cercato è

$$2^8 =$$

$$= 2 \cdot 2 =$$

con la calcolatrice o a mano

Nota 1. Il numero trovato 2^8 ovvero 256 è un numero classico dell'informatica: è il numero di bit di un byte.

Nota 2. Non ha qua alcuna utilità elencare i primi 8 numeri primi.

ESERCIZIO $\mathbf{2}_{\mu 2025}$ * Essendo lb il logaritmo in base 2, risolvere l'equazione

$$\lg x - \lg \frac{1}{x} = \text{lb8}$$

SVOLGIMENTO

Per una proprietà del logaritmo (in qualunque base) del reciproco

$$\lg x - (-\lg x) = \text{lb8}$$

$$\lg x + \lg x = \text{lb8}$$

$$2 \lg x = \text{lb8}$$

$$\lg x = \frac{\text{lb8}}{2}$$

e il logaritmo di 8 in base 2 è l'esponente da dare a 2 per avere 8, cioè 3:

$$\lg x = \frac{3}{2} \qquad /10^{\wedge}$$

$$x = 10^{\frac{3}{2}}$$

$$10^{\frac{3}{2}}$$

ovvero $(10^3)^{\frac{1}{2}}$ cioè

$$\sqrt{1000}$$

ovvero anche, scomponendo 1000 in $100 \cdot 10$,

$$10\sqrt{10}$$

ESERCIZIO $3_{{}_{\mu2025}}$ * Trovare il minimo di

$$f(t) := t^3 - 3t + 5$$
 $t > 0$

SVOLGIMENTO

Derivando si ha la disequazione

$$f'(t) = 3t^2 - 3 > 0$$
 $/: 3 > 0$

ed estraento la radice quadrata per positivi, che conserva l'ordinamento,

allora f(t)

cresce per t > 1

decresce per 0 < t < 1

allora t=1 è punto di minimo relativo e assoluto e allora

$$\min f = f(1) = 1^3 - 3 \cdot 1 + 5$$

3

Nota. Istruttivo vedere un diagramma cartesiano su WolframAlpha: LINK ->

ESERCIZIO $\mathbf{4}_{\mu^{2025}}$ * Per una variabile aleatoria uniforme discreta $X \sim \mathbb{U}\{0,3\}$ calcolare $P(1 \le X^2 < 14)$. (È come un dado regolare a 4 facce 0, 1, 2, 3).

SVOLGIMENTO

La variabile aleatoria X uniforme discreta di parametri 0 e 3, assimilabile a un dado regolare a 4 facce numerate da 0 a 3 (un tetraedro regolare), assume i valori 0, 1, 2, 3 con uguali probabilità, quindi $\frac{1}{4}$, $\frac{1}{4}$, $\frac{1}{4}$, $\frac{1}{4}$. In simboli, peraltro non necessari,

$$X \sim \begin{pmatrix} 0 & 1 & 2 & 3 \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{pmatrix}$$

Consideriamo il valore di probabilità cercato:

$$P(1 \le X^2 < 14) =$$

l'evento $\{1 \le X^2 < 14\}$ di cui si cerca la probabilità, essendo Xintero $\ge 0,$ è lo stesso che $\{1 \le X \le 3\}$

$$= P(1 \le X \le 3) =$$

$$= P(X = 1 \lor X = 2 \lor X = 3) =$$

$$= P(X = 1) + P(X = 2) + P(X = 3) =$$

$$= \frac{1}{4} + \frac{1}{4} + \frac{1}{4} =$$

 $\frac{3}{4}$

ovvero, in un modo che in generale non si troverà nei testi di Farmacia,

0.75

con lo standard del punto decimale, ovvero

0,75

con lo standard della virgola decimale.

OPPURE

Trattandosi di un dado regolare, seppure a 4 facce invece delle più comuni 6, possiamo prescindere dalla teoria delle variabili aleatorie e usare la formula delle Probabilità Classica:

$$p = \frac{\text{\# casi favorevoli}}{\text{\# casi possibili equiprobabili}}$$

i casi favorevoli sono i 3 risultati 1, 2, 3, che hanno il quadrato fra 1 compreso e 14 escluso, e i casi possibili equiprobabili sono i 4 risultati 0, 1, 2, 3, e si trova $\frac{3}{4}$ come prima.

ESERCIZIO $\mathbf{5}_{\mu 2025} \approx \text{Dopo}$ aver eliminato 12 outlier, stimare il parametro λ di una variabile aleatoria esponenziale da cui è stato tratto questo campione:

26,750 1.373 17,599 144,054 281,477 129,545 170,042 98,283

 $1.034\ 565{,}49\ 36{,}036\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0$

(Ricordiamo che la v.a. esponenziale può modellizzare gli intertempi fra gli ingressi o le chiamate telefoniche in una Farmacia).

SVOLGIMENTO

Viene usato lo standard della virgola decimale (come si vede dal numero 565,49 e allora il punto è separatore delle migliaia).

(In questo esercizio la questione del punto o virgola decimali è fondamentale).

Ovviamente i 12 outlier sono i 12 valori nulli, che eliminiamo come richiesto.

Il campione privato degli outlier ha n = 11 elementi e ha media

$$\overline{X}_{11}=\frac{x_1+\ldots+x_{11}}{11}=$$

$$(26,750 + 1.373 + 17,599 + 144,054 +$$

 $+281,477 + 129,545 + 170,042 + 98,283 + 1.034 + 565,49 + 36,036)/11 =$

facendo attenzione a non scrivere sulla calcolatrice i punti separatori delle migliaia (che servono solo per aiutare gli umani nella lettura)

$$= 3.876, 276/11 \approx 352.389$$

(sempreché la nostra calcolatrice usi la virgola decimale, e se invece usa il punto decimale bisogna scrivere su essa punti al posto delle soprastanti virgole, ovviamente) e col classico stimatore $\hat{\lambda} = \frac{1}{\overline{X}_n}$ del parametro λ di una densità esponenziale, il reciproco della media del campione, si trova

≈ 0,0028

o anche

≈ 0,003

Nota. I valori sono stati ottenuti, salvo riordinamento, arrotondamenti e aggiunta di 12 outlier, con Wolfram Alpha con $\lambda = 0.0019$ con l'istruzione

11 random numbers exponential distribution lambda=0.0019 che ovviamente, se richiamata da qua, in generale produrrà valori diversi, nuovi.

La stima in effetti non è andata benissimo, avendo trovato 0,0028 invece di 0,0019, ma è molto meglio che niente – com'è in generale con gli stimatori puntuali, specialmente con campioni poco numerosi.