Università di Trieste - Facoltà d'Ingegneria.

Esercizi 2

Dott. Franco Obersnel

Esercizio 1 Supponiamo di sapere che la serie di potenze $\sum_{n=0}^{+\infty} a_n(x+1)^n$ converge semplicemente (non assolutamente) nel punto x = -3. Può la serie convergere nel punto x = 2?

Esercizio 2 Si calcoli il raggio di convergenza e si studi il comportamento agli estremi dell'intervallo di

a)
$$\sum_{n=0}^{\infty} \frac{2^n x^{2n}}{\sqrt{n+1}}$$
. (Sol. $E = \left[-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \right]$)

a)
$$\sum_{n=0}^{\infty} \frac{2^n x^{2n}}{\sqrt{n+1}}$$
. (Sol. $E =] - \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}[)$ b) $\sum_{n=1}^{\infty} n^{\sqrt{n}} x^n$. (Sol. $E =] - 1, 1[)$

c)
$$\sum_{n=1}^{\infty} \frac{(-2)^n}{n} x^n$$
. (Sol. $E =]-\frac{1}{2}, \frac{1}{2}]$) d) $\sum_{n=1}^{\infty} \frac{n^2}{2^n} (x-4)^n$. (Sol. $E =]2, 6[$)

d)
$$\sum_{n=1}^{\infty} \frac{n^2}{2^n} (x-4)^n$$
. (Sol. $E =]2, 6[$)

e)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt[3]{n}} x^n$$
. (Sol. $E =]-2,2$)

e)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt[3]{n}} x^n$$
. (Sol. $E =]-2,2]$) f) $\sum_{n=1}^{\infty} \frac{\log n}{e^n} (x-e)^n$. (Sol. $E =]0,2e[$)

g) (Si calcoli solo il raggio di convergenza) $\sum_{n=1}^{\infty} \frac{(n!)^k}{(kn)!} x^n$ con $k \in \mathbb{N}$. (Sol. $\rho = k^k$).

Esercizio 3

a) Si calcoli la somma di $\sum_{n=1}^{+\infty} (n^2 - n) x^n$.

(Sol.
$$\frac{2x^2}{(1-x)^3}$$
)

b) Calcolare la somma della serie $\sum_{n=0}^{\infty} \frac{x^{2n}}{2n+1}$ usando il teorema di integrazione.

(Sol.
$$\frac{1}{2x}\log(\frac{1+x}{1-x})$$
 per $|x| < 1, x \neq 0, 1$ se $x = 0$)

c) Si calcoli la somma della serie $\sum_{n=0}^{+\infty} \frac{n+2}{n+1} x^n$.

(Sol.
$$\frac{1}{1-x} - \frac{\log(1-x)}{x}$$
 per $|x| < 1$, 2 se $x = 0$)

d) Calcolare la somma della serie $\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{2n+1}$.

(Sol.
$$\frac{1}{x}$$
 arctg x per $|x| < 1, x \neq 0, 1$ se $x = 0$)

e) Calcolare la somma della serie $\sum_{n=0}^{\infty}\frac{x^n}{2n+1}$ distinguendo i casi x>0, x=0, x<0.

(Sol. se x < 0 si ha $x = -(\sqrt{-x})^2$ e posso usare l'esercizio d): $\frac{1}{\sqrt{-x}} \operatorname{arctg} \sqrt{-x}$ per x > -1; 1 se x = 0; se x>0 si ha $x=(\sqrt{x})^2$ e posso usare l'esercizio b): $\frac{1}{2\sqrt{x}}\log(\frac{1+\sqrt{x}}{1-\sqrt{x}})$ per x<1)