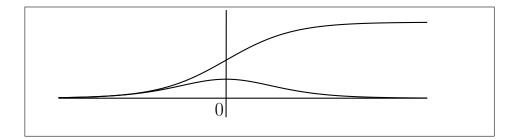
Chi si ritira, consegna <u>solo</u> questo foglio: col nome e una grande R. Gli altri, tengono questo foglio, e consegnano la bella copia

RIQUADRARE ovvero incorniciare I RISULTATI

Legenda

- * è richiesto il valore esatto. Può anche essere $+\infty$, $-\infty$, o una frase.
- ≈ è richiesta una ragionevole approssimazione.
- % è richiesto il valore in percentuale, se serve ragionevolmente approssimato.
- (R) è richiesto solo il risultato; negli altri esercizi riportare anche i calcoli.


Esercizio 0. Triplice – quesiti basici – chi non risolve almeno 2 non passa l'esame – per ricevere più di 18 risolvere tutti 3.

- **ES.** $0a_{\mu_{2024}}$ (R) * In quanti modi diversi si può scegliere un sottogruppo di 4 studenti fra 5 studenti? (O di 4 farmaci fra 5, o di 4 bilance fra 5).
- **ES.** $\mathbf{0b}_{\mu^{2024}}$ (R) % Indicando con A^C il complementare di un evento A, quant'è $P(A) + P(A^C)$?
- **ES.** $0c_{\mu 2024}$ (R) * Potremo respingere, con ragionevole certezza statistica, l'ipotesi della regolarità di una moneta se darà 510 000 volte testa su un milione di lanci?
- **ES.** $\mathbf{1}_{\mu^{2024}}$ * Risolvere l'equazione

$$e^{x^3}e^{x^2} = 1 + \min x^2$$

indicando qua $\min x^2$, ovviamente, il minimo della funzione x^2 .

- **ES. 2**_{μ 2024} * Calcolare la media interquartile dei primi 12 termini della successione di Fibonacci 1, 1, 2, 3...
- ES. $3_{\mu 2024} \approx \text{Si}$ scriva la funzione 1/(1+Exp[-t]) con gli usuali simboli matematici. Calcolare la derivata. (La derivata di quella funzione, che è la logistica standard di amplissima ricorrenza nelle Scienze Biomediche, è una funzione a campana, precisamente con termine di raro utilizzo [ha per grafico] una campana logistica).

ES. $4_{\mu 2024}$ % Considereremo la sensibilità di un test diagnostico, salvo che, com'è per la gravidanza (che non è una malattia), il concetto di *malati* andrà sostituito da uno di *interessati*, che corrisponde ad avere il concetto di *non interessati* al posto di quello di *sani*. (Si hanno parole diverse per le formule di sensibilità, specificità, predittività, ma per il resto funziona tutto ugualmente). Per un test diagnostico in una determinata popolazione si abbia

	INTERESSATI	NON INTERESSATI
POSITIVI	6	1
NEGATIVI	4	12

Calcolare la sensibilità del test (in base a questa, peraltro piccola, rilevazione). (Questi sono proprio i valori che sono stati rilevati nel 2023 con un'esperienza statistica in aula, in cui la condizione *interessato* era la lunghezza complessiva ≥ 14 di nome e cognome, e la positività al test era definita dalla lunghezza del nome ≥ 7 ; ovviamente le lunghezze sono le lunghezze in lettere).

ES. $5_{\mu 2024}$ * Si motivi la risposta. Si supponga che per un test statistico relativo alla pandemia del covid-19, con ipotesi nulla H_0 e alternativa H_1 , al livello $\alpha = 0.01$ la regione critica sia definita da $T \in [0, b]$ essendo b un valore positivo e lo stimatore $T := g(X_1, ..., X_n)$ relativo al test abbia prodotto il valore 2024, e che sia vera H_1 . Quale di queste è vera?

- Si è sostanzialmente perso tempo.
- Non è possibile rispondere perché non è specificato il test usato
- Non è possibile rispondere perché non si sa se il campione è gaussiano
- Non si può applicare un test statistico per una pandemia ancora in corso
- Non è possibile rispondere perché 0.01 non è affatto il 5%
- Non è possibile rispondere perché non si sa se il punto è punto decimale
- Non è possibile rispondere perchè non è noto b
- Non è possibile rispondere perché non è specificato il quantile
- Si commette un errore di prima specie
- Si commette un errore di seconda specie
- Era il caso in generale sperato