Esame di Analisi matematica II - 9 CFU : esercizi A.a. 2016-2017, sessione invernale, III appello Corso prof. P. Omari

COGNOME	COGNOMENOME					
N. Matricola			_ Anno di corso _			
Corso di Studi:	Ingegneria Industriale) In	ngegneria Navale	\circ		
ESERCIZIO N. 1. Per ogni $n \in \mathbb{N}^+$, si definisca $f_n : [0,1] \to \mathbb{R}$, ponendo $f_n(x) = \begin{cases} 1, & \text{se } 0 \le x \le \frac{1}{n}, \\ \frac{1}{\sqrt{x}}, & \text{se } \frac{1}{n} < x \le 1. \end{cases}$						
(i) Si determini il limite puntuale f della successione $(f_n)_n$ nell'intervallo $[0,1]$.						
(ii) Si traccino i grafic	ei di f_n e di f .					
(iii) Si stabilisca, gius	stificando la risposta, se $\lim_{n\to+\infty}$	$\sup_{x \in [n,1]} f_n(x) $	-f(x) = 0.			
		[0,1]				
		c^1				
(iv) Si stabilisca, giust	tificando la risposta, se $\lim_{n \to +\infty}$	$\int_0^{\infty} f_n(x) dx$	- f(x) dx = 0.			

ESERCIZIO N. 2. Si definisca $f: \mathbb{R}^3 \to \mathbb{R}$, ponendo $f(x, y, z) = 2x^2 - xy^2 + 2y^2 + z^2$.

(i) Si calcoli $\nabla f(x, y, z)$.
(ii) Si calcoli $Hf(x,y,z)$.
(iii) Si deteminino i punti critici di f .
(iv) Si calcolino gli autovalori della matrice Hessiana valutata nei punti critici.
(v) Si determini la natura dei punti critici.
(vi) Si determinino $\inf_{\mathbb{R}^3} f \in \sup_{\mathbb{R}^3} f$.
(vii) Si determinino i punti nei quali le superfici di livello di f sono dotate di piano tangente.

COGNOME e NOME	N. Matricola
ESERCIZIO N. 3. Si risolva il problema di Cauchy	
$\begin{cases} y' = y - \frac{x}{2y} \\ y(0) = \frac{1}{2}, \end{cases}$	
leterminando il massimo intervallo su cui la soluzione è definita.	
RISULTATO	
SVOLGIMENTO	

ESERCIZIO N. 4. Si ponga $D = \{(x,y)^T \in \mathbb{R}^2 : 1 < x^2 + y^2 < 4\}$ e si consideri il campo vettoriale $g: \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}^2$, definito da $g(x,y) = \left(\frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}}\right)^T$.

- (i) Si calcolino:
- ullet la matrice Jacobiana di g

- \bullet il rotore di g
- \bullet la divergenza di g
- (ii) Si calcolino:
- $\bullet \int_{+{\rm fr} D} \langle g,\tau\rangle \, ds$

(iii) Si provi che g è conservativo in D (si noti che non è applicabile il teorema di Poincaré).