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Abstract

The usual elementary definition of tangent line to the graph of a function
leads to the following unlikely situation: in the xy−plane there exists a
set G which admits tangent at some point if it is seen as a graph with
respect the x−axis, whereas it does not have tangent at the same point if
it is thought as a graph with respect to the y−axis. This is equivalent to
say that there exists an invertible function f , which is differentiable at x0

with f ′(x0) 6= 0, but whose inverse f−1 is not differentiable at f(x0).

Let I, J be real intervals and let f : I → J be a function, whose graph is
denoted by G. In almost any textbook of calculus1 the following definition is
encountered: if f is differentiable at x0 ∈ I, the equation

y = f(x0) + f ′(x0)(x− x0)

represents, in the xy−plane, a line r which is called the tangent to G at P =
(x0, f(x0)).

This analytical definition is the natural translation of a geometrical intuition.
Yet, it may engender the (wrong) impression that having tangent at some point
is a property of G, as a set of points in the plane, rather than a property of G, as
a graph of a function. At an elementary teaching level, this point is sometimes
left a little bit vague. This would not be a serious drawback in itself. But,
unfortunately, some inconvenience occurs when the following näıve explanation
of the inverse function differentiation rule is proposed. Let f : I → J be an
invertible function, with inverse f−1 : J → I. Denote by H the graph of f−1.
G and H are symmetric with respect to the principal diagonal. Assume that
f is differentiable at some point x0 with f ′(x0) 6= 0. If Q = (f(x0), x0) ∈ H
is the symmetric of P = (x0, f(x0)) ∈ G, then the tangent s to H at Q is the

1see, e.g., R. Courant, F. John, Introduction to Calculus and Analysis, Springer-Verlag,
New York, 1989 (Vol. I, pp. 156–157)
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symmetric with respect to the principal diagonal of the tangent r to G at P .
Hence, one concludes that (f−1)′(f(x0)) = 1/f ′(x0). Of course, the crucial
question here is whether the tangent s to H at Q does exist, i.e., whether f−1

is differentiable at f(x0).
On account of its geometrical evidence, one could guess that the following

statement holds true: if f : I → J is invertible and differentiable at x0 ∈ I, with
f ′(x0) 6= 0, then the inverse function f−1 : J → I is differentiable at f(x0).

Actually, this is false. Indeed, under the above assumptions one cannot even
guarantee the continuity of f−1 at f(x0). To the best of our knowledge, this
fact seems to have been not yet explicitly pointed out.

The example we produce goes precisely in this direction: we construct an
invertible function f : I → J , which is differentiable at x0 ∈ I with f ′(x0) 6= 0,
such that the inverse function f−1 is discontinuous, and therefore not differen-
tiable, at f(x0). Accordingly, the graph G of f is a rather peculiar set in the
xy−plane: G admits tangent at some point if it is seen as a graph with respect
the x−axis, but conversely it does not have any tangent at that point if it is
thought as a graph with respect to the y−axis.

Example For all positive integers n and k, let us set

a
(n)
k = 1

n
− 1

(n+k)2

and
bn = 2− 1

n+1 .

It is obvious that
1

n+1 < a
(n)
k < 1

n and bn > 1.

Define a function f : IR→ IR by setting

f(x) =





a
(n)
1 if x = 1

n
,

a
(n)
k+1 if x = a

(n)
k ,

1
n if x = b2n−1,
bn if x = b2n,
x otherwise.
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n
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It is easy to check that f is one-to-one and onto. Let us verify that f is differ-
entiable at 0, with f ′(0) = 1. Indeed, if x ∈ ] 1

n+1
, 1
n

], we have

1
n+1

1
n

≤ f(x)

x
≤

1
n
1

n+1

and therefore
f(x)

x
→ 1, as x→ 0.

Finally, since

f−1
(
a

(n)
1

)
= 1

n → 0 and f−1
(

1
n

)
= b2n−1→ 2, as n→ +∞,

we conclude that f−1 is not continuous at f(0) = 0.

Actually, the continuity of f−1 at f(x0) is the key ingredient in order to get
the following statement of the inverse function differentiation rule.

Theorem A Let I be a real interval and let f : I → f(I) be invertible and
differentiable at x0 ∈ I, with f ′(x0) 6= 0. Then, the inverse function f−1 :
f(I) → I is differentiable at f(x0), with (f−1)′(f(x0)) = 1/f ′(x0), if and only
if it is continuous at f(x0).

We give a proof of the “if” part of this known statement just for the sake of
completeness.

Proof. Since f is invertible on I and differentiable at x0 ∈ I, with f ′(x0) 6= 0,
for every ε > 0 there is δ > 0 such that, for every x ∈ I, if 0 < |x − x0| < δ,
then ∣∣∣∣

x− x0

f(x) − f(x0)
− 1

f ′(x0)

∣∣∣∣ < ε.

Hence, f−1 being continuous at f(x0), there is γ > 0 such that, for every
y ∈ f(I), if 0 < |y − f(x0)| < γ, then 0 < |f−1(y) − x0| < δ and therefore

∣∣∣∣
f−1(y) − x0

y − f(x0)
− 1

f ′(x0)

∣∣∣∣ < ε.

This means that f−1 is differentiable at f(x0), with (f−1)′(f(x0)) = 1/f ′(x0).

We conclude observing that the continuity of f−1 at f(x0) can be always
achieved, provided f is restricted to a sufficiently small neighbourhood U of x0.
Hence, in particular, Theorem A applies to f|U .

Theorem B Let I be a real interval and f : I → f(I) be invertible and
differentiable at x0 ∈ I, with f ′(x0) 6= 0. Then, there exists a neighbourhood U
of x0 such that the inverse of the restriction of f to U (f|U )−1 : f(U ) → U is
continuous at f(x0).
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Proof. Assume by contradiction that the conclusion is false. Then, for every
positive integer n there are a point x(n) ∈ I, with 0 < |x(n) − x0| < 1/n,

and a sequence (x
(n)
k )k ⊂ I such that x

(n)
k → x(n) and f(x

(n)
k ) → f(x0), as

k → +∞. Hence, for every n we can find a point ξn = x
(n)
k(n) ∈ I such that

1
2 |x(n)−x0| ≤ |ξn−x(n)| ≤ 3

2 |x(n)−x0| and |f(ξn)−f(x0)| ≤ 1
4 |f ′(x0)||x(n)−x0|

and therefore ∣∣∣∣
f(ξn) − f(x0)

ξn − x0

∣∣∣∣ ≤
1

2
|f ′(x0)|.

This yields a contradiction, letting n→ +∞.

In respect of our previous example, Theorem B also displays its intrinsic non-
local character.
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