Esame di Analisi matematica II - 9 CFU : esercizi A.a. 2016-2017, sessione invernale, II appello Corso prof. P. Omari

COGNOME	NOME					
N. Matricola		Anno di corso				
Corso di Studi:	Ingegneria Industriale	\bigcirc	Ingegneria Navale	0		
ESERCIZIO N. 1. S	i ponga $f(x) = \frac{1}{1 + 2x^4}$.					
(i) Si determini lo svil	uppo in serie di Taylor-Macla	aurin di f				
(ii) Si determini il rag	gio di convergenza dello svilu	ірро.				
() ()						
(iii) Si determini l'insi	ieme di convergenza dello svi	luppo.				
r1.	/4					
(iv) Si approssimi \int_0^∞	f(x) dx, con un errore infer	riore a 10^{-}	-3.			

ESERCIZIO N. 2.

(i) Si provi che $\varphi: K = \{(u,v)^T: u^2 + v^2 \leq 1\} \to \mathbb{R}^3$, con $\varphi(u,v) = (u+v,u-v,1)^T$, è una superficie regolare semplice.

(ii) Si provi che $\gamma: I = [0, 3\pi] \to \mathbb{R}^3$, con $\gamma(t) = (t \cos t, t \sin t, t)^T$ è una curva regolare semplice.

(iii) Posto $V = \mathrm{sost}(\varphi) \cup \mathrm{sost}(\gamma),$ si stabilisca se

- $\bullet~V$ è compatto:
- $\bullet~V$ è connesso:

(iv) Posto $f(x,y,z)=1+\sqrt{x^2+y^2+z^2},$ si determino gli estremi assoluti di f su V.

COGNOME e NOME	N. Matricola

${\bf ESERCIZIO~N.~3.}$ Si consideri il solido

$$E = \{(x, y, z)^T \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 1, \ z \le \sqrt{x^2 + y^2}\},\$$

avente densità di massa $\mu(x,y,z)=1-z.$

(i) Si	determinino	la quota	minima ϵ	e la	quota	massima	di	E

(ii) Si provi che E è sezionabile rispetto all'asse ze se ne determinino le sezioni $S_z.$

(iii) Si calcoli la massa di E.

- (i) Si determini il dominio E di g.
- (ii) Si stabilisca, giustificando la risposta, se g è conservativo in E.
- (iii) Si calcoli la matrice Jacobiana A di g nel punto $(1,1)^T$.
- $(iv) \text{ Si determini la curva } \gamma(\cdot) = (x(\cdot),y(\cdot))^T \text{ soluzione del problema di Cauchy } \begin{cases} \gamma'(t) = A(\gamma(t)) \\ \gamma(0) = (0,1)^T \end{cases}.$

(v) Si calcoli $\lim_{t \to -\infty} \gamma(t)$.