Esame di Analisi matematica I : esercizi Corso: OMARI \bigcirc TIRONI \bigcirc A.a. 2000-2001, sessione estiva, II appello.

COGNOME e NOME		N. Mat	ricola
Anno di Corso Laurea in Ingegneria			
Appello in cui si intende sostenere la prova di teoria :	II 🔾	III ()	VOTO
ESERCIZIO N. 1. In quanti modi un allevatore può ripartire da 4, 3 e 2 mucche rispettivamente, in maniera che in ogni gru			
RISULTATO			
SVOLGIMENTO			

2

ESERCIZIO N. 2. Si consideri il sottoinsieme di ${\mathbb R}$

$$E = \left\{ x + n : x \in \left] 0, 1 \right[, n \in \left\{ 0, 2 \right\} \right\}.$$

Si determinino:	
\bullet inf $E =$	
$\bullet \sup E =$	
ullet int $E=$	
ullet cl $E =$	
lacktriangledown fr $E=$	

NB: clEindica la chiusura dell'insieme E; intEindica la parte interna di E, frEindica la frontiera di E.

COGNOME e NOME	N. Matricola

ESERCIZIO N. 3. Sia

$$f(x) = \log(1 - x) - \log(1 + x^2).$$

Si determinino:

- $\bullet\,$ il dominio e i segni di f :
- $\lim_{x \to -\infty} f(x) =$

$$\lim_{x \to 1^-} f(x) =$$

- f'(x) =
- $\bullet\,$ i punti di annullamento e i segni di f' :
- $\bullet\,$ la crescenza, la decrescenza e gli estremi di f :
- f''(x) =

Si dimostri che f è convessa in un intorno di $-\infty$.

Si determini il numero delle soluzioni $x \in \text{dom} f$ dell'equazione f(x) = t, al variare di $t \in \mathbb{R}$.

ESERCIZIO N. 4. Sia

$$f(x) = \frac{1}{x^{1/3} + x^{2/3}} \ .$$

Si determini una primitiva di f sull'intervallo $]0,1].$
-1
Si calcoli $\int_0^1 f(x) dx$.

COGNOME e NOME	N. Matricola

ESERCIZIO N. 5. Si ponga

$$f(x) = \begin{cases} ax + b & \text{se } x < 0, \\ x(1-x) & \text{se } 0 \le x \le 1, \\ cx + d & \text{se } x > 1, \end{cases}$$

 $\text{con }a,b,c,d\in {\rm I\!R}.$

Si determinino a,b,c,d in modo che :

- f sia continua su ${\rm I\!R}$

- f sia di classe C^1 su ${\rm I\!R}$

• fsia continua su ${\rm I\!R}$ e gli asintoti di fa $+\infty$ e a $-\infty$ coincidano