Università di Trieste - Facoltà d'Ingegneria.

Esercizi: foglio 5 Dott. Franco Obersnel

Esercizio 1

a) (Proprietà di Archimede) Si provi che per ogni coppia di numeri reali positivi a, b esiste un numero naturale positivo n tale che na > b.

b) Si provi che per ogni numero reale positivo ε esiste $n \in \mathbb{N}$ tale che $2^{-n} < \varepsilon$.

Esercizio 2 (Densità in IR)

a) Si provi che per ogni $x, y \in \mathbb{R}$, x < y, esiste $r \in \mathbb{R} \setminus \mathbb{Q}$ tale che x < r < y.

b) Si provi che per ogni $x, y \in \mathbb{R}$, x < y, esistono $m \in \mathbb{Z}$, $n \in \mathbb{N}$ tali che $x < \frac{m}{2^n} < y$.

Esercizio 3 Si usi il principio di induzione per verificare la validità delle seguenti formule:

a) Per ogni $n \in \mathbb{N}^+$ si ha $2^{n-1} < n!$.

b) Per ogni $n \in \mathbb{N}^+$, $1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6}$. c) Per ogni $n \in \mathbb{N}^+$, $1^3 + 2^3 + 3^3 + \ldots + n^3 = (1+2+3+\ldots+n)^2$.

d) Per ogni $n \in \mathbb{N}^+$, $\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{n \cdot (n+1)} = \frac{n}{n+1}$.

Esercizio 4

a) Si calcoli

$$\sum_{k=0}^{n} \binom{n}{k} 2^{k}.$$

b) Si verifichi che

$$(a+b+c)^n = \sum_{k=0}^n \sum_{j=0}^k \frac{n!}{j!(k-j)!(n-k)!} a^j b^{k-j} c^{n-k}.$$

c) Si dimostri che, per ogni n fissato, la somma dei coefficienti binomiali $\binom{n}{k}$, con k pari, $0 \le k \le n$, è uguale alla somma dei coefficienti binomiali $\binom{n}{k}$, con k dispari, $0 \le k \le n$. (Sugg.: si consideri $(1-1)^n$)

d) Si dimostri che ogni prodotto di k numeri interi positivi consecutivi è divisibile per k!.

e) Si dimostri la formula $\binom{n}{k} = \binom{n}{n-k}$ per via puramente combinatoria.

Soluzioni:

1. a) Sia $c=\frac{b}{a}$; per l'illimitatezza di $\mathbb N$ in $\mathbb R$ esiste n>c. b) È sufficiente osservare che $2^n>n$ per ogni n e applicare Archimede.

2. a) Si consideri $\frac{x}{\sqrt{2}} < \frac{y}{\sqrt{2}}$ e si applichi la densità di $\mathbb Q$ in $\mathbb R$ per ottenere $r \in \mathbb Q$ tale che $x < r\sqrt{2} < y$. Evidentemente $r\sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$.

b) Si ripercorra la dimostrazione del teorema sulla densità di \mathbb{Q} in \mathbb{R} ; fissato n tale che $2^{-n} < y - x$

(vedi esercizio 1 b) si prenda $m = \max\{k \in \mathbb{N} \mid k \le 2^n x\}$ e si verifichi che $x < \frac{m+1}{2^n} < y$. 3. a) Vero per n = 1. Sia vero per n: $2^{n-1} \le n!$. Allora $2^{(n+1)-1} = 2 \cdot 2^{n-1} \le 2 \cdot n! \le (n+1) \cdot n! = (n+1)!$. b) Vero per n = 1. Sia vero per n: $1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6}$. Allora $1^2 + 2^2 + 3^2 + \ldots + n^2 + (n+1)^2 = \frac{n(n+1)(2n+1) + 6(n+1)^2}{6} = \ldots$

c) si usi la formula già nota per 1 + 2 + 3 + 3

4. a) 3^n . b) Si applichi Newton a $((a+b)+c)^n$ e poi di nuovo all'interno della sommatoria a $(a+b)^k$. c) Si applichi Newton a $0 = (1-1)^n = \sum_{k=0}^n \binom{n}{k} (-1)^k$. d) Si osservi che il quoziente cercato è pari a $\binom{n}{k}$ per qualche n, e tale numero è necessariamente un intero. e) Sia A un insieme di n elementi. Si costruisca una biiezione f tra l'insieme di tutti i sottoinsiemi di A con k elementi e l'insieme di tutti i sottoinsiemi di A con n-k elementi, ponendo $f(E)=\mathcal{C}(E)$ (il complementare di E in A).