Università di Trieste - Facoltà d'Ingegneria.

Esercizi 1

Dott. Franco Obersnel

Esercizio 1 Rispondere alle seguenti questioni:

- a) Si verifichi che se la funzione f è limite uniforme della successione di funzioni $(f_n)_{n\in\mathbb{N}}$, allora f è pure limite puntuale della successione.
- b) Si provi che la successione di funzioni $(f_n)_n$ dove $f_n(x):[0,1]\to\mathbb{R}$ è definita da $f_n(x)=x^n$ non ammette limite uniforme per $n\to+\infty$.

Esercizio 2

- a) Si calcoli il limite puntuale della successione di funzioni $(f_n)_n$ dove $f_n: \mathbb{R} \to \mathbb{R}$ è definita da $f_n(x) = (1 + \frac{x}{n})^n$.
- b) Detto f(x) tale limite si verifichi che f_n non converge uniformemente a f per $n \to +\infty$. (Fissato $\epsilon > 0$, per esempio si prenda $0 < \epsilon < e-2$, deve essere $|f_n(x) f(x)| < \epsilon$ per ogni $n \ge N_{\epsilon}$ e per ogni x. In particolare si può prendere x = n e si giunge ad una contraddizione).

Esercizio 3 Si consideri la serie di funzioni

$$\sum_{n=1}^{+\infty} \frac{\sin(3^n x)}{2^n}.$$

- a) Si verifichi che la serie converge uniformemente.
- b) Si verifichi che la serie delle derivate non converge.

Esercizio 4 Si consideri la serie di funzioni

$$\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n+x^2}.$$

- a) Si verifichi che la serie non converge totalmente.
- b) Si verifichi che la serie converge uniformemente.

Esercizio 5 Si consideri la serie di funzioni

$$f(x) = \sum_{n=0}^{+\infty} e^{-n^2 x}.$$

- a) Si verifichi che la serie converge uniformemente in ogni intervallo del tipo $[\varepsilon, +\infty[$, con $\varepsilon > 0$
- b) Si verifichi che $f:]0, +\infty[\to \mathbb{R}$ è continua e derivabile.