
REALIZATION OF JETS AND VECTOR FIELDS

IN SCALAR PARABOLIC EQUATIONS

Martino Prizzi

Abstract. Let Ω ⊂ RN be a smooth bounded domain. Let

L′u :=
N∑

i,j=i

∂i(aij(x)∂ju), x ∈ Ω

be a second order strongly elliptic differential operator with smooth symmetric coefficients.

Let B denote the Dirichlet or the Neumann boundary operator. We prove the existence of
a smooth function a: Ω → R such that all sufficiently small vector fields on RN+1 can be

realized on the center manifold of the semilinear parabolic equation

ut = L′u+ a(x)u+ f(x, u,∇u), t > 0, x ∈ Ω

Bu = 0, t > 0, x ∈ ∂Ω,

with an appropriate nonlinearity f : (x, s, w) ∈ Ω× R× RN 7→ f(x, s, w) ∈ R.
For N = 2, n, k ∈ N, we prove the existence of a smooth function a: Ω → R such that all

sufficiently small k-jets of vector fields on Rn can be realized on the center manifold of the
semilinear parabolic equation

ut = L′u+ a(x)u+ g(x, u) · ∇u, t > 0, x ∈ Ω

Bu = 0, t > 0, x ∈ ∂Ω,

with an appropriate nonlinearity g: (x, s) ∈ Ω×R 7→ g(x, s) ∈ R2 (here ”·” denotes the scalar

product in R2).

1. Introduction

Let Ω ⊂ RN be a smooth bounded domain. Let

L′u :=
N∑

i,j=i

∂i(aij(x)∂ju), x ∈ Ω

This research is part of my PhD thesis (S.I.S.S.A., Trieste, Italy). The thesis is in progress under the

direction of Prof. K. Rybakowski, to whom I’m grateful for all our friendly and fruitful discussions.

Typeset by AMS-TEX
1



2 MARTINO PRIZZI

be a second order strongly elliptic differential operator with smooth symmetric coefficients.
Let a: Ω → R be a smooth function and set

Lu := L′u+ a(x)u

Consider the semilinear parabolic equations

(1.1)
ut = Lu+ f(x, u,∇u), t > 0, x ∈ Ω

u = 0, t > 0, x ∈ ∂Ω

and

(1.2)

ut = Lu+ f(x, u,∇u), t > 0, x ∈ Ω

∂u

∂ν
= 0, t > 0, x ∈ ∂Ω.

Here f : (x, s, w) ∈ Ω×R×RN 7→ f(x, s, w) ∈ R is some ”smooth” nonlinearity. For p ≥ 1,
the operator −L with Dirichlet (or Neumann) boundary condition on ∂Ω defines a sectorial
operator on X := Lp(Ω) with the corresponding family Xα of fractional power spaces. If
p > N , then α can be chosen such that Xα ⊂ C1(Ω) and then the solutions of (1.1) (or
(1.2)) define a local semiflow on Xα.

It is known that for N = 1 the dynamics of (1.1) (or (1.2)) is very simple, as all bounded
solutions are convergent. On the other side, if the nonlinearity f is independent of gradient
terms, then the local semiflow generated by (1.1) (or (1.2)) is gradient-like and so the
dynamics is again rather simple and nonchaotic. The situation is completely different if
N ≥ 2 and if f depends explicitly on gradient terms. It has recently been proved that the
dynamics of (1.1) (or (1.2)) can be very complicated, in fact even ’arbitrary’. A first result
of this kind was given by Poláčik in [8]. More specifically, he proved that every finite jet
of a vector field on Rn can be realized on the center manifold of (1.1) with an appropriate
nonlinearity f provided the kernel of the operator L (with Dirichlet boundary conditions on
∂Ω) has dimension n and the corresponding eigenfunctions satisfy a certain nondegeneracy
condition (called Poláčik condition). In this case n = N or n = N + 1 and Poláčik also
gave examples of operators satisfying this condition, both with n = N (and Ω being the
unit ball) and n = N + 1 (with Ω being smooth and smoothly diffeomorphic to the unit
ball), and with L of the form L = ∆ + a(x). In [18] Rybakowski showed that under the
Poláčik condition actually all sufficiently smooth and sufficiently small vector fields v on
Rn can be realized on the center manifold of (1.1) with an appropriate nonlinearity f . The
method of proof used in [18] (the Nash-Moser implicit mapping theorem) leads to a loss of
derivatives: g is less smooth that v. In [14] Poláčik and Rybakowski proved that if L has
analytic coefficients and Poláčik condition holds then a vector field realization result holds
without loss of derivatives. They also showed that there are real analytic functions a on
RN such that the operator Lu = ∆u+a(x)u satisfies the Poláčik condition on a ball of RN

with n = N + 1. These results lead to a restriction in the space dimension of (1.1): to get
realizability of any vector field of Rn we have to choose n = N or n = N+1. Therefore the
question arises what is the least possible space dimension that allows arbitrary dynamics
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in (1.1) and (1.2). In [12] it was shown by P. Poláčik that every finite jet of a vector
field on Rn can be realized on the center manifold of (1.1) with an appropriate polynomial
nonlinearity f and an appropriate two-dimensional domain (close to a square). In [12]the
form of the nonlinearity f involves high powers of the gradient of the solution u. On the
other hand, when modelling scientific phenomena by equations (1.1) and (1.2), one usually
tries to make the convection terms (i.e. the terms depending on ∇u) as simple as possible.
In [16] it is shown that arbitrary jets can be realized in (1.1) even for functions f depending
on the gradient in a linear fashion.

All the above realization results were proved only on very particular domains, diffeo-
mophic to a ball or close to a square, and for operators of the form L = ∆ + a(x). One
can ask if it is possible to extend such results to the case of arbitrary (sufficiently regular)
domains and general second order elliptic operators in divergence form.

A first affirmative answer to this question was given by K. Rybakowski and the present
author in [17]. More specifically, they proved that the vector field realization result from
[14] is valid for the Laplacian on an arbitrary bounded domain Ω of class C2,γ , 0 < γ < 1.

The goal of this paper is to extend all the above realization results to the case of a
general second order elliptic operator on an arbitrary spatial domain, both with Dirichlet
and Neumann boundary conditions. In order to achieve this result, we exploit some of the
techniques used in [17] together with a “localization lemma” (Lemma 5.1), which is the
main contribution of this paper.

The paper is organized as follows: in Sections 1 and 2 we recall some basic realization
results presenting them in a more abstract form; in Section 4 we slightly refine some per-
turbation results of [17]; in Section 5 we state and prove the above mentioned “localization
lemma”; finally, in Sections 6 and 7 we show that the abstract assumptions in Sections 1
and 2 actually are satisfied with any symmetric strongly elliptic second order differential
operator in divergence form on an arbitrary spatial domain.

2. Vector field realizations

Throughout this section let N ≥ 2 and Ω ⊂ RN be a bounded domain of class C2,γ with
0 < γ < 1. Let L be a differential operator of the form

Lu =
N∑

i,j=1

∂i(aij∂ju) + au.

We assume throughout that L is uniformly elliptic and its coefficient functions satisfy
aij ∈ C1,γ(Ω), i, j = 1, . . . , N , and a ∈ Cγ(Ω). Consider the semilinear parabolic
equations

(2.1g)
ut = Lu+ g(x, u,∇u), t > 0, x ∈ Ω

u(x, t) = 0, t > 0, x ∈ ∂Ω

and

(2.2g)

ut = Lu+ g(x, u,∇u), t > 0, x ∈ Ω

∂u

∂ν
(x, t) = 0, t > 0, x ∈ ∂Ω.
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Here
g: (x, s, w) ∈ Ω× R× RN 7→ g(x, s, w) ∈ R

is some nonlinearity.
To study (2.1g) and (2.2g) we shall rewrite this problems in a more abstract way. Set

X := Lp(Ω), for some p > N .

The operator −L with Dirichlet (resp. Neumann) boundary conditions on ∂Ω defines a

sectorial operator A on X with domainW 2,p(Ω)∩W 1,p
0 (Ω) (resp. W 2,p

N (Ω), whereW 2,p
N (Ω)

is the space of all functions in W 2,p(Ω) that satisfy the Neumann condition on ∂Ω in the
sense of traces). The operator A generates the corresponding family Xα of fractional power
spaces and fixing α with

(N + p)/(2p) < α < 1

we have that
Xα ⊂ C1(Ω)

with continuous inclusion. Define
X0 := kerA

and suppose that
n := dimX0 ≥ 1.

Let P be the L2(Ω)-orthogonal projection of X onto X0. Fix an arbitrary L2-orthonormal
basis φ1, . . . , φn of X0 and write

φ(x) := (φ1(x), . . . , φn(x)).

Note that the assignment

Q:Rn → X0, Qξ := ξ · φ =
n∑

i=1

ξiφi

is a linear isomorphism.
For m ∈ N0 let Cm

b (Rn,Rn) be the set of all maps

h:Rn → Rn

such that for all 0 ≤ k ≤ m the Fréchet derivative Dkh exists and is continuous and
bounded on Rn.
Cm

b (Rn,Rn) is a linear space which becomes a Banach space when endowed with the
norm

|h|m := sup
y∈Rn

sup
0≤k≤m

|Dkh(y)|Lk((Rn)k,Rn).

Furthermore, let Ym be the set of all functions

g: (x, s, w) ∈ Ω× R× RN 7→ g(x, s, w) ∈ R
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such that for all 0 ≤ k ≤ m the Fréchet derivative Dk
(s,w)g exists and is continuous and

bounded on Ω× R× RN .
Ym is a linear space which becomes a Banach space when endowed with the norm

|g|m := sup
(x,s,w)∈Ω×R×RN

sup
0≤k≤m

|Dk
(s,w)g(x, s, w)|Lk((R×RN )k,R).

For g ∈ Ym the formula

ĝ(y)(x) := g(x, y(x),∇y(x)), y ∈ Xα, x ∈ Ω

defines the Nemitski operator
ĝ:Xα → X

of class Cm
b . We can rewrite problem (2.1g) in the form

(2.3g) ẏ = −Ay + ĝ(y).

Let u0 ∈ Xα; a solution of (2.3g) on ]0, T [ (where T ∈ ]0,∞]) through u0 is, by definition, a
continuous map u: [0, T [ → X with u: ]0, T [ → X differentiable, u(t) ∈ domA for t ∈ ]0, T [,
t → ĝ(u(t)) ∈ X is locally Hölder continuous on ]0, T [,

∫ a

0
|g(u(s))| ds < ∞ for some

a ∈ ]0, T ] and
u̇(t) +Au(t) = ĝ(u(t)), for all t ∈ ]0, T [.

For every g ∈ Y1 and u0 ∈ Xα there is a maximal T (u0) ∈ ]0,∞] and a unique solution
u(·, u0) of (2.3g) on ]0, T (u0)[ through u0. Writing

Π(t, u0) := u(t, u0), t ∈ ]0, T (u0)[

we obtain a local semiflow Π = Πg on Xα.

Now let Y and Ỹ be arbitrary Banach spaces and Π (resp. Π̃) be a local semiflow

on Y (resp. Ỹ ). We say that Π̃ imbeds in Π if there is an imbedding Λ: Ỹ → Y such

that whenever I is an interval in R and z: I → Ỹ is a solution of Π̃ then Λ ◦ z: I → Y is a
solution of Π. (Here by imbedding we mean that Λ is injective, of class C1, Λ−1: Λ(Ỹ ) → Ỹ

is continuous, and for every ỹ ∈ Ỹ , DΛ(ỹ) is injective and its image splits, i.e. admits a

topological complement.) In this case, M := Λ(Ỹ ) is a C1-submanifold of Y which is
invariant relative to the local semiflow Π and Π restricted to M is ‘isomorphic’ to the local
semiflow Π̃. We are particularly interested in the case where Y = Xα, Π = Πg for some

nonlinearity g, Ỹ := Rn and Π̃ is generated by an ordinary differential equation

(2.4h) ξ̇ = h(ξ), ξ ∈ Rn

where h:Rn → Rn is locally Lipschitzian. If Π̃ imbeds in Π (via the imbedding Λ) then
we say the PDE (2.3g) realizes the vector field h:Rn → Rn (via the imbedding Λ on the
invariant manifold M = Λ(Rn)). In this case the qualitative behavior of the ODE is



6 MARTINO PRIZZI

completely simulated by the corresponding PDE (restricted to the invariant manifold M).
An important candidate for the manifold M is given by the (global) center manifold:

The global center manifold Mc of (2.3g) is, by definition, the set of all u0 ∈ Xα for
which there exists a solution u:R → Xα of (2.3g) satisfying u(0) = u0 and such that
supt∈R |(I−P )u(t)|Xα <∞. Obviously, the global center manifold of (2.3g) is an invariant
set for the local semiflow defined by that equation. We call an imbedding Λ:Rn → Xα

canonical if PΛ(ξ) = Qξ for all ξ ∈ Rn. It follows from the center manifold theory that
for g ∈ Y1 with |g|1 small there is a canonical imbedding Λ:Rn → Xα such that Λ(Rn) is
the global center manifold of (2.3g).

Let us recall the following fundamental concept:

Definition 2.1. We say that the operator L satisfies the Poláčik condition on Ω if
dimkerA = N + 1 and for some (hence every) basis φ1, . . . , φN+1 of kerA, R(x) 6= 0
for some x ∈ Ω, where

R(φ1, . . . , φN+1)(x) := det

 φ1(x) ∇φ1(x)
...

...
φN+1(x) ∇φN+1(x)

 , x ∈ Ω.

Remark. We have n = N + 1 in case the Poláčik condition holds. One can also define a
(weaker and less interesting) version of the Poláčik condition with n = N (cf. [18]).

The following result was essentially proved in [14]by Poláčik and Rybakowski:

Theorem 2.2. Let L be as above and let κ > 1; assume:

(1) L satisfies the Poláčik codition on Ω;
(2) G ⊂ Ω is an open set;
(3) R(x) 6= 0 for all x ∈ G;
(4) there is a function b ∈ C∞(Ω) with supp b ⊂ G such that

λ < −κ

for every eigenvalue λ of the operator L + b on Ω with Dirichlet (or Neumann)
boundary condition on ∂Ω.

Then there is a δ1 > 0 such that for every h ∈ C1
b (RN+1,RN+1) with |h|C1

b
< δ1 there is

a nonlinearity f = fh ∈ Y1 with the property that equation 2.1 (or 2.2) realizes the vector
field h on an invariant manifold M = Mh via an imbedding Λ = Λh:RN+1 → Xα of class
C1. Moreover, for each m ≥ 1 there exists a δm > 0 such that if h ∈ Cm

b (RN+1,RN+1) and
|h|Cm

b
< δm then fh can be chosen such that fh ∈ Ym and the imbedding Λh:RN+1 → Xα

is of class Cm.

It was not realized in [14] that, for δ1 small enough, the manifold M in the above
theorem is actually the global center manifold of (2.3g), although the imbedding Λ, in
general, is not the canonical imbedding; this fact was observed and proved in [17]:
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Theorem 2.3. Let aij ∈ C1,γΩ and a ∈ Cγ(Ω) and assume that the operator L with
Dirichlet (or Neumann) boundary condition on ∂Ω satisfies the Poláčik condition on Ω.

Then there is a δ1 > 0 such that for every h ∈ C1
b (RN+1,RN+1) with |h|C1

b
< δ1 there

is a nonlinearity g = gh ∈ Y1 with the property that equation (2.3g) realizes the vector
field h on the global center manifold Mc = Mch of (2.3g) via a (not necessarily canonical)
imbedding Λ = Λh:RN+1 → Xα of class C1. If in addition h ∈ Cm

b (RN+1,RN+1) then gh
can be chosen such that gh ∈ Ym and the imbedding Λh:RN+1 → Xα is of class Cm.

In [14] Polàčik and Rybakowski proved that, if Ω is a ball in RN , then, for suitable
potential functions a and b, the operators ∆ + a and ∆ + a + b with Dirichlet boundary
condition on ∂Ω satisfy all the assumptions in Theorem 2.2. In [17] Rybakowski and the
author of the present paper extended this result to the case of an arbitrary smooth bounded
domain. In Section 6 we will prove that, given arbitrary aij ∈ C1,γ(Ω), with aij ≡ aji for
all i, j = 1, . . . , N and

N∑
i,j=1

aij(x)ξiξj ≥ c|ξ|2, x ∈ Ω, ξ ∈ RN ,

for some c > 0, then both for Dirichlet and Neumann boundary conditions on ∂Ω it is
possible to construct functions a, b: Ω → R such that all assumptions in Theorem 2.2 are
satisfied.

3. Jet Realizations

Let Ω ⊂ R2 be a smooth bounded domain. Let

L :=
2∑

i,j=1

∂i(aij(x)∂j) + a(x)

be a strongly elliptic second order differential operator with symmetric smooth coefficients.
Now fix k ∈ N and arbitrary integers q1, . . . ,qk such that 1 ≤ ql ≤ l for l = 1, . . . ,k. Let
E = E(q1, . . . , qk) be the set of all functions f :R4 → R of the form

(3.1) f(x, y, s, w) =
k∑

l=1

al(x, y)s
l−qlwql , (x, y, s, w) ∈ R4,

where al ∈ H2(Ω) for l = 1, . . . ,k. For f ∈ E and $ ∈ R2, consider the equations

(3.2)
ut = Lu+ f(x, y, u, uϖ), t > 0, (x, y) ∈ Ω

u = 0, t > 0, (x, y) ∈ ∂Ω

and

(3.3)

ut = Lu+ f(x, y, u, uϖ), t > 0, (x, y) ∈ Ω

∂u

∂ν
= 0, t > 0, (x, y) ∈ ∂Ω,
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where uϖ := $ · ∇u.
Set X = Lp(Ω), p > 2, and let A:DA ⊂ X → X be the sectorial operator induced by

L with Dirichlet or Neumann boundary condtion on ∂Ω, where DA =W 2,p(Ω) ∩W 1,p
0 (Ω)

in the first case, and DA = W 2,p
N (Ω) in the second case. The operator A generates the

corresponding family Xα of fractional power spaces and fixing α with

(2 + p)/(2p) < α < 1

we have that
Xα ⊂ C1(Ω)

with continuous inclusion. As usual we rewrite (3.2) and (3.3) as abstract equations in X:

(3.4) u̇+Au = f̂ϖ(u),

where f̂ϖ(u)(x) := f(x, u(x), uϖ(x)). Note f̂ϖ ∈ C∞(Xα, X). Define

X0 := kerA

and suppose
n = dimX0 ≥ 1.

Let P0 be the L2(Ω)-orthogonal projection of X onto X0. Fix an arbitrary L2-orthonormal
basis φ1, . . . , φn of X0; then

(3.5) P0u(x) =

n∑
i=1

φi(x)

∫
Ω

u(y)φi(y)dy, u ∈ X.

Write
φ(x) := (φ1(x), . . . , φn(x));

note that the assignement

Q:Rn → X0, Qξ := ξ · φ =
n∑

i=1

ξiφi

is a linear isomorphism.

We can identify E with
(
H2(Ω)

)k
; with the norm induced by this identification, E

becomes a Banach space whose topology is stronger than the topology of locally uniform
convergence of all derivatives Dh

(s,w)f(x, y, s, w), h = 0, . . . ,k+1 on Ω×R2. We can apply

the standard theory of center manifolds: we can find an open neighborhood U in E , 0 ∈ U ,
and a map

Λ:U ×Bn
1 (0) ⊂ E × Rn → Xα

with the following properties:

(1) P0Λ(f, ξ) ≡ Qξ and Λ(0, ξ) ≡ Qξ;
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(2) Λ is of class Ck+1;
(3) the map Λf (·) := Λ(f, ·) is an imbedding and the set

Mloc
f := {Λf (ξ) | ξ ∈ Bn

1 (0)}

is a local invariant manifold of (3.4). Moreover, if vf :B
n
1 (0) → Rn is defined by

(3.6) vf (ξ) := Q−1P0f̂
ϖ(Λf (ξ)), ξ ∈ Bn

1 (0),

then the ODE defined by vf imbeds, via Λf , in (3.4).

Define the map

Ψ:U ⊂ E → Ck
b (B

n
1 (0),Rn)

Ψ(f)(ξ) := Q−1 ◦ P0 ◦ f̂ϖ ◦ Λf (ξ), ξ ∈ Bn
1 (0).

Simple computation shows that Ψ is of class C1 and

DΨ(0)f(ξ) = (Q−1 ◦ P0 ◦ f̂ϖ)(Qξ).

Let Jk
0 (Rn) denote the set of all k-jets on Rn mapping 0 into itself. Equivalently, h ∈

Jk
0 (Rn) if and only if h is a polynomial on Rn of order ≤ k with h(0) = 0. We say that

a jet h can be realized in (3.2) (or (3.3)) by the non-linearity f if the k-th order Taylor
polynomial of the vector field vf defined by (3.6) is equal to h. We introduce the linear
bounded operator

T k:Ck
b (B

n
1 (0),Rn) → Jk

0

(T kv)(ξ) =
k∑

i=0

1

i!
Div(0)ξi, v ∈ Ck

b (B
n
1 (0),Rn), ξ ∈ Rn.

We want to find a condition which guarantees that D(T k ◦Ψ)(0) is surjective onto Jk
0 . Our

starting point is the abstract surjectivity condition

(SC) For every polynomial function h:Rn → Rn of degree ≤ k, h(0) = 0, there is an
f ∈ E(q1, . . . , qk) such that

(3.7) T k(DΨ(0)f) = h.

By (3.1) and (3.5), after straightforward manipulations, the Riesz representation theorem
gives us an equivalent, but more convenient form of this condition. We introduce the
following notations: given γ, β ∈ Nn

0 , we say that γ ≤ β iff γi ≤ βi, i = 1, . . . , n. If
γ ∈ Rn

0 , $ ∈ R2, set φγ := φγ1

1 · · ·φγn
n and φγϖ := φγ1

1ϖ · · ·φγn
nϖ. Moreover, set

εj := (0, ..., 0, 1︸ ︷︷ ︸
j

, 0, ..., 0) ∈ Nn
0 .
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With these notations, the surjectivity condition is equivalent to the following independence
condition (cf. [16]):

(IC) For every l = 1, . . . , k and for every q, 1 ≤ q ≤ l, the functions
∑
γ≤β
|γ|=q

1

γ!(β − γ)!
φβ−γ+ϵjφγϖ


j=1,...,n
|β|=l

are linearly independent.

Theorem 3.1. Let n and k ∈ N. Assume dimkerA = n and assume there is an L2(Ω)-
orthonormal basis φ1, . . . ,φn of kerA and a vector $ ∈ R2 such that (IC) is satisfied up
to the order k. Then there is an open neighborhood B of 0 in Jk

0 (Rn) such that every jet
h ∈ B can be realized in (3.7) by a a nonlinearity f ∈ E.

Remark. As in [12], theorem 3.1 can be srenghtened to obtain realizability of Cm-families
of jets; this implies that a dense set of vector fields in Rn can be realized, up to flow
equivalence, in equation (3.2) (or (3.3)) by nonlinearities of the form (3.1).

Remark. Choosing ql = 1 for all l = 1, . . . , k we obtain a jet realization result for nonlin-
earities which are polynomials in u and which are linear functions of ∇u.

In [16] Rybakowski and the author of the present paper proved that, given n, k ∈ N,
there exists a smooth bounded domain Ω and a potential a: Ω → R such that the operator
L = ∆ + a with Dirichlet boundary condition has an n-dimensional kernel spanned by
eigenfunctions φ1, . . . , φn satisfying (IC) up to the order k with $ = (0, 1). In Section 7
we will prove that, given arbitrary aij ∈ C1,γ(Ω), with aij ≡ aji for all i, j = 1, 2 and

2∑
i,j=1

aij(x)ξiξj ≥ c|ξ|2, x ∈ Ω, ξ ∈ R2,

for some c > 0, and given n, k ∈ N, then both for Dirichlet and Neumann boundary
conditions on ∂Ω it is possible to construct a potential a: Ω → R such that dimkerA = n
and (IC) is satisfied up to the order k by an appropriate basis of kerA. Here A is the
abstract operator associated to the differential operator

Lu :=

2∑
i,j=1

∂i(aij∂ju) + au

with Dirichlet (or Neumann) boundary condition.

4. Perturbation and convergence of eigenfunctions

This and the next sections are devoted to the construction of potential functions with the
properties described in sections 2 and 3. First, we recall two general results on perturbation
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and convergence of eigenvalues and eigenfunctions of selfadjoint operators in Hilbert spaces.
The reader is referred to [17] for a detailed discussion.

We use the following notation: If X is a normed space and r > 0, then Br(c) denotes the
open ball in X of radius r centered at c. Moreover, Br := Br(0). Given normed spaces X
and Y , we denote by L(X,Y ) (resp. by Lp(Xp, Y )) the space of all bounded linear (resp.
p-linear) operators from X (resp. from Xp) to Y , endowed with the operator norm. Given
a real Hilbert space H, Lsym(H,H) is the (closed) linear subspace of L(H,H) consisting
of all symmetric operators.

By Sp we denote the (finite dimensional) space of all real symmetric p × p-matrices,
endowed with an arbitrary norm. The spectrum of A is denoted by specA.

Let H be an infinite dimensional real Hilbert space, and let A: domA → H be linear,
symmetric, bounded below and with compact resolvent. Then it follows that the spectrum
of A is a countable set of real eigenvalues of finite multiplicity. This set is bounded below.
We can therefore uniquely define a nondecreasing sequence (λn)n∈N which contains exactly
the eigenvalues of A, each one repeated according to its multiplicity. We call (λn)n∈N the
repeated sequence of eigenvalues of A.

Definition 4.1. We say that the triple (H,G, A) is of type [p,M, η, θ] if and only if the
following properties hold:

(1) G is a closed linear subspace of Lsym(H,H).
(2) p is a positive integer, M , η and θ are positive reals.
(3) Let (λn)n∈N be the repeated sequence of the eigenvalues of A. There exist real

numbers γ1 and γ2 and l ∈ N0 such that, setting λ0 = −∞,

0 < γ2 − γ1 < M,

λl < γ1 − 4η < γ1 < λl+1 ≤ λl+p < γ2 < γ2 + 4η < λl+p+1.

(4) There exists an H-orthonormal set of vectors φj , j = 1, . . . , p, in domA such that
Aφj = λl+jφj , j = 1, . . . , p, and such that the operator T :G → Sp

B 7→ (〈Bφi, φj〉)ij

is such that
T (B1) ⊃ Bθ,

i.e. the image of the unit ball (at zero) in G contains the θ-ball (at zero) in Sp.

The following theorem was proved in [17]:

Theorem 4.2. For every (p,M, η, θ) ∈ N×R+ ×R+ ×R+ there exists a positive number
α0 = α0(p,M, η, θ) with the following property:

whenever the triple (H,G, A) is of type [p,M, η, θ], l, γ1 and γ2 are as in Definition 4.1
(with respect to the triple (H,G, A)), 0 < α ≤ α0 and (µ1, . . . , µp) ∈ Rp is nondecreasing
with |µj − λl+j | < α for j = 1, . . . , p, and if D is an arbitrary linear dense subspace of
G, then there exists a B ∈ D with |B| < (1/2)θα, such that, if (λn(B))n∈N denotes the
repeated sequence of eigenvalues of A+B and λ0(B) := −∞, then

(4.1) λl(B) < γ1 − 3η < γ1 − η < λl+1(B) ≤ λl+p(B) < γ2 + η < γ2 + 3η < λl+p+1(B)
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and
λl+j(B) = µj , j = 1, . . . , p.

Now let Ω and D be bounded domains in RN with D ⊂ Ω. Consider a second order
elliptic differential operator L on Ω. Define the following sequence of differential operators
on Ω:

Lku = Lu+ βkbk(x)u, x ∈ Ω

u(x) = 0, x ∈ ∂Ω

or
Lku = Lu+ βkbk(x)u, x ∈ Ω

∂u

∂ν
(x) = 0, x ∈ ∂Ω.

Here, L is a second order elliptic differential operator, βk, k ∈ N, are positive real numbers
and bk, k ∈ N, are (coefficient) functions. It was proved in [17] that under appropriate
hypotheses on βk and bk the eigenvalues of Lk converge, as k → ∞, to the eigenvalues of
the following ‘limit’ differential operator L∞ on D:

L∞u = Lu, x ∈ D

u(x) = 0, x ∈ ∂D.

It was also proved H1 convergence of the corresponding eigenfunctions. The hypotheses
are, essentially, that βkbk(x) is very small on D but very large outside of D. To give a
unified treatment for the different boundary conditions, it is more convenient to work not
with differential operators but rather with the corresponding bilinear forms or even with
certain abstract bilinear forms as we shall now explain.

In what follows, all vector spaces are over the reals.

Definition 4.3. Let V be a vector space and a : V × V → R be symmetric bilinear form
on V . If λ ∈ R, u ∈ V \ {0} satisfy

a(u, v) = λ〈u, v〉 for all v ∈ V

then we say that λ is a proper value of a and u is a proper vector of a, corresponding to
λ. The dimension of the span of all proper vectors of a corresponding to λ is called the
multiplicity of λ. If the set of proper values of a is countably infinite and if each proper
value has finite multiplicity then the repeated sequence of the proper values of a is the
uniquely determined nondecreasing sequence (λn)n∈N which contains exactly the proper
values of a and the number of occurrences of each proper value in this sequence is equal to
its multiplicity.

The following theorem was proved in [17]:

Theorem 4.4. Assume the following hypotheses:

(1) Ω ⊂ RN is a bounded domain and D ⊂ RN is a Lipschitz domain with D ⊂ Ω.
Given a function u defined on D, u∼ denotes the trivial extension of u to Ω.
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(2) b, bk: Ω → R, k ∈ N, are continuous functions and βk, k ∈ N are positive real
numbers. Moreover, b(x) > 0 for x ∈ Ω \ D, bk → b uniformly on Ω, βk → ∞,
infx∈Ω

k∈N
{βkbk(x)} > −∞ and supx∈D{βk|bk(x)|} → 0.

(3) V is a closed linear subspace of H1(Ω) such that whenever u ∈ H1
0 (D) then u∼ ∈ V .

V is endowed with the scalar product of H1(Ω).
(4) ‖ · ‖D (resp. ‖ · ‖) denotes the H1(D)- (resp. the H1(Ω)-) norm, | · |D (resp. | · |)

denotes the L2(D)- (resp. the L2(Ω)-) norm and 〈·, ·〉D (resp. 〈·, ·〉) denotes the
L2(D)- (resp. the L2(Ω)-) scalar product.

(5) a:V × V → R is a symmetric bilinear form and there are constants d, C, α ∈ R,
α > 0, such that, for all u, v ∈ V ,

|a(u, v)| ≤ C‖u‖‖v‖
a(u, u) ≥ α‖u‖2 − d|u|2.

Let a∞:H1
0 (D) × H1

0 (D) → R be the restriction of a to H1
0 (D). For k ∈ N let (λkn)n∈N

be the repeated sequence of proper values of the symmetric bilinear form ak:V × V → R
defined by

ak(u, v) = a(u, v) + βk

∫
Ω

bk(x)u(x)v(x) dx

and (ukn)n∈N be an L2(Ω)-orthonormal sequence of corresponding proper vectors of ak.
Moreover, let (µn)n∈N be the repeated sequence of proper values of a∞.

Then there is an increasing function φ:N → N and a sequence (vn)n∈N in H1
0 (D) such

that for every n ∈ N, vn is a proper vector of a∞ corresponding to µn, the subsequence

(λ
ϕ(k)
n )k∈N of (λkn)k∈N converges to µn and the subsequence (u

ϕ(k)
n )k∈N of (ukn)k∈N converges

to vn
∼ in V , as k → ∞.

For our pourposes, we need more precise information about convergence of eigenfunc-
tions when the bilinear form in Theorem 4.4 arises from the variational formulation of a
linear elliptic equation; if this is the case, then, for all n, u

ϕ(k)
n |D → vn in C1

loc(D) as
k → ∞:

Theorem 4.5. Assume the same hypotheses of Theorem 4.4. Moreover, assume

a(u, v) =

∫
Ω

A(x)∇u(x) · ∇v(x)dx+

∫
Ω

a(x)u(x)v(x)dx,

where A(x) := (aij(x))i,j is a symmetric N ×N -matrix, A(x)ξ · ξ ≥ c|ξ|2 for all x ∈ Ω and

all ξ ∈ RN for some c > 0, aij : Ω → R are of class C1,γ(Ω) and a, b, bk: Ω → R are of class

Cγ(Ω). Then, for all n,

uϕ(k)n → vn as k → ∞
in C1

loc(D).

Before proving Theorem 4.5 we need to introduce some notation and to prove a technical
lemma. For N ∈ N, p ∈ R, 1 < p < +∞, p < N , the Sobolev exponent p∗ is defined by

p∗ :=
pN

N − p
.
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For p < N , we define inductively

p0∗ :=p

pl∗ :=(p(l−1)∗)∗, l > 0.

for all l such that p(l−1)∗ < N .

Lemma 4.6. There are l ∈ N and p ∈ R, 1 < p ≤ 2, such that

pl∗ < N < p(l+1)∗.

Proof. First we prove that there exists an l such that 2l∗ ≥ N . Assume by contradiction
that 2l∗ < N for all l; since

1

2l∗
− 1

2(l+1)∗ =
1

N
,

then for all l
1

N
≤ 1

2l∗
=

1

2(l−1)∗ − 1

N
= · · · = 1

2∗
− l

N
,

a contradiction. So we have proved that there is some l such that 2l∗ ≥ N . If 2l∗ > N , we
have concluded with p = 2. Otherwise we define, for all ε > 0, pϵ := 2− ε. It is clear that,
for all ε > 0,

(2− ε)l∗ < 2l∗ = N

and that
(2− ε)l∗ ↗ N as ε→ 0;

This implies that (2− ε)(l+1)∗ is defined for all ε > 0 and

(2− ε)(l+1)∗ =
(2− ε)l∗N

N − (2− ε)l∗
→ +∞

as ε→ 0+; we take p := pϵ with ε > 0 sufficiently small and we have concluded. �
Proof of Theorem 4.5. Fix n and D′ ⊂⊂ D; it is not a restriction to assume that D′ has
smooth boundary. Let M be a positive constant such that

sup
i,j=1,...,N

sup
x∈Ω

|aij(x)| < M,

sup
i,j=1,...,N

sup
x,y∈Ω

|aij(x)− aij(y)|/|x− y|γ < M,

sup
x∈Ω

|a(x)| < M,

sup
k∈N

sup
x∈D

βk|bk(x)| < M,

sup
k∈N

|λkn| < M.
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For all k, u
ϕ(k)
n satisfies:∫

Ω

A(x)∇uϕ(k)n (x) · ∇v(x)dx+

∫
Ω

(
a(x) + βϕ(k)bϕ(k)(x)− λϕ(k)n

)
uϕ(k)n (x)v(x)dx = 0

for all v ∈ V .

In particular,∫
D

A(x)∇uϕ(k)n (x) · ∇v(x)dx+

∫
D

(
a(x) + βϕ(k)bϕ(k)(x)− λϕ(k)n

)
uϕ(k)n (x)v(x)dx = 0

for all v ∈ H1
0 (D).

By classical regularity results for elliptic equations (see e.g. [6, Thms. 8.8, 9.16]), it follows
that, for all k,

uϕ(k)n (x) ∈W 2,p
loc (D) for all p

and

−div(A(x)∇uϕ(k)n (x)) +
(
a(x) + βϕ(k)bϕ(k)(x)− λϕ(k)n

)
uϕ(k)n (x) = 0 a.e. in D.

Now take p ∈ R, 1 < p ≤ 2, and l ∈ N such that

pl∗ < N < p(l+1)∗

(this is possible thanks to Lemma 4.6). Fix open sets Dj , j = 0, . . . , l, with smooth
boundaries and such that

D′ := Dl+1 ⊂⊂ Dl ⊂⊂ · · · ⊂⊂ D1 ⊂⊂ D0 ⊂⊂ D =: D−1.

By [6, Th. 9.11], there are constants Cj = C(N,M,D,Dj , p
j∗), j = 0, . . . , l + 1, such

that, for all k ∈ N and all j = 0, . . . , l + 1,∥∥∥uϕ(k)n

∥∥∥
W 2,pj∗ (Dj)

≤ Cj

∥∥∥uϕ(k)n

∥∥∥
Lpj∗ (Dj−1)

;

moreover, by the Sobolev imbedding theorems, there exist constants Kj = K(N,Dj , p
j∗),

j = 0, . . . , l + 1, such that, for all k ∈ N and all j = 0, . . . , l + 1,∥∥∥uϕ(k)n

∥∥∥
Lpj∗ (Dj−1)

≤ Kj

∥∥∥uϕ(k)n

∥∥∥
W 2,p(j−1)∗

(Dj−1)
.

These inequalities together imply that there exists a constant C such that, for all k,

(4.2)
∥∥∥uϕ(k)n

∥∥∥
W 2,p(l+1)∗

(D′)
≤ C

∥∥∥uϕ(k)n

∥∥∥
Lp(D)

.

Now, since u
ϕ(k)
n → vn

∼ in H1(Ω), we have that the sequence u
ϕ(k)
n is bounded in Lp(D);

then, by (4.2), we deduce that the sequence u
ϕ(k)
n |D′ is bounded also inW 2,pl+1∗(D′). Since

p(l+1)∗ > N , the Sobolev imbedding theorem implies that

W 2,p(l+1)∗
(D′) ↪→ C1(D

′
)

with compact inclusion. Then we conclude that

uϕ(k)n → vn as k → ∞
in C1(D

′
). Since D′ was arbitrary, we finally conclude that

uϕ(k)n → vn as k → ∞
in C1

loc(D). �



16 MARTINO PRIZZI

5. Localization

Let N ≥ 2 and Ω ⊂ RN be a smooth bounded domain. Let L′ be a differential operator
of the form

L′u =
N∑

i,j=1

∂i(aij∂ju).

We assume that L′ is uniformly elliptic and symmetric and its coefficients are smooth.
As we have seen, the problem of realization of vector fields and jets in scalar parabolic
PDEs reduces to the problem of constructing a potential function a in such a way that the
operator

Lu := L′u+ au =
N∑

i,j=1

∂i(aij∂ju) + au

with Dirichlet or Neumann boundary conditions has a high dimension kernel, spanned
by eigenfunctions satisfying certain nondegeneracy conditions. As a first step towards
this direction we will prove a sort of ”localization lemma”. The content of this lemma
is essentially the following: we can always find some small subdomain D ⊂ Ω and some
potential a on D in such a way that the operator L = L′+a on D with Dirichlet condition
on ∂D satisfies the above properties, provided we are able to construct a potential a0 on
some other open bounded domain S in such a way that the operator ∆ + a0 on S with
Dirichlet condition on S satisfies the same properties.

Lemma 5.1. Let Ω, S ⊂ RN be open bounded domains; assume S has C2,γ boundary. Let
aij : Ω → R be of class C1,γ , i, j = 1, . . . , N , aij ≡ aji, i, j = 1, . . . , N , and

N∑
i,j=1

aijξiξj ≥ c|ξ|2, x ∈ Ω, ξ ∈ RN

for some c > 0. Consider the differential operator

L′ =
N∑

i,j=1

∂i(aij(x)∂j).

Let us suppose there exists a Cγ(S) potential a0:S → R such that the operator ∆+ a0(x)
on S with Dirichlet boundary condition on ∂S has an n-dimensional kernel, spanned by
L2(S)-orthonormal eigenfunctions φ1, . . . , φn, and that the set of functions

{φiφj , 1 ≤ i ≤ j ≤ n}

is linearly independent. Then for every ε > 0 there exist an invertible affine transformation
W :RN → RN , an open bounded domain D ⊂⊂ Ω and a potential a: Ω → R, a ∈ Cγ(Ω),
with the following properties:

(1) D =W (S);
(2) L′ + a(x) on D with Dirichlet boundary condition on ∂D has an n-dimensional

kernel spanned by L2(D)-orthonormal functions ψ1, . . . , ψn;
(3)

∥∥(detDW )1/2ψi(W (·))− φi(·)
∥∥
C1(D)

< ε, i = 1, . . . , n.
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Moreover, if there exists a Cγ(S) function b0:S → R and a positive constant κ such that
the operator ∆ + a0(x) + b0(x) on S with Dirichlet boundary condition on ∂S has all
eigenvalues < −κ, then W , D and a(x) above can be chosen in such a way that, setting
b(x) := ρ−2b0(W

−1(x)) for an appropriate ρ > 0, the operator L′ + a(x) + b(x) on D with
Dirichlet boundary condition on ∂D has all eigenvalues < −κ.

Proof. First we introduce some notation; we indicate by λi, i ∈ N, the repeated sequence
of the eigenvalues of the operator ∆ + a0(x) on S with Dirichlet boundary condition on
∂S; in the hypothesis, we have assumed that this operator has an n-dimensional kernel, so
there is an l > 1 such that λl < λl+1 = . . . = λl+n = 0 < λl+n+1.

We procede in several steps:

1st step: Take x̄ ∈ S and x0 ∈ Ω; let G0 := G(x0), where G(x) := (aij(x))ij ; G0 is a
symmetric positive definite N ×N -matrix, so we can take an invertible N ×N -matrix Q
such that G0 = QQT . We define the affine transformation

Z:RN → RN

x 7→ x0 +Q(x− x̄)

and we set D1 := Z(S); finally, we define

ã:D1 → R
ã(x) := a0(Z

−1(x)).

The operator ∆ + a0(x) on S with Dirichlet boundary condition on ∂S has the same
repeated sequence of eigenvalues of the operator div(G0∇) + ã(x) on D1 with Dirichlet
boundary condition on ∂D1. In particular, this last operator has an n-dimensional kernel
spanned by the L2(D1)-orthonormal functions

φ̃i(x) := (detQ)−1/2φi(Z
−1(x)), i = 1, . . . , n.

Obviously, the set of functions {
φ̃iφ̃j , 1 ≤ i ≤ j ≤ n

}
is linearly independent.

2nd step: For ρ ≥ 0 sufficiently small, we consider the differential operators

Lρ := div(G(x0 + ρ(x− x0))∇) + ã(x)

on D1 with Dirichlet boundary condition on ∂D1; note L0 = div(G0∇)+ ã(x). We indicate
by λρi , i ∈ N, the repeated sequence of eigenvalues of Lρ.
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Let Aρ be the sectorial operator in L2(D1) corresponding to Lρ; since the boundary of
D1 is of class C2,γ and the coefficients aij are in C1,γ , it follows that, for all ρ, the domain
of Aρ is H2(D1) ∩H1

0 (D1). Morever, the map

ρ 7→ Aρ

[0, ρ0[→ L(H2(D1) ∩H1
0 (D1), L

2(D1))

is continuous. This implies that λρi → λi as ρ → 0 for all i; then we can find some η > 0
such that, for all sufficiently small ρ,

λρl < −4η < −η < λρl+1 ≤ · · · ≤ λρl+n < η < 4η < λρl+n+1;

in particular, the set {
λρl+1, . . . , λ

ρ
l+n

}
is a spectral set of Aρ and we can consider the corresponding spectral projection Pρ and
the corresponding spectral invariant subspace Xρ. By the general formula

Pρ =
1

2πi

∫
Γ

(ζ −Aρ)
−1dζ,

it follows that the map

ρ 7→ Pρ

[0, ρ0[→ L(L2(D1),H
2(D1) ∩H1

0 (D1))

is continuous. By using the spectral projection Pρ together with the Grahm-Schmidt
orthonormalization algorithm, we can find, for all ρ, an L2(D1)-orthonormal basis τρ1 , . . . ,
τρn of Xρ, with

τρi → φ̃i as ρ→ 0

in H2(D1) ∩H1
0 (D1) for all i = 1, . . . , n. In order to apply Theorem 4.2, we need a basis

of eigenfunctions; to overcome this difficulty, we procede in the following way: for all ρ > 0
we can find an orthogonal n× n-matrix Rρ = (rρij)ij such that the functions

χρ
i :=

n∑
j=1

rρijτ
ρ
j , i = 1, . . . n,

are an L2(D1)-orthonormal basis of eigenfunctions of Xρ, with

Aρχ
ρ
i = λρiχ

ρ
i , i = 1, . . . , n.

By compactness, we can find a sequence (ρk)k∈N, with ρk → 0 as k → ∞, and an orthogonal
matrix R = (rij)ij , such that

Rρk → R as k → ∞.
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It follows that, for all i = 1, . . . , n,

χρk

i →
n∑

j=1

rij φ̃j =: χi as k → ∞

in H2(D1)∩H1
0 (D1). Of course χ1, . . . , χn are an orthonormal basis of the n-dimensional

kernel of L0 = div(G0∇) + ã(x). Moreover the set of functions

{χiχj , 1 ≤ i ≤ j ≤ n}

is still linearly independent.
For c ∈ C0(D1) let Bc ∈ Lsym(L

2(D1), L
2(D1)) be the map

(Bu)(x) = c(x)u(x), u ∈ L2(D1), x ∈ D1.

Note that

(5.1) |Bc|L(L2(D1),L2(D1)) = |c|C0(D1)
.

Let G be the set of all Bc with c ∈ C0(D1). It follows that G is a closed linear subspace
of Lsym(L

2(D1), L
2(D1)). Now, since the functions {χiχj , 1 ≤ i ≤ j ≤ n} are linearly

independent, it is easy to see that the operator T :G → Sp

B 7→ (〈Bχi, χj〉)ij

is surjective. By the open mapping theorem there is a θ > 0 such that

T (B1) ⊃ Bθ.

For k ∈ N let Tk:G → Sp be the map

B 7→ (〈Bχρk

i , χρk

j 〉)ij .

Then Tk → T in L(G,Sp) so it is easy to see that

Tk(B1) ⊃ Bθ for k large enough.

Moreover we have

(5.2) λρk

l < −4η < −η < λρk

l+1 ≤ λρk

l+n < η < 4η < λρk

l+n+1, k large enough.

Let α0 = α0(p,M, η, θ) be as in Theorem 4.2. For all large k, there is an αk > 0 such that
|λρk

l+j | < αk < α0 for j = 1, . . . , n and αk → 0 as k → 0. Thus by Theorem 4.2 (with

A := Aρk
, µj := 0, λl+j := λρk

l+j for j = 1, . . . , n and D equal to the set of all Bc where

c is a Cγ(RN ) function) there exists, for each large k, a Cγ(RN ) function ck:RN → R
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such that |ck|C0(D1)
< (1/2)θαk and such that if (λ̂ρk

n )n∈N denotes the repeated sequence

of eigenvalues of Lρk
+ ck, then

(5.3) λ̂ρk

l < −3η < −η < λ̂ρk

l+1 ≤ λ̂ρk

l+n < η < 3η < λ̂ρk

l+n

and

(5.4) λ̂ρk

l+j = 0, j = 1, . . . , n.

So we have found a sequence of potentials ck:RN → R, ck ∈ Cγ(RN ), ck → 0 in C0(D1)
as k → ∞, such that, for all (sufficiently large) k, the operator Lρk

+ ck(x) on D1 with
Dirichlet boundary condition on ∂D1 has an n-dimensional kernel.

3rd step: For c ∈ C0(D1) let Bc ∈ L(Lp(D1), L
p(D1)) be the map

(Bu)(x) = c(x)u(x), u ∈ Lp(D1), x ∈ D1.

Note that

(5.5) |Bc|L(Lp(D1),Lp(D1)) = |c|C0(D1)
.

Let Aρ be the sectorial operator in Lp(D1) corresponding to Lρ; since the boundary of
D1 is of class C2,γ and the coefficients aij are in C1,γ , it follows that, for all ρ, for all

c ∈ C0(D1) and for all p > 1, the domain of Aρ +Bc is W 2,p(D1) ∩W 1,p
0 (D1). Moreover

Aρk
+Bck → A0 as k → ∞

in L(W 2,p(D1) ∩ W 1,p
0 (D1), L

p(D1)). We choose p > N , so that W 2,p(D1) ⊂ C1(D1).
Again by using the spectral projection Pρk

on the kernel of Aρk
+Bck in Lp(D1) together

with the Grahm-Schmidt L2(D1)-orthonormalization algorithm, we can find an L2(D1)-

orthonormal basis φ̃ρk

1 , . . . , φ̃ρk
n of ker(Aρk

+Bck) with

φ̃ρk

i → φ̃i as k → ∞

in C1(D1) for all i = 1, . . . , n.
Summarising, we have found a sequence of positive numbers ρk, ρk → 0 as k → ∞, and

a sequence of Cγ(RN ) functions ck:RN → R, ck → 0 in C0(D1) as k → ∞, such that, for
all (sufficiently large) k, the operator

div(G(x0 + ρk(x− x0))∇) + ã(x) + ck(x)

on D1 with Dirichlet boundary condition on ∂D1 has an n-dimensional kernel spanned by
L2(D1)-orthonormal functions φ̃ρk

1 , . . . , φ̃ρk
n , with

φ̃ρk

i → φ̃i as k → ∞
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in C1(D1) for i = 1, . . . , n.

4th step: For all ρ > 0 we define the homothety

Oρ:RN → RN

x 7→ x0 + ρ(x− x0)

and we define

Dρ := Oρ(D1) =
{
y ∈ RN | y = x0 + ρ(x− x0), x ∈ D1

}
.

If ρ is sufficiently small, then Dρ ⊂ Ω. So, for sufficiently large k, we can consider the
operator

div(G(x)∇) + (ρk)
−2ã(x0 + (ρk)

−1(x− x0)) + (ρk)
−2ck(x0 + (ρk)

−1(x− x0)) =

= div(G(x)∇) + (ρk)
−2ã((Oρk

)−1(x)) + (ρk)
−2ck((Oρk

)−1(x))(5.6)

on Dρk
with Dirichlet boundary condition on ∂Dρk

. This operator has the same repeated
sequence of eigenvalues of the operator

(5.7) (ρk)
−2 div(G(x0 + ρk(x− x0))∇) + (ρk)

−2ã(x) + (ρk)
−2ck(x)

on D1 with Dirichlet boundary condition on ∂D1. In particular, the operator (5.6) has an
n-dimensional kernel spanned by the L2(Dρk

)-orthonormal functions

ψρk

i (x) : = (ρk)
−N/2φ̃ρk

i (x0 + (ρk)
−1(x− x0))

= (ρk)
−N/2φ̃ρk

i ((Oρk
)−1(x)),

i = 1, . . . , n. Now we define Wk := Oρk
◦ Z, Dk :=Wk(S) = Dρk

and

ak(x) :=(ρk)−2ã((Oρk
)−1(x)) + (ρk)−2ck((Oρk

)−1(x))

=(ρk)−2a0((Wk)
−1(x)) + (ρk)−2ck((Oρk

)−1(x)).

We finally estimate, for i = 1, . . . , n,∥∥∥(detDWk)
1/2ψρk

i (Wk(·))− φi(·)
∥∥∥
C1(S)

=
∥∥∥(detQ)1/2(ρk)

N/2ψρk

i (Wk(·))− φi(·)
∥∥∥
C1(S)

=
∥∥∥(detQ)1/2φ̃ρk

i ((O−1
ρk

◦Wk(·))− φi(·)
∥∥∥
C1(S)

=
∥∥∥(detQ)1/2φ̃ρk

i (Z(·))− φi(·)
∥∥∥
C1(S)

=(detQ)1/2
∥∥∥φ̃ρk

i (Z(·))− φ̃i(Z(·))
∥∥∥
C1(S)

→ 0
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as k → ∞.
Now, fixed ε > 0, we choose a sufficiently large k and we set W := Wk, D := Dk and

a := ak and we have concluded the proof of the first part of the theorem.

5th step: In order to conclude the proof of the theorem, we observe that, for all k, the
operator

(5.8) div(G(x)∇) + (ρk)
−2ã((Oρk

)−1(x))+

+ (ρk)
−2ck((Oρk

)−1(x)) + (ρk)
−2b0(Z

−1 ◦ (Oρk
)−1(x))

on Dk with Dirichlet boundary condition on ∂Dk has the same repeated sequence of eigen-
values of the operator

(5.9) (ρk)
−2 div(G(x0 + ρk(x− x0))∇) + (ρk)

−2ã(x) + (ρk)
−2ck(x) + (ρk)

−2b0(Z
−1(x))

on D1 with Dirichlet boundary condition on ∂D1, which is obtained multiplying by (ρk)
−2

the eigenvalues of the operator

(5.10) div(G(x0 + ρk(x− x0))∇) + ã(x) + ck(x) + b0(Z
−1(x))

on D1 with Dirichlet boundary condition on ∂D1. As k → ∞, the first eigenvalue of (5.10)
tends to the first eigenvalue of

div(G0∇) + ã(x) + b0(Z
−1(x))

on D1 with Dirichlet boundary condition on ∂D1, that is the same as the first eigenvalue
of the operator

∆ + a(x) + b0(x)

on S with Dirichlet boundary condition on ∂S. So, if k is sufficiently large, the first
eigenvalue of (5.10) is < −κ, and since (ρk)

−2 → ∞ as k → ∞, the first eigenvalue of (5.8)
is < −κ and we have concluded. �

6. The Poláčik condition

Let Ω ⊂ RN be an open bounded connected set with C2,γ boundary. Let aij : Ω → R,
i, j = 1, . . . , N , be of class C1,γ , aij ≡ aji, i, j = 1, . . . , N , and

N∑
i,j=1

aij(x)ξiξj ≥ c|ξ|2, x ∈ Ω, ξ ∈ RN

for some c > 0. Let us consider the differential operator

(6.1) L′ =

N∑
i,j=1

∂i(aij(x)∂j).

In this section we want to prove that, both for Dirichlet and Neumann boundary condition
on ∂Ω, we can construct a potential a: Ω → R of class Cγ such that all assumptions in
Theorem 2.2 are satisfied with

(6.2) L =

N∑
i,j=1

∂i(aij(x)∂j) + a(x).

We will prove the following:
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Theorem 6.1. Let L′ as above and let κ > 1; then, both for Dirichlet and Neumann
boundary condition on ∂Ω, there exists a potential a: Ω → R of class Cγ(Ω) with the
following properties:

(1) the operator L in (6.2) satisfies the Poláčik condition on Ω;
(2) U ⊂ Ω is an open set;
(3) R(x) 6= 0 for all x ∈ U ;
(4) there is a function b ∈ C∞(Ω) with supp b ⊂ U such that

λ < −κ

for every eigenvalue λ of the operator L + b on Ω with Dirichlet (or Neumann)
boundary condition on ∂Ω.

Proof. Our starting point is the existence (extablished in [14]) of two functions a0, b0 sat-
isfying properties (1)–(4) of the present theorem when Ω = B is the unit ball in RN ,
aij(x) ≡ δij , i.e. L

′ = ∆, and we take the Dirichlet condition on ∂B. In this case there is
a basis of kerL given by functions

φi(x) =
w(|x|)
|x|

xi, x ∈ B, i = 1, . . . , N

and
φN+1(x) = v(|x|), x ∈ B

where w, v:R → R are analytic functions such that

(6.3) w(0) = 0, w′(0) 6= 0, v(0) 6= 0, v′(0) = 0.

We claim that

the functions φiφj , 1 ≤ i ≤ j ≤ N + 1, are linearly independent.

In fact, let ρij , 1 ≤ i ≤ j ≤ N + 1, be real numbers with∑
1≤i≤j≤N+1

ρijφiφj ≡ 0.

Evaluating this expression at x = 0 and using (6.3) we obtain ρN+1,N+1 = 0. Thus

w(|x|)2

|x|2
∑

1≤i≤j≤N

ρijxixj ≡ −w(|x|)v(|x|)
|x|

∑
1≤i≤N

ρi,N+1xi for x 6= 0.

Since
w(|x|)2

|x|2
6= 0 and

w(|x|)v(|x|)
|x|

6= 0 for |x| small,
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it follows that
|

∑
1≤i≤N

ρi,N+1xi| = o(|x|) for x→ 0.

However, this implies that ρi,N+1 = 0 for i = 1, . . . , N . Hence∑
1≤i≤j≤N

ρijxixj ≡ 0

which immediately implies that ρij = 0 for 1 ≤ i ≤ j ≤ N . The claim is proved.
Now we can apply Lemma 5.1 with S = B, n = N+1 and a0, b0 given by the construction

in [14]. Following the terminology of Lemma 5.1, we claim that, if we choose a sufficiently
small ε, then the corresponding operators La = L′+a and La+b = L′+a+ b on D =W (S)
with Dirichlet boundary condition on ∂D satisfy properties (1)–(4) of the present theorem.
First, we observe that, for a fixed invertible affine transformation W , on S we have ψ1(W (x)) ∇xψ1(W (x))

...
...

ψN+1(W (x)) ∇xψN+1(W (x))

 =

=

 ψ1(W (x)) (∇ψ1)(W (x))
...

...
ψN+1(W (x)) (∇ψN+1)(W (x))

 ◦
(
1 0
0 DW (x)

)
.

Since DW (x) is constant and invertible, we have that, if x ∈ D =W (S), then

R(ψ1, . . . , ψN+1)(x) 6= 0

if and only if(6.4)

R(ψ1(W (·)), . . . , ψN+1(W (·)))(W−1x) 6= 0.

Let
U0 := {x ∈ B | R(φ1, . . . , φN+1)(x) 6= 0} ;

U0 is open and by construction supp b0 ⊂ U0; take an open set U ′
0, such that supp b0 ⊂

U ′
0 ⊂⊂ U0 and set U ′ := W (U ′

0); then U ′ ⊂ D is open and, since by definition b(x) =
ρ−2b0(W

−1(x)), it follows that supp b ⊂ U ′. But now property 3) in Lemma 5.1 implies
that, if ε is sufficiently small, then

R(ψ1(W (·)), . . . , ψN+1(W (·)))(x) 6= 0

for all x ∈ U ′
0, and hence, by (6.4),

R(ψ1, . . . , ψN+1) 6= 0

for all x ∈ U ′. This proves the claim. The same argument shows that, if ε is sufficiently
small, then the functions ψiψj , 1 ≤ i ≤ j ≤ N + 1 are linearly independent.
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Summarising, we have obtained the following intermediate result: we have found open
sets U ′ ⊂⊂ D ⊂ Ω and two Cγ(Ω) functions a, b:D → R, supp b ⊂ U ′, such that:

(1) the operator La = L′ + a satisfies the Poláčik condition on D, with Dirichlet
boundary condition on ∂D;

(2) R(ψ1, . . . , ψN+1) 6= 0 for all x ∈ U ′, where ψ1, . . . , ψN+1 is any L
2(D)-orthonormal

basis of the kernel of La on D with Dirichlet boundary condition on ∂D;
(3) λ < −κ for every eigenvalue λ of the operator La+b = L′+a+b on D with Dirichlet

boundary condition on ∂D.

Moreover,

(6.5) for every basis ψ1, . . . , ψN+1 of the kernel of La on D with Dirichlet boundary
condition on ∂D the functions ψiψj , 1 ≤ i ≤ j ≤ N + 1 are linearly independent.

Now we procede as in the proof of Th. 4.4 in [17]: let H := L2(Ω), V := H1
0 (Ω) if we

are working with Dirichlet boundary condition on ∂Ω, V := H1(Ω) if we are working with
Neumann boundary condition on ∂Ω; if d: Ω → R with d ∈ Cγ(Ω), define gd:V × V → R
by

gd(u, v) =

∫
Ω

G(x)∇u · ∇v dx+

∫
Ω

duv dx,

where G(x) := (aij(x))i,j . Regularity theory of PDEs implies that, both for Dirichlet and
Neumann boundary condition, λ is an eigenvalue of Ld = L′ + d and u is a corresponding
eigenvector if and only if λ is a proper value of gd and u is a corresponding proper vector.
(In fact, every proper vector of gd lies in C2,γ(Ω).) Let c:RN → R be of class Cγ and such
that c(x) = 0 for x ∈ D and c(x) > 0 for x /∈ D. Furthermore, let (βk)k∈N be an arbitrary
sequence of positive numbers tending to ∞. Finally, for k ∈ N let ck:RN → R be a Cγ(Ω)
function such that supx∈Ω |ck(x)− c(x)| < 1/kβk.

Let Lk := La+βkck , gk := ga+βkck and let g∞ be the restriction of ga to H1
0 (D). We are

now in a position to apply Theorem 4.4: for k ∈ N let (λkn)n∈N be the repeated sequence of
proper values of gk and (ukn)n∈N be an H-orthonormal sequence of corresponding proper
vectors of gk. Moreover, let (µn)n∈N be the repeated sequence of proper values of g∞.

Then, using Theorem 4.4 and passing to a subsequence if necessary we may assume that
there is a sequence (vn)n∈N in H1

0 (D) such that for every n ∈ N, vn is a proper vector of
g∞ corresponding to µn, (λ

k
n)k∈N converges to µn and (ukn)k∈N converges to vn

∼ in V , as
k → ∞. Set p = N + 1. There are numbers γ1 γ2 ∈ R, M , η ∈ R+ and l ∈ N0, such that,
setting µ0 = −∞, we have

0 < γ2 − γ1 < M,

µl < γ1 − 4η < γ1 < 0 = µl+1 = µl+p < γ2 < γ2 + 4η < µl+p+1.

For h ∈ C0(Ω) let Bh ∈ Lsym(H,H) be the map

(Bu)(x) = h(x)u(x), u ∈ H, x ∈ Ω.

Note that

(6.6) |Bh|L(H,H) = |h|C0(Ω).
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Let G be the set of all Bh with h ∈ C0(Ω). It follows that G is a closed linear subspace of
Lsym(H,H). Now (6.5) easily implies that the operator T :G → Sp

B 7→ (〈B(vi
∼), vj

∼〉)ij

is surjective. By the open mapping theorem there is a θ > 0 such that

T (B1) ⊃ Bθ.

For k ∈ N let Tk:G → Sp be the map

B 7→ (〈Buki , ukj 〉)ij .

Then Tk → T in L(G,Sp) so it is easy to see that

Tk(B1) ⊃ Bθ for k large enough.

Moreover, setting λk0 = −∞, we have

(6.7) λkl < γ1 − 4η < γ1 < λkl+1 ≤ λkl+p < γ2 < γ2 + 4η < λkl+p+1, k large enough.

Let α0 = α0(p,M, η, θ) be as in Theorem 4.2. For all large k, there is an αk > 0 such
that |λkl+j | < αk < α0 for j = 1, . . . , p and αk → 0 as k → 0. Thus by Theorem 4.2

(with A := Lk, µj := 0, λl+j := λkl+j for j = 1, . . . , p and D equal to the set of all Bh

where h is a Cγ(Ω) function) there exists, for each large k, a Cγ(Ω) function hk: Ω → R
such that |hk|C0(Ω) < (1/2)θαk and such that if (λ̂kn)n∈N denotes the repeated sequence

of eigenvalues of La+hk+βkck , (û
k
n)n∈N is an H-orthogonal sequence of the corresponding

eigenfunctions and λ̂k0 := −∞, then

(6.8) λ̂kl < γ1 − 3η < γ1 − η < λ̂kl+1 ≤ λ̂kl+p < γ2 + η < γ2 + 3η < λ̂kl+p+1

and

(6.9) λ̂kl+j = 0, j = 1, . . . , p.

Now the assumptions of Theorem 4.4 are satisfied with ck replaced by (1/βk)hk + ck.
Therefore using Theorem 4.4 again and passing to a subsequence if necessary we may
assume that there is a sequence (v̂n)n∈N in H1

0 (D) such that for every n ∈ N, v̂n is a

proper vector of g∞ corresponding to µn, (λ̂
k
n)k∈N converges to µn and (ûkn)k∈N converges

to v̂n
∼ in V , as k → ∞.

Finally, by Theorem 4.5, (ûkn|D)k∈N converges to v̂n in C1
loc(D) as k → ∞. It fol-

lows that, if U ⊂ D is an open set, supp b ⊂ U ⊂⊂ U ′, then, for all k large enough,
R(ûkl+1, . . . , û

k
l+p)(x) 6= 0 for all x ∈ U . In order to complete the proof, we apply again

Theorem 4.4: if k is sufficiently large, all the eigenvalues of L′+a+hk+βkck+b are < −κ;
so, for every such k, a + hk + βkck is a Cγ(Ω) function and the conclusion follows with a
replaced by a+ hk + βkck. This proves the theorem. �
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7. The Algebraic independence condition

Let Ω ⊂ R2 be a bounded domain with C2,γ boundary. Let aij : Ω → R, i, j = 1, 2, be
of class C1,γ , aij ≡ aji, i, j = 1, 2, and

2∑
i,j=1

aij(x)ξiiξj ≥ |ξ|2, x ∈ Ω, ξ ∈ R2

for some c > 0. Let us consider the differential operator

(7.1) L′ =

2∑
i,j=1

∂i(aij(x)∂j).

In this section we want to prove that, both for Dirichlet and Neumann boundary condition
on ∂Ω, we can construct a potential a: Ω → R of class C∞ such that the operator

(7.2) L = L′ + a(x) =

2∑
i,j=1

∂i(aij(x)∂j) + a(x)

has a kernel of a prescribed dimension n, spanned by eigenfunctions satisfying the algebraic
independence condition (IC) in Section 4.1 up to a prescribed order k with an appropriate
$ ∈ R2. We will prove the following:

Theorem 7.1. Let L′ as above and let n, k ∈ N. Then, both for Dirichlet and Neumann
boundary condition on ∂Ω, there exists a potential a: Ω → R of class C∞(Ω) with the
following properties:

(1) the operator L in (7.2) has an n-dimensional kernel;
(2) there exists a vector $ ∈ R2 and an L2(Ω)-orthonormal basis u1, . . . , un of the

kernel of L such that the algebraic independence condition (IC) in Section 4.1 is
satisfied up to the order k.

Proof. As in the proof of Theorem 6.1, our starting point is the existence (extablished in
[16]) of such a potential for a suitable smooth bounded domain when aij(x) ≡ δij , i.e.
L′ = ∆, and with $ = (0, 1). So we can always take a bounded smooth domain S and a
smooth potential a0:S → R such that:

(1) the operator ∆ + a0(x) on S with Dirichlet boundary condition on ∂S has an
n-dimensional kernel;

(2) there is an L2(S)-orthonormal basis φ1, . . . , φn of the kernel of ∆ + a0(x) such
that (IC) is satisfied up to the order k with $ = (0, 1), i.e. for every l = 1, . . . , k
and every q, 1 ≤ q ≤ l, the functions

∑
γ≤β
|γ|=q

1

γ!(β − γ)!
φβ−γ+ϵjφγy


j=1,...,n
|β|=l

are linearly independent.
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Moreover, the functions φiφj , 1 ≤ i ≤ j ≤ n are linearly independent. Now, as in the proof
of Theorem 6.1, we apply Lemma 5.1; following the terminology of Lemma 5.1, we obtain
that, if we choose a sufficiently small ε, then, for some smooth potential a, the kernel of
L + a on D with Dirichlet condition on ∂D is spanned by L2(D)-orthonormal functions
ψ1, . . . , ψn such that for every l = 1, . . . , k, and for every q, 1 ≤ q ≤ l, the functions

∑
γ≤β
|γ|=q

1

γ!(β − γ)!
ψ(W (·))β−γ+ϵjψ(W (·))γy


j=1,...,n
|β|=l

are linearly independent on S. Since, for i = 1, . . . n,

ψi(W (·))y = (∇ψi)(W (·)) ·$,

where $ is the second column of the (constant) matrix DW (·), we reach that, for every
l = 1, . . . , k and for every q, 1 ≤ q ≤ l, the functions

∑
γ≤β
|γ|=q

1

γ!(β − γ)!
ψβ−γ+ϵjψγ

ϖ


j=1,...,n
|β|=l

are linearly independent. Moreover, the functions ψiψj , 1 ≤ i ≤ j ≤ n are linearly
independent on D. Finally, we conclude arguing exactly as in the proof of Theorem 6.1,
applying Theorem 4.4, Theorem 4.5 and Theorem 4.2. �
Remark. The present result generalizes naturally to any space dimension N ≥ 2 (see [12]).
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9. P. Poláčik, Imbedding of any vector field in a scalar semilinear parabolic equation, Proc. Amer. Math.

Soc. 115 (1992), 1001–1008.
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