Esame di Analisi matematica I : esercizi Corso: OMARI \bigcirc TIRONI \bigcirc A.a. 2000-2001, sessione invernale, II appello.

COGNOME e NOME	N. Matricola					
Anno di Corso Laurea in Ingegneria						
Appello in cui si intende sostenere la prova di teoria	: II ()	III 🔾	VOTO			
ESERCIZIO N. 1. In quanti modi si possono estrarre quatt che compaiano fra le carte estratte almeno due assi, nessuna fi						
RISULTATO						
SVOLGIMENTO						

2

ESERCIZIO N. 2. Si consideri il sottoinsieme di ${\mathbb R}$

$$E = \{x \in \mathbb{Q} : x^2 + x - 1 < 0\}.$$

Si determinino:	
ullet inf $E =$	
• $\sup E =$	
· Sup E —	
ullet int $E=$	
ullet cl $E=$	
ullet fr $E=$	

NB: clEindica la chiusura dell'insieme E; intEindica la parte interna di E, frEindica la frontiera di E.

COGNOME e NOME _______N. Matricola ______

ESERCIZIO N. 3. Sia

$$f(x) = x^{2/3} - \log x.$$

Si determinino:

- \bullet il dominio di f:
- $\bullet \lim_{x \to 0^+} f(x) =$

$$\lim_{x \to +\infty} f(x) =$$

- f'(x) =
- $\bullet \lim_{x \to 0^+} f'(x) =$

$$\lim_{x \to +\infty} f'(x) =$$

- $\bullet\,$ i punti di annullamento e i segni di f' :
- $\bullet\,$ la crescenza, la decrescenza e gli estremi di f :
- \bullet i segni di f:
- f''(x) =
- i segni di f'':
- $\bullet\,$ concavità, convessità e i punti di flesso di $f\colon$

Si determini il numero delle soluzioni $x \in \text{dom} f$ dell'equazione f(x) = t, al variare di $t \in \mathbb{R}$.

ESERCIZIO N. 4. Sia

$$f(x) = 1 - \operatorname{tgh} x.$$

(i)	Si	\det ermini	una	primitiva	di	f.
-----	---------------------	---------------	-----	-----------	----	----

(ii) Si calcoli
$$\int_0^{+\infty} f(x) dx$$
.

COCNOME NOME	27.25
COGNOME e NOME	N. Matricola

ESERCIZIO N. 5. Sia

$$f(x) = \cos x + \sin x + \alpha x^2,$$

 $\text{con }\alpha\in {\rm I\!R}.$

(i)	Si	dimostri	che se	$ \alpha >$	$\frac{1}{\sqrt{2}}$,	allora	f	non	ha	punti	di	flesso.
-----	----	----------	--------	--------------	------------------------	--------	---	-----	----	-------	----	---------

(ii) Si dimostri che se $|\alpha|<\frac{1}{\sqrt{2}},$ allora fha infiniti punti di flesso.