Esame di Analisi matematica I : esercizi Corso: OMARI \bigcirc TIRONI \bigcirc A.a. 2000-2001, sessione invernale, I appello.

COGNOME e NOME	N. Matricola
Anno di Corso Laurea in Ingegneria	
Appello in cui si intende sostenere la prova orale :	$I \bigcirc II \bigcirc III \bigcirc VOTO$
ESERCIZIO N. 1. Sia	
$f(z) = \frac{2iz}{(1+i) z-z }$	11-,
dove $ w $ e \overline{w} indicano rispettivamente il modulo e il coniug	
rappresenti nel piano di Gauss l'insieme degli $z \in \mathbb{C}$ tali che	
f(z) > 1.	
10 \ 71	
RISULTATO	
SVOLGIMENTO	

ESERCIZIO N. 2. Si provi per induzione che, per ogni $n \in \mathbb{N}^+,$ si ha

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \ldots + \frac{1}{n\cdot (n+1)} = \frac{n}{n+1}.$$

DIMOSTRAZIONE	

_____ N. Matricola ___ COGNOME e NOME _____

ESERCIZIO N. 3. Sia

$$f(x) = x^2 + e^{1/x} .$$

Si determinino:

- \bullet il dominio e i segni di f:
- $\lim_{x \to -\infty} f(x) = \lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x) = \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} f(x) = \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+}$

- f'(x) =
- $\lim_{x \to -\infty} f'(x) = \lim_{x \to 0^-} f'(x) = \lim_{x \to 0^+} f'(x) = \lim_{x \to +\infty} f'(x) = \lim_{x \to +\infty} f'(x) = \lim_{x \to 0^+} f'(x) = \lim_{x$

- f''(x) =
- i punti di annullamento e i segni di f' (dopo aver verificato che esiste uno ed un solo $\alpha > 0$ tale che $f'(\alpha) = 0$:

 \bullet la crescenza, la decrescenza e gli estremi di f:

Si determini il numero delle soluzioni $x \in \text{dom} f$ dell'equazione f(x) = t, al variare di $t \in \mathbb{R}$.

ESERCIZIO	N.	4.	Si	${\it calcoli}$
------------------	----	----	----	-----------------

$$\int_0^{\pi} \left(\pi + \int_x^{\pi} x \cos t \, dt \right) dx.$$

RISULTATO	
SVOLGIMENTO	

COGNOME e NOME	N. Matricola

ESERCIZIO N. 5. Sia

$$f(x) = e^{-x^2} \cdot \log x .$$

Si determinino:

• $\operatorname{Ord}_{0^+} f =$

• $\operatorname{ord}_{+\infty} f =$

Si decida se esiste finito $\int_0^{+\infty} f(x) dx$ (giustificando la risposta).