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Abstract

The usual elementary definition of tangent line to the graph of a function
leads to the following unlikely situation: in the zy—plane there exists a
set G which admits tangent at some point if it is seen as a graph with
respect the r—axis, whereas it does not have tangent at the same point if
it is thought as a graph with respect to the y—axis. This is equivalent to
say that there exists an invertible function f, which is differentiable at xo
with f’(z0) # 0, but whose inverse f~! is not differentiable at f(xo).

Let I,J be real intervals and let f : I — J be a function, whose graph is
denoted by G. In almost any textbook of calculus® the following definition is
encountered: if f is differentiable at x¢ € I, the equation

y = f(xo) + f'(z0)(x — 20)

represents, in the xy—plane, a line v which is called the tangent to G at P =
(0, f(z0))-

This analytical definition is the natural translation of a geometrical intuition.
Yet, it may engender the (wrong) impression that having tangent at some point
is a property of G, as a set of points in the plane, rather than a property of G, as
a graph of a function. At an elementary teaching level, this point is sometimes
left a little bit vague. This would not be a serious drawback in itself. But,
unfortunately, some inconvenience occurs when the following naive explanation
of the inverse function differentiation rule is proposed. Let f : I — J be an
invertible function, with inverse f~! : J — I. Denote by H the graph of f~1.
G and H are symmetric with respect to the principal diagonal. Assume that
f is differentiable at some point zg with f/'(z9) # 0. If Q@ = (f(x0),x0) € H
is the symmetric of P = (g, f(z0)) € G, then the tangent s to H at @ is the
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symmetric with respect to the principal diagonal of the tangent r to G at P.
Hence, one concludes that (f~1)(f(x9)) = 1/f(x). Of course, the crucial
question here is whether the tangent s to H at Q does exist, i.e., whether f~!
is differentiable at f(z).

On account of its geometrical evidence, one could guess that the following
statement holds true: if f : I — J is invertible and differentiable at xo € I, with
f'(xq) # 0, then the inverse function f=% :J — I is differentiable at f(z).

Actually, this is false. Indeed, under the above assumptions one cannot even
guarantee the continuity of f=! at f(zo). To the best of our knowledge, this
fact seems to have been not yet explicitly pointed out.

The example we produce goes precisely in this direction: we construct an
invertible function f : I — J, which is differentiable at xg € I with f’'(z¢) # 0,
such that the inverse function f~! is discontinuous, and therefore not differen-
tiable, at f(zo). Accordingly, the graph G of f is a rather peculiar set in the
zy—plane: G admits tangent at some point if it is seen as a graph with respect
the x—axis, but conversely it does not have any tangent at that point if it is
thought as a graph with respect to the y—axis.

Example For all positive integers n and k, let us set

(n) _ 1 1
% T T k)2
and
by =2 — 21y
It is obvious that
%H<a§€")<% and b, >1
Define a function f : IR — IR by setting
a&") if x = %,
(n) (n)

akl_H ifr=a; ",
n if x = bgn_l,
bn if z = boy,
T otherwise.

flz) =

1 bn b2n7 1 b2n 2



It is easy to check that f is one-to-one and onto. Let us verify that f is differ-
entiable at 0, with f/(0) = 1. Indeed, if z €]-1+, 1], we have

n+1’n
1 1
1 x 1
n x et
and therefore (@)
T
f— — 1, asz—0.
T

Finally, since
ft (aﬁ”)) =250 and f71(%)=bawm-1—2 asn— oo,
we conclude that f~! is not continuous at f(0) = 0.

Actually, the continuity of f=1 at f(x¢) is the key ingredient in order to get
the following statement of the inverse function differentiation rule.

Theorem A Let I be a real interval and let f : I — f(I) be invertible and
differentiable at xo € I, with f'(xo) # 0. Then, the inverse function f=1 :
f(I) — I is differentiable at f(xo), with (f~)'(f(zo)) = 1/f'(x0), if and only
if it is continuous at f(xq).

We give a proof of the “if” part of this known statement just for the sake of
completeness.

Proof. Since f is invertible on I and differentiable at z¢ € I, with f/(z¢) # 0,
for every € > 0 there is § > 0 such that, for every x € I, if 0 < |z — z¢| < 4,
then
T — xg B 1
f(@) = flzo)  f'(x0)
Hence, f~! being continuous at f(zg), there is v > 0 such that, for every
y € f(I),if 0 < |y — f(zo)| <, then 0 < |f~1(y) — 0| < § and therefore

f () — o 1

y—flxo)  f'(z0)

This means that f~! is differentiable at f(xq), with (f=)"(f(z0)) = 1/f'(x0).
|

<e.

<e.

We conclude observing that the continuity of f=1 at f(x¢) can be always
achieved, provided f is restricted to a sufficiently small neighbourhood U of z.
Hence, in particular, Theorem A applies to fiu.

Theorem B Let I be a real interval and f : I — f(I) be invertible and
differentiable at xo € I, with f'(xo) # 0. Then, there exists a neighbourhood U
of g such that the inverse of the restriction of f to U (fiz)~': f(U) — U is
continuous at f(xg).



Proof. Assume by contradiction that the conclusion is false. Then, for every
positive integer n there are a point z(™ € I, with 0 < [z(") — o] < 1/n,
and a sequence (x,g"))k C I such that x,g") — (" and f(xfcn)) — f(xg), as
k — 4o00. Hence, for every n we can find a point £, = x,(!zq)l) € I such that
L™ | < g =] < 3[o) —o| and | £(€n)— f(zo)| < 31 (wo) | —o]
and therefore

f&n) = flxo)| _ 1 4
Lon] T < 2 ,
‘ €, — 70 > 2|f (o)l
This yields a contradiction, letting n — +o0. ]

In respect of our previous example, Theorem B also displays its intrinsic non-
local character.



