Esame di Analisi matematica II : esercizi A.a. 2009-2010, sessione estiva, III appello

	Corso:	OMARI	0	TIRONI	0
COGNOME e NOME					N. Matricola
Anno di Corso	_ Laurea in	Ingegneria ₋			
Si risolvano gli esercizi	: 1) 2	\bigcirc 3 \bigcirc 4	5 (6 (
ESERCIZIO N. 1. Si consideri la serie di funzioni $\sum_{n=0}^{+\infty} \frac{e^{-nx}}{n+1}.$					
(i) Si determini l'insieme d	i convergenza	a della serie.			
(ii) Si calcoli la somma del	lla serie.				

${\bf ESERCIZIO~N.~2.}$ Si consideri la funzione

$$f(x,y) = (x-y)^{2}(x^{2} + y^{2} - 1).$$

(i) Si determinino • i segni di f :
ullet il gradiente di f :
ullet i punti critici di f :
(ii) Si provi che f ha esattamente due punti di minimo relativo in senso stretto.
(iii) Si determinino inf f e sup $f,$ specificando se sono, rispettivamente, il minimo assoluto e il massimo assoluto di $f.$

COGNOME e NOME	N. Matricola
ESERCIZIO N. 3. Si calcoli la massa del solido $E=\{(x,y,z)^T\in \mathbb{R}^3:$ avente densità $\delta(x,y,z)= x + y .$	$x^2 + y^2 \le z^2 \le 4\}$
RISULTATO	
SVOLGIMENTO	

ESERCIZIO N. 4. Si consideri la funzione

eri la funzione
$$f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^2} & \text{se } (x,y)^T \neq (0,0)^T \\ 0 & \text{se } (x,y)^T = (0,0)^T. \end{cases}$$

(i) Si calcolino tutte le derivate direzionali di f in $(0,0)^T.$

- (ii) Si stabilisca se f è differenziabile in $(0,0)^T$.
- (iii) Si stabilisca se l'insieme di livello $L_1\{(x,y)^T:f(x,y)=1\}$ è il sostegno di una curva regolare in forma implicita.

(iv) Si determinino la retta tangente e la retta normale a L_1 nel punto $(2,2)^T$.

COGNOME e NOME	N. Matricola

ESERCIZIO N. 5. Si risolva, al variare del parametro p>0, il problema di Cauchy

$$\begin{cases} y' = |y|^p \\ y(0) = 1 \end{cases}$$

e si determini, in dipendenza di p, il massimo intervallo su cui la soluzione esiste.

SVOLGIMENTO				

$$g(x, y, z) = \left(ye^{x^2y^2}, xe^{x^2y^2}\right)^T.$$

(i)	Si	calcoli	il	rotore	di	a.
(0)		Carcon	11	TOTOLC	uı	9.

(ii) Si stabilisca se g è conservativo su ${\rm I\!R}^2.$

$$(iii)$$
 Si calcoli $\int_{\gamma_1} \langle g, \tau \rangle \, ds$ con $\gamma_1(t) = (t,0)^T, \, t \in [-1,1].$

(iv) Si calcoli
$$\int_{\gamma_2} \langle g, \tau \rangle ds$$
 con $\gamma_2(t) = (\cos t, \sin t)^T$, $t \in [0, \pi]$.