Esame di Analisi matematica II - 9 CFU : esercizi A.a. 2014-2015, sessione autunnale, I appello Corso prof. Omari

COGNOME	NOME		
N. Matricola		Anno di corso	
Corso di Studi:	Ingegneria Industriale 🔘	Ingegneria Navale	
ESERCIZIO N. 1. Si consideri la serie di potenze nel corpo complesso $\sum_{n=0}^{+\infty} \frac{(-2)^n}{n+1} (z-i)^{n+1}.$			
(i) Si determini, giustificando la risposta, il raggio di convergenza della serie.			
(ii) Si stabilisca, giustificando la risposta, se la serie converge nei punti $i - \frac{1}{2}$ e $i + \frac{1}{2}$.			
(iii) Si calcoli, giustifi	ficando la risposta, la somma della serie	nel punto $\frac{3}{4}i$.	

ESERCIZIO N. 2. Si consideri la funzione $f(x,y) = x^4 + y^2 + 2x^2y + 1$.

(i) Si calcoli il gradiente $\nabla f(x,y)$.

(ii) Si calcoli la matrice Hessiana Hf(x,y).

(iii) Si calcoli il polinomio di Taylor di ordine 2 nel punto $(1,-1)^T.$

(iv) Si determinino i punti critici di f.

(v) Si provi che $\min_{\mathbb{R}^2} f = 1$ e $\sup_{\mathbb{R}^2} f = +\infty$.

(vi) Si determinino gli insiemi di livello $L_k(f) = \{(x,y)^T : f(x,y) = k\}$, con $k \in \mathbb{R}$, che non sono curve regolari in forma implicita.

COGNOME e NOME	N. Matricola

ESERCIZIO N. 3. Si ponga

$$E = \{(x, y, z)^T : \frac{x^2}{4} + y^2 - z^2 \le 1, -1 \le z \le 2 - \frac{x^2}{4} - y^2\}.$$

(i) Si provi che E è un insieme sezionabile rispetto all'asse ze se ne descrivano le sezioni $S_z.$

(ii) Si calcoli $m_3(E)$.

ESERCIZIO N. 4. Si consideri il campo vettoriale $g: \mathbb{R} \times \mathbb{R}^+ \to \mathbb{R}^2$ definito da $g(x,y) = (e^x \log y, \ y+2\arctan(x+y))^T.$

(i) Per ogni $(x_0, y_0)^T \in \mathbb{R} \times \mathbb{R}^+$, si calcoli la matrice Jacobiana $Jg(x_0, y_0)$.

(ii) Si stabilisca, giustificando la risposta, se il campo vettoriale lineare $h: \mathbb{R}^2 \to \mathbb{R}^2$, definito da $h(x,y) = Jg(0,1) \begin{pmatrix} x \\ y \end{pmatrix}$, è conservativo.

(iii) Si risolva il sistema di equazioni differenziali lineari $\begin{pmatrix} x'(t) \\ y'(t) \end{pmatrix} = h \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$, con le condizioni iniziali x(0) = 0, y(0) = 1.