Discrete Comput Geom 21:69-85 (1999)

Geometry

© 1999 Springer-Verlag New York Inc.

On the Determination of Star and Convex Bodies by
Section Functiong

R. J. Gardnet,A. Soranzd and A. Vokig2

1Department of Mathematics, Western Washington University,
Bellingham, WA 98225-9063, USA
gardner@baker.math.wwu.edu

2Dipartimento di Scienze Matematiche, Univeasitégli Studi di Trieste,
34100 Trieste, Italy
{soranzo,volcip@univ.trieste.it

Abstract. Theith section function of a star bodyRf' gives the -dimensional volumes of

its sections by-dimensional subspaces. It is shown that no star body is determined among
all star bodies, up to reflection in the origin, by any ofiis section functions. Moreover,

the set of star bodies that are determined among all star bodies, up to reflection in the origin,
by theirith section functions for all, is a nowhere dense set. The determination of convex
bodies in this sense is also studied. The results complement and contrast with recent results
on the determination of convex bodiesilbly projection functions. The paper continues the
development of the dual Brunn—Minkowski theory initiated by Lutwak.

1. Introduction

An important concern in geometric tomography is the question of whether an objectin a
given class can be distinguished from others in the class by various measurements of its
projections on planes or sections by planes. If this is the case, we say that the object is
determinedn the class by the data. For projections, the natural class of objects to consider
is the classC" of convex bodies ifE". One natural type of data is théh projection
functionof someK e K", which gives the-dimensional volume of the projection of

K on eachi-dimensional subspace. Heres Nand 1< i < n— 1, and the special
cases = 1 andi = n— 1 are usually called theidth functionandbrightness function
respectively. The methods and results for this sort of inverse problem form part of the
powerful Brunn—Minkowski theory. For example, a classical result of Aleksandrov (see
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Theorem 3.3.6 of [5]) states:

(1) Foreach e N,1<i <n-—1, any centered convex bodylif is determined in
K2 by itsith projection function.

Here KC denotes the class of centered convex bodies; see Section 2 for definitions of
unexplained terms. Recently there has been considerable interest in the determination
of a convex body in the clags" of all convex bodies ifE". The main results are as
follows (note that a projection function cannot distinguish a convex kodiypm any of

its translates or its reflectionK in the origin):

(2) ([9], from aresult in [3].) Centered convex bodiedihare determined ifC" by
theirith projection functions for two different valuesigfl <i <n— 1.

(3) (See, for example, Chapter 3 of [5].) A convex bodyEihis determined iriC",
up to translation and reflection in the origin, by its width function if and only if it
is irreducible. (A convex bod¥ is irreducibleif the equationrK = AC, where
AC = %(C + (—0Q)) is thecentral symmetrabf the convex bod, implies that
K is a translate o€; see pp. 123—4 of [5] for more information.) Such bodies
must be centrally symmetric, singeK is a centered convex body with the same
width function asKk..

(4) ([7]; see also [1].) A convex body il" is determined irC", up to translation and
reflection in the origin, by its brightness function if and only if it is a parallelotope.

(5) [19]When 1< i < n — 1, most centered convex bodiedih are determined in
K" by theirith projection function.

(6) [21 When 2<i < n — 2, most convex bodies " are determined iKC", up to
translation and reflection in the origin, by théth projection function.

(7) ([9], a refinement of earlier work of Campi and of Gardner anatiiplSee also
[8] and [10].) A dense set of convex bodieskiit are not determined ilC", up
to translation and reflection in the origin, by thitn projection functions foall
i,1<i<n-1.

(8) [10] Most convex bodies ii" are determined itC", up to translation and reflec-
tion in the origin, by their width and brightness functions.

In these results, “most” means most in the sense of Baire category, that is, all except
for a set of first category in the spak® endowed with the Hausdorff metric.

It is remarkable that there is a duality in geometric tomography between results on
projections of convex bodies and results on sections of star (rather than convex) bodies.
This still unexplained fact has led to the creation, due principally to Lutwak, of an
extensive dual Brunn—Minkowksi theory; see [5] and [6] for detailed discussions. For
example, dual to Aleksandrov’s theorem above is a result of Funk (see Theorem 7.2.6
of [5]) which states:

(1) Foreach € N, 1<i < n—1, any centered star body &f' is determined in
S? by itsith section function.

HereS{ denotes the class of centered star bodié'iand the th section functiorof
a star bodyL gives the -dimensional volume of the section bfby each -dimensional
subspace. The special case n — 1 is simply called theection function
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For determination of a star body in the clagsof all star bodies irE", the result
dual to (2) above is also known:

(2) (Theorem 5.9 of [8] or Theorem 7.2.15 of [5]; see also Corollary 4.4 below.)
Centered star bodies " are determined is" by theirith section functions
for two different values of, 1 <i <n—1.

The main purpose of this paper is to continue the attempt to understand this duality.
Corresponding to (3)—(6) above for projections, a simple argument yields the following
result:

(3) (Corollary 4.2) When k< i < n— 1, no star body ifE" is determined irS", up
to reflection in the origin, by itsth section function.

We prove the following result corresponding to (7) and (8) above:

(4) (Corollary 4.9) The set of star bodies Ef' that are determined i8", up to
reflection in the origin, by theirth section functions foalli, 1 <i <n-—-1,is
nowhere dense.

We see from the results obtained in this paper that there is a sharp contrast between
the situation for projections and that for sections. This is interesting because it indicates
possible limitations on the duality referred to above.

Although the duality makes it more natural to study sections of star bodies, convex
bodies retain a wide general interest and we also consider in the last section the determi-
nation of convex bodies by section functions. In contrast to (4) and (5) above we have,
somewhat surprisingly:

(5') (Theorem 5.1) No centered convex bodyFfhis determined irkC2 by its section
function.

Here K7 is the subclass of" whose members contain the origin in their interiors.
This theorem also shows that the results of [4] on determination of convex polygons
in the class of convex polygons do not extend to their determination in the class of all
convex bodies.

In Theorem 5.3 we show that a dense set of convex bodi€’ ithose with everywhere
positive Gaussian curvature, are not determineldjnup to reflection in the origin, by
theirith section functions. Despite this, the question of whether most convex bodies in
E" are determined ifCy, up to reflection in the origin, by their section functions remains
open. One has to work quite hard to find any membetpthat is determined in this
sense; in Theorem 5.4 we show that examples are provided by triangles whose centroids
lie at the origin. This result and Fig. 2 are due to the second author.

2. Definitions and Preliminaries

If Ais a set, we write inA, bd A, and convA for the interior, boundary, and convex
hull of A, respectively. We denote the origin, unit sphere, and closed unit baH in
dimensional Euclidean spati# by o, S"~1, andB, respectively. I € S™*, we denote
by ut the (n — 1)-dimensional subspace orthogonaltdcor 1< i < n— 1, we denote
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the Grassmann manifold ofdimensional subspacesiit by G(n,i). If1 <i <n, we
write A; for Lebesgue i-dimensional measim&?" (which we identify withi -dimensional
Hausdorff measure iR"), andk, = An(B).

We say that a set isenteredf it is centrally symmetric, with center at the origin. A
convex bodys a compact convex set with nonempty interior. The class of convex bodies
in E" is denoted byC", andK, K7 signify the subclasses consisting of centered convex
bodies and convex bodies containing the origin in their interiors, respectively.

A setL is star-shapedht the origin if every line through the origin that meétsloes
so in a (possibly degenerate) closed line segmeiit.iff a set which is star-shaped at
the origin, itsradial functionp, is defined, for alu € S"* such that the line through
the origin parallel ta intersectd., by

pr(uy=maxc:cuel}.

We denote byS" the set of all nonempty compact sets which are star-shaped at the
origin and whose radial functions are defined and continuou&'ch Each member of
S" contains the origin and, with the single exception of the singletofo$gis a body in
the sense that it is the closure of its interior. IS8tbe the set of all centered members of
S" and letS] denote the set of members8f that contain the origin in their interiors.

In this paper we call members 8" star bodies We note, however, that there are
different definitions of this term in the recent literature. In the work of Lutwak [16], [17]
and others, the term implies membership in the smaller &gs#\nother definition,
introduced by two of the present authors in [8], allows for certain sets not containing the
origin. In addition to these variants, Klain [14] considers the class olLsstar-shaped at
the origin inE" and such thap, is anL" function onS™~%; such sets are calldd'-stars

Observe that a convex body is a star body if and only if it contains the origin and its
boundary does not contain a line segment containing the origin.

We now define the-chord functions of a star body. (See Chapter 6 of [5] for extensive
comments and history concerning this much-studied concepi.)+t & be areal number
and letL be a star body ifE". Thei-chord functionp; | of L is defined by

piL(U) = pL (W) + pL(—u)',

for u € 1. Wheni = 1, this gives the length of chords &f through the origin,

and for this reasorp; | is sometimes also called theray of L at the origin Another
generalization of the latter is théh section function oL, defined for integer values of
iwithl<i<n-1byx(LN$S),forSe Gn,i). The following known result (see
Theorem 7.2.3 and Remark 7.2.5 of [5], and compare Theorem 3.1 of [8]) connects these
definitions.

Proposition 2.1. Leti € Nand1l <i < n— 1. Two star bodies irE" have equal
i-chord functions if and only if they have equtl section functions

The following result (see Theorem 5.2 of [8] or Theorem 6.2.16 of [5]) will also be
useful in what follows.
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Proposition 2.2. Leti and j be distinct positive real numbef®vo star bodies L and
M in E" have equal i-chord functions and equal j-chord functions if and only if

{oL(W), pL (=W} = {pm (W), pm (=W},

forallu e "1,

3. Metrics for Star Bodies

The distance between nonempty compact €etsd D can be measured by means of
the Hausdorff metric, defined by

38(C,D)=min{fe >0:C c D+¢BandD c C + ¢B}.

For star bodies, however, thedial metrics is in many ways more natural. This is defined
by setting

§(L, M) = max |pL(u) — pm (W],
uesS-1
for star bodied. and M. With this metric,S" is a complete metric space and hence a
Baire space. It is easy to see tis#tis an open and dense subsetS8f
Goodey and Weil [11] prove that convergence in the Hausdorff metric does not imply
convergence in the radial metric. It is easy to see ¢§8t ) is not a complete metric

space. Our preference for the radial metric here is a consequence of the following stronger
result.

Theorem 3.1. The setS", when endowed with the Hausdorff metiig not a Baire
space

Proof. Foreactk € N, let

Ok = {L eS”:kn1<{ue S pLu) > %}) < %}

We claim thatGy is open in(S", §). To see this, suppose thate Gy. Form € N, let
Lm =L+ (1/m)B;itis easy to see thdty, € S" and(,, Lm = L. The sets

1
En, = {u e S tip (u)> E}
decrease with intersection
-1. 1
E={ued .pL(u)zE .

It follows that A,_1(En) decreases with limik,_1(E), so there is anmg such that
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An—1(Em,) < 1/k. LetM € 8" be such thag(L, M) < 1/mo. ThenM C Ly, SO

An—1 ({U € st pmu) > %}) < )Ln—l(Emo) < %,

which shows thaM e Gy, proving the claim.
LetL € S" and lete > 0. Then there is a finite subsetof S™1 such that if

C=|J{lo.pL(uu]: ueF},

thenC is a finite union of line segments with(C, L) < ¢/2. Clearly, there is also an
M € Gy such tha(M, C) < ¢/2. Thens(L, M) < &, soGy is dense in(S", §).

Let L be any member of" other than{o}. Then there is alp € S"~! such that
oL (Ug) > 1/mfor somem € N. Choosek € N with k > m and

1 1
An-1 ({u e S pL(u) > E}) e

ThenL ¢ Gy, so(, Gk = {o} is not dense iS", §). This proves the theorem. O

4. Determination of Star Bodies

Theorem 4.1. Leti > 0. No star body inE" is determined irS", up to reflection in
the origin, by its i-chord function

Proof. LetL e S". Chooseug € S"* with p, (Uug) > 0, and letU be any open cap
containinguo and contained in a hemisphereSfr! such thafo, (u) > Oforallu € U.
Let f € C(S"1) be suchthat G f(u) < p,(u)forue U, f(u) =0foru ¢ U, and

f(Ug) # pL(Ug) — pL(—Uo).
Let

g(u) = (oL (W' + pL(—u)' — (pL(u) — FUNHHYT — oL (—u),

u € U. DefineM € S" by pm(u) = pL(u) — f(u) if ue U, py(u) = p_(U) + g(—u)
if ue —U, andpy (U) = p.(u) otherwise. It is easy to check thay; € C(S"1), that
L andM have equai-chord functions, and thaty (ug) # oL (£Up), as required. O

Corollary 4.2. Leti e Nand1l <i <n— 1.No star body irE" is determined irs",
up to reflection in the originby its ith section function

Proof. This follows immediately from Proposition 2.1 and the previous theorem.

Theorem 4.3. A star body inE" is determined irS", up to reflection in the originby
its i-chord functions for two different values of i if and only if the set
VL={uesS™t: o) > pL(-w)

is connected
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Proof. Suppose thaV| is not connected and léf be one of its components. By
Proposition 2.2 the star bodyl with radial function

oL(—u) if ueUU(-U),

puU) = {pL(u) otherwise,

has all itsi-chord functions equal to those bf butM £ +L.
Conversely, suppose th¥t is connected and thal has itsi-chord functions equal
to those ofL for two different values of, butM # +L. By Proposition 2.2,

{oL W), pL (=W} = {pm (W), pm (=W}

This implies that there exist; andu,, where we may assumg, u, € V, such that

pm(U1) = pL(U1) # pm(—U1) = pL(—U1)
and
pm(Uz) = pL(—Uz) # pm(—U2) = pL(U2).
Then we have
pm(U1) > pm(—u1)
and
pm(Uz) < pm(—Uz).

SinceV, is connected andy is continuous, there existg € V| such thatoy (Ug) =
om (=Up) and thereforey, (ug) = pL (—Ug), a contradiction. O

Corollary 4.4. A centered star body iR" is determined irS" by its ith section func-
tions for two different values of i

Proof. This follows directly from Proposition 2.1 and the previous theorem. O

Let M be a star body. For the remainder of this section we continue to use the notation
of Theorem 4.3, so that

V= {ue St pu(u) > pu(—=u)}.

Denote byM the setoM e S] such that there exist disjoint open componéhitdJ, of
Vm which are separated byVy, thatis,U; andU, are contained in disjoint components
of SN\ (=Vw).

The following lemma provides a useful characterizatiophéf

Lemma 4.5. A star body Me S belongs taM if and only if there exist open compo-
nents 4 and U, of Vy and an a> 0 such that

Ww(@) = {ue S : pm(u) < pw(—u) — a}

separates i from U,.
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Proof. LetM e &]. Itis clear that if the stated condition holds, thighe M.
Conversely, suppose thdt € M. LetU; andU, be open components &fy con-
tained in disjoint components &1\ (—Vu). Fork e N, the setdNy (1/k) are open
in "1 and increase with unioaVy. ThenS"~1\Wy (1/K) is closed and contairlg;
andU,, for eachk € N. Suppose that, for alt, bothU; andU, are contained in the
same (compact) componedy of S™-1\Wy (1/k). ThenC = ", Cx is a component of
S\ (~Vwm) (see, for example, Theorem 5 of Section 47 in [15]) that containsWpth
andU,, a contradiction. Therefore there ik@asuch thatwWy, (1/ ko) separatet); from
U,. Lettinga = 1/ko, we have proved the lemma. O

Lemma 4.6. The setM is open inS;.

Proof. LetM € M and letU;, Uy, a > 0, andWy (a) be as in Lemma 4.5. Let
aj = maxey; (om(U) — pm(—=U)), j = 1,2,and let O< ¢ < min{a, a, a}/2. Suppose
thatL e SP ands(L, M) < &, which implies that

pmU) —e < pL(U) < pm(U) + &,
forallu e S Letu; € U; be such thapu(uj) = &, j = 1,2. Then

pL(U)) — pL(=Uj) > pm(Uj) — & — pm(=Uj) —e =a — 26 > 0,

sou; € Vi, j = 1, 2. LetU[ be the component of, that containsyj, j = 1, 2, and let
a =a-— 2. Ifue Wy(a), then

pL(U) — pL(=U) < pm(U) + & — pu(—U) + & < —a+ 2 = —a,

sou € W, (@). ThereforeWy (a) ¢ W (&) and sincer’ﬂWL (@) = Pandy; ﬂUJ/ #* 0,
j =1,2,W (&) separatet); andU;. SoL € M, as required. O

Lemma4.7. The setM is dense inSy.

Proof. Suppose that € S7, and let 0< ¢ < minycg-1 o (U). From the continuity of
oL if follows that for eache > 0O there is an open c&p contained in a hemisphere of
S"-1 such that
PLI-U) = 5 < pLW) < pL(—U) + 5

for all u € C. Choose distinct pointa; andu, in C. Let C; andC, be closed caps
centered ati; and contained i€, with the radius of; greater than that af,, and such
thatu, ¢ C;. Let A = relintC;\Cy; thenA is an annular region i8"~* centered ati;.

Let f (u) be a continuous function o8~ such that f (u)] < ¢ for allu e "1,
fup)=ej=212 1) =—-eforue A andf(u) =0ifu ¢ C. Let M be the star
body defined by

pm(U) = pp(u) + f(u).
Then

& &
emUj) = pL(Uj) + & > pL(—Uj) + 5= om(=Uj) + e om(=Uj),
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sou; € Vy, for j =1, 2. On the other hand, far e A we have

pm(U) = pL(U) — & < p(—U) — g = pw(—u) — g

S0 A C Wu(e/2). If U; is the component o¥ containingu;, j = 1, 2, thenU; and
U, are separated b and so alsWy (¢/2). ThereforeM € M ands(L, M) =¢. O

Lemma4.8. If M € M, there exists an Me M such that M £ +M and yet M and
M’ have equal i-chord functions for all+ O.

Proof. LetM € M and letU,, Uy, a > 0, andWy, (a) be as in Lemma 4.5. Define
M’ by

() = | PM (=uw if  ueUiU(=Uy),
R PV if  ueSh\(UU(-Uyp).

We claim thatoy is continuous. It is obviously continuous at each U, U (—U,) and
at each point in the relative interior 81\ (U1 U (—=Uy)). If ug belongs to the common
relative boundary of these sets, then

oM (Ug) = pm(Ug) = pm (—Up).

For eache > 0 there exists a neighborhodd of ug such thatonm (Ug) — pm (U)| < €
and|pm(—=Ug) — pm(—=U)| < e foreachu e U. If u e U N (UL U (=Uy)), we have

[om (Ug) — pm (W] = [om(—=Uo) — pm(—U)| < &,

while if u € U\ (U1 U (—Uy)), then

[om (Uo) — pmr (W] = [om (Uo) — pom (W] < &,

and this proves the claim.
Since

{om(W), pm (=W} = {om (U), pm (=)}

forallu e S"1, Proposition 2.2 implies thal andM’ have equail-chord functions for
alli > 0. Moreover, sincey (U) > pm(—U) = pw (U) whenu € Uy, we haveM # M/,
and sinceoy (U) > pm(—U) = pwr(—u) whenu € U, we also haveM = —M'. O

Corollary 4.9. The set of star bodies If" that are determined i8", up to reflection
in the origin by their ith section functions for all,il < i < n — 1,is nowhere dense

Proof. By Lemmas 4.6, 4.7, and 4.8, there is an open dense subsgt ahd hence
an open dense subset8f, consisting of star bodies not determined, up to reflection
in the origin, by theiri-chord functions for ali > 0. The result now follows from
Proposition 2.2. |
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We know from Lemma 4.8 that the set of star bodiesgrthat are not determined in
S", up to reflection in the origin, by theith section functions for two different values
of i, contains the open s@#l, dense inS]. Despite this, we have the following result.

Theorem 4.10. The set of all star bodies 87 that are not determined i8", up to
reflection in the originby their ith section functions for two different values ofs not
open

Proof. LetL’be the planar star body such that

©) = 1+sif40  if 0<6<m,
P =1 if 7<6<o2r.

Since L’ is symmetric with respect to the-axis, we can rotate a copy &f in the
(X1, Xn)-plane inE" about thex,-axis to obtain a star body in E".

By Theorem 4.3L is not determined, up to reflection in the origin, byiitls section
functions for two different values of sinceV, has componentsi € S™1: 0 < u-ugp <
1/v/2} and{u e " 1:1/4/2 < u-ug < 1}, whereug = (0, ..., 0, 1). Lete > 0, and
define a planar star body’ by

©) = 1+sirf40 +e(2/m)?0(r —60) if 0<60<m,
=11 if 7<6<21.

Note thats(L’, M’) = . SinceM’ is symmetric with respect to theaxis, we can rotate
a copy ofM” in the (x1, Xn)-plane inE" about thexy-axis to obtain a star body! in E"
such tha(L, M) = ¢. Since

Vu={ueSt:u-ug> 0},

Theorem 4.3 implies thadl is determined, up to reflection in the origin, byiits section
functions for two different values of O

5. Determination of Convex Bodies

Theorem 5.1. Leti > 0and suppose that K is a centered convex bod§FirThen K
is not determined ifiC2 by its i-chord functior(and hence not by its section function or
X-ray at the origin).

Proof. By rotating K, if necessary, we may suppose that it is strictly convex at the
pointv where its boundary bl meets the positiveg-axis; sinceK is centered, itis also
strictly convex at-v. Let w be a point on the positive-axis withw ¢ K, and letp;,

i =1, 2, be the points where the tangent¥tdhroughw meet bk . We assume that

is sufficiently close to b& to ensure that ifi is a unit vector in the direction of a point
gon[p;, w], j =1, 2, then

21 p () > qll. 1)
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Let L € 82 be the star body with the samehord functions a&, such that bd. is
obtained from b by replacing the arc in b from p; to p, containingv by the line
segmentsy;, w], for j = 1, 2, and the arc in b& from —p; to — p, containing—v by
suitable arc&; joining —p; and a poiniz € K on the negativex-axis. The bodyL is
defined by

pL ) + oL (=)' = pi (W) + pi (—U)" = 2pk (U)', %)

forallu e St.

The bodyL is in general not convex (see Fig. 1 for a special case when it is), but we
claim that the arc®;, j = 1, 2, are convex with respect to the origin. To see this fix
and letu; anduy be unit vectors in the direction of points op;[ w]. The convexity of
K implies (see Lemma 5.1.4 of [5]) that

pr (U1 + U2) ™t < pi (U ™+ p (U2) ™ ©)
and the linearity of bd. along [p;, w] yields
pLUL+ U2)™h = pL(un) ™ + pL(u) )
For p < 0, Minkowski’s inequality states that
(@ +by)P + (82 + b)P)YP = (a7 +87)"P + (b] + b)) YP,

forax > O andbx > 0,k =1, 2; see (B.4), p. 367 of [5] or Section 2.11 of [13]. Letting
ck =a + b, k=1,2,andp = —1/i, we obtain

@+ =Y M) T 2 (- b)Y+ (- (5)

for ¢ > by >0,k:172.
By (1), we have Q/'pK.(uk) > pL(Ux), k = 1, 2. Then we can apply (5) withy =
oL (uW)' andcx = 2ok (UK)', k = 1, 2, together with (2)—(4), to obtain

(20K (U1 + Up)' — pp(Ug + Up)') ™Y
(@Y p (up) ™t 4 27V pe (up)™H ™
— (pLUD) "+ pL(up)~HTH Y
((2pk (UDH ™" + 20k (U))~YH™
— ((pL W)™ + (pL(up))y™YH™H
2pi (Un)' — pLuD) ™Y 4 2ok (U2)' — p (U™
= pL(—up) P+ pL(—uph.

pL(—ug —up)~*

A

IA

This shows that the ar; is convex and proves the claim.

If L is convex, the proofis finished. Otherwise,llet= conv L. Then there are points
g, € P, j =1, 2,suchthatbdi contains the line segmertj], d.] but otherwise agrees
with bd L.
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Let M € S2 be the star body defined by
pmW)' + pr (=W = pL W) + o (-W)' = 2ok (W),

for allu e S', where the last equality is a consequence of (2). The points M buthe
direction ofu € S' such that-u is in the direction of a point ind, ] form an arcR
joining pointsry andr,, say, withr; € [p;j, w].

The arcR is convex with respect to the origin. The argument that proves this is the
same as that for the convexity of the &g since ifu; andu, are unit vectors in the
direction of points onda, g], we have

pm(—Uy — Ux) ™t = (2pk (Ug + Up)' — pr (ug + up)) Y1,
and bdH is linear along §1, gy].

Finally, we letK’ be the body whose boundary contains theRabut otherwise agrees
with bd H. By constructionK’ € K2 andK’ has the samiechord function a¥, so the
proof is complete. O

Figure 1 depicts a bodiK’ obtained from a centered squdfeby the construction
of the previous theorem with = 1. For this example it can be shown that when
is sufficiently close tav, as it is in Figure 1, the body in the proof of Theorem 5.1
is already convex. Figure 1 was generated with Mathematica and therefore gives the
precise shape df’ up to the tolerances of that package. The existence of such examples
is surprising and of independent interest since it would be natural to conjecture that a
convex body containing the origin in its interior and having the same X-ray at the origin
as a convex polygon must itself be a convex polygon. The example also shows that the
results of [4] on determination of convex polygons in the class of convex polygons do
not extend to their determination in the class of all convex bodies.

Fig. 1. Convex bodies with the same section function.
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We conjecture that Theorem 5.1 holds in higher dimensions. The following question
is also open.

Question 5.2. Leti e Nand1<i < n—1. Are most convex bodies ii; determined
in K5 by theirith section function?

The next theorem provides an important class of convex bodi&$ iat are not
determined in the sense of the previous question.

Theorem 5.3. Leti > 0 and suppose that k& K has everywhere positive Gaussian
curvature Then K is not determined iK{, up to reflection in the originby its i-chord
function or (ifi € Nand1 <i < n — 1) by its ith section function

Proof. LetU be an open cap contained in a hemispher®'irt and letf € C3(S"1)
be such thatf(u) > 0Oifue U andf(u) = 0if u ¢ U. Letc > 0 be such that
cf(u) < pk(u) if u € U. Define

9e(U) = (pk (W) + pk (—U)' — (pic (u) — cFUNHY' — pk (—u),

foru € U. DefineL € S by

ok (U) —cf(u) if ueU,
pLU) = § Pk (U) + Ge(—U) if ue-U,
oK (U) otherwise.

Itis easy to check that, € C2(S"~1) and thatk andL have equai-chord functions
(and by Proposition 2.1, if e Nand 1< i < n — 1, equalith section functions). We
can also chooseay € U andcy > 0 such that

cf(ug) # pk (Ug) — pk (—Uo),

for all ¢ with 0 < ¢ < c¢p; note that this ensures that (Ug) # pk (F£uUg) for the
corresponding bodies.

It remains to show that we can also choasso thatL is convex. To see this, note
that it suffices to show thdt N Sis convex for each two-dimensional subspace, so we
may assume thatt = 2 and use polar coordinates. By the formula for curvature in polar
coordinates, we have

201 (0)% — pk (0) pi (0) + pr (0)* > 0,
for0 <6 < 27. Now for9 € U, we haveo_ (9) = pk (8) — cf(0) and hence
200 (0)? — pL(O)p (6) + pL(0)* = 2pi ()% — pk (0) p (B) + pk (0)* + CF(6),

whereF = F(f, f', ", pk, pk. px) is @ polynomial. Therefore we can choasg ¢y
sufficiently small to ensure that

200 (0)% — pL(O)p] (0) + pL(B)* > O,
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foro e U. For6 € —U, we havep_ (0) = px (8) + g.(—6) and

200 (0)2 = pL(0)p] (0) + pL(0)? = 20 () — pK (B) pi (8) + pK (8)* + G(6),

whereG = G(gc, 9;, O¢, oK, Pk » Pk ) IS a polynomial. Itis easy to check thatas> 0,
dc and its first two derivatives converge to zero uniformlyiand that this implies that
G also converges to zero uniformly éh Therefore we can choosesufficiently small
to ensure that also

200 (0)% — pL(0)p] (0) + pL(B)* > 0,

for 8 € —U, and hence thdt is convex. O

The class of convex bodiesAt}, with everywhere positive Gaussian curvature is dense
in kg (this follows from Theorem 3.3.1 of [18]). On the other hand, most members of
Ky have zero Gaussian curvature at almost every point on their boundaries. This is a
result of Zamfirescu (see p. 1332 of [12] and the references given there).

Theorem 5.4. LetT beatriangleif£? with centroid atthe originThen T is determined
in K2, up to reflection in the originby its section functio(X-ray at the origir).

Proof. By applying a linear transformation, if necessary, we may assumd that
vertices(, 0), (—3, v/3/2), and (—%, —+/3/2). Suppose thaK e K2 has the same
section function ag .

We work with the radial function oK in polar coordinates. Let, = pk (nrz/3),
so that

Xn+6 = Xn, (6)

for all n € N. SinceK has the same section functionBswe also have

Xn + Xp+3 = % (7
and

O<Xn<% )

for all n € N. Our goal is to prove that either ® = 3, x» = 1, andxs = 3, or (ii)
X1 =1% = % andxz = 1. If (i) holds, then by (7) the vertices df belong toK, so
T c K, and the equality of the section functions then impkes= T. If (ii) holds, the
vertices of—T belong toK, so we conclude similarly tha¢ = —T.
We first establish two more relations among . The convexity oK yields (see
Lemma 5.1.4 of [5])
1 1 1
<—+
Xn+1  Xn Xn42

9

and

V3 1 1
<

—_ +—7
k(@ +D7/6) ~ Xo | X
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for all n € N. SinceK has the same section functionBswe have

((2n+1)n> ((2n+7)71) 23
ok | ——— )+ ok

6 6 37
so the previous inequality gives
% 32/

+ < .
1/Xa 4+ /%11 /%013 + 1/Xnta 3
Combining this with (7) we have

V/3(3%n + 3Xns1 + L6XnXnr1 — 10x2 — 10x2,

) <0,
12(Xn + Xn+1) (3 — (Xn + Xng1)) -

so, by (8),

3Xn + 3Xnt1 + 16XnXns1 — 10x2 — 10x2,; < O, (10
for all n € N. Note that (10) is satisfied unlegs,, x,,1) lies in the interior of an ellipse
E in E? that is symmetric with respect to the lie= x. The ellipseE contains(0, 0),
0 2), (&5 5, G D, @1, andE, ) in its boundary, and therefore also contains
the squaress; = {(x,y) 10 < X,y < 3}, S ={(X.y) : &5 < X,y < 3}, and
S={xy):3<xy=<1.

h

We prove that either (i) or (ii) holds by a series of claims.
Claim 1. If 3 < Xn, Xns1 < 1forany ne N, then % = 3 and %1 = 1 or vice versa
This is an immediate consequence of the fact faat E.

Claim 2. lItis not possible that x xn11 < % forany ne N.

Observe first that sincé contains the squareg and S, we havel—3O < Xn < % and
Xnp1 < 1—10 or vice versa. If the former possibility holds, then, by (4),

1 1 1 1 1 20
T % I TET T3
Xn+2  Xnyl Xn 6 6

3 H 1 3 1
SOXnt2 < 35 SINCEXny1 < 35, We mMust havey < Xni2 < 3, by the above argument

with nreplaced byn + 1), and this is a contradiction. The assumption that , < %
andl% < Xny1 < 2 similarly leads to a contradiction, so Claim 2 is proved.

Claim3. If 1 < Xn, Xni2 and %1 < 3 forany ne N, then % = 1, X1 = 3, and
Xnt2 = 1.

This follows immediately from (9).
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Note thatx, < 2x,.1, for otherwise, by (9),
1 1 1 1 1 1 1 1

<—+ <—+1< +1< + = .

Xn+1 Xn Xn+2 Xn 2Xn-‘,—l 2Xn+1 2Xn+1 Xn+1

The liney = x/2 meets b at the origin and1, %), so the triangle determined by this
line and the linex =  andy = 1 is contained irE and intersects b& only at (1, 3).

It follows that if 3 < Xn < 1, Xn41 < 1, andXy < 2Xq41, then (10) holds only ik, = 1
andxns1 = 3, in which case, ., = 1 by (9).

We now represent any sequenicg} by a sequence of letteiS M, andL, each
letter being used at theth place ifx, < % % < Xn < 1, or 1< xp, respectively. Each
sequence is determined by the first three letters; thus if the sequence Belind, it
must continud., S, M, by (7), and then repeat by (6). Thus we have 27 different possible
sequences. Claims 1-4 above each exclude sequences containing some concatenation
of letters. Specifically, the appearanceMf M, or S, S orL, S, L,orM, S L, is
forbidden by Claims 1-4, respectively, with certain exceptional values, @llowed
as in the statements of the claims. Each of the 27 sequences can now be examined
individually. For example, the sequence above begin&ing, M continues withL, S,

M, S, L, M and therefore containsl, S, L. By Claim 4 this is only possible when
Xe =1,%X7 = % andxg = 1, so using (6) and (7), we see that (i) holds . A routine check
shows that in each case (i) or (ii) holds, completing the proof. O

If it is true that a set of convex polytopes dense(if are determined iriCy), up to
reflection in the origin, by their section functions, then a standard argument shows that
the answer to Question 5.2 is affirmative. In view of Theorem 5.3, however, this may
be false or difficult to prove. There are certainly convex polygons whose vertices are
in general position with respect to the origin that are not determined in this sense. An
example is the pentagdd depicted in Fig. 2.

Fig. 2. The pentagorP.
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To see thatP is not determined irk’2, up to reflection in the origin, by its section
function, Minkowski’s inequality can be used as in the proof of Theorem 5.1 to show
that there is a convex body, whose intersection witR is precisely the segmenp]q],
such thatH has the same section function as the reflection in the origin of the triangle
T with vertices af, b, andc. The bodyK formed by removingl from P and adding
H then has the same section functionfrasMoreover, the interior angles &f at p and
g are sufficiently small to ensure thidtis convex.
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