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A model example: pollution in a channel

A water stream of constant speed v transports the pollutant along the positive direction
of the x−axis;

we neglect the depth of the water (floating pollutant)
we neglect the transversal dimension (narrow channel)
u(x, t) = concentration of the pollutant∫ x+∆x

x

u(y, t) dy

is the mass of pollutant inside the interval [x, x+ ∆x] at time t.

Mass conservation law (no sinks, no sources)

d

dt

∫ x+∆x

x

u(y, t) dy =

∫ x+∆x

x

ut(y, t) dy = q(x, t)− q(x+ ∆x, t)

d

dt

∫ x+∆x

x

u(s, t) ds is the growth rate of the mass contained in the interval [x, x+ ∆x]

q(x, t)− q(x+ ∆x, t) is the net mass flux into [x, x+ ∆x] through the end-points
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1

∆x

∫ x+∆x

x

ut(s, t) ds =
q(x, t)− q(x+ ∆x, t)

∆x

ut(x, t) = −qx(x, t).

In higher dimensione (N > 1): e.g. N = 3, Ω ⊂ R3 bounded smooth basin,

∫∫∫
Ω

u(x, t) dx

is the mass of pollutant inside the basin Ω at time t.

Mass conservation law:

d

dt

∫∫∫
Ω

u(x, t) dx = −
∫∫

∂Ω

q · ν dσ.

q flux function
ν outward normal
∂Ω boundary of the basin Ω∫∫
...
. . . dσ denotes a surface integral

By the divergence theorem∫∫
∂Ω

q · ν dσ =

∫∫∫
Ω

div q dx

hence ∫∫∫
Ω

ut(x, t) dx = −
∫∫

∂Ω

q · ν dσ = −
∫∫∫

Ω

div q dx.

and we derive

ut(x, t) = −div qx(x, t).

Constitutive relation for q:
• convection (flux determined by the water stream only; v = constant stream speed)

q(x, t) = v · u(x, t)

• diffusion (pollution expands from higher concentration regions to lower ones; Fick’s
law)

q(x, t) = −k∇xu(x, t)

In general q(x, t) = v · u(x, t)− k∇xu(x, t).

div q(x, t) = ∇xu · v − k∆xu(x, t)

ut = k∆xu− v · ∇xu
(

if N = 1 : ut(x, t) = kuxx(x, t)− vux(x, t)
)
.

Suppose q depends only on convection, i.e. k = 0, then we obtain
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The transport equation in RN with constant coefficients

x ∈ RN , t ∈ [0,+∞[, u : RN × [0,+∞[→ R, u = u(x, t), v ∈ RN constant.

ut(x, t) + v · ∇xu(x, t) = 0

i.e., if w = (v, 1), w · ∇u = 0, that is

∂u

∂w
= 0.

u is constant along the direction w.

γ(s) = (x, t) + s(v, 1)

is the characteristic line passing through (x, t), along which the value of u is constant.
u(x+ sv, t+ s) = u(x, t) for all s ∈ R, t+ s ≥ 0.

The initial value problem
g : RN → R {

ut(x, t) + v · ∇xu(x, t) = 0 in RN × [0,+∞[,
u(x, 0) = g(x) on Γ = RN × {t = 0},

u(x, t) = g(x− tv)

Travelling wave moving with velocity v.

If the initial datum is u(x, t0) = g(x) we have u(x, t) =?

u(x, t) = g(x+ (t0 − t)v).

The non-homogeneous problem (distributed source){
ut(x, t) + v · ∇xu(x, t) = f(x, t) in RN × [0,+∞[,
u(x, 0) = g(x) on Γ = RN × {t = 0},

z(s) = u(x+ sv, t+ s)

dz

ds
= v∇xu(x+ sv, t+ s) +

∂u

∂t
(x+ sv, t+ s) = f(x+ sv, t+ s)

u(x, t) = g(x− tv) +

∫ t

0

f(x− (t− η)v, η) dη.

Observe that
u(x, t) = g(x− tv)

is a solution of the homogeneous problem{
ut(x, t) + v · ∇xu(x, t) in RN × [0,+∞[,
u(x, 0) = g(x) on Γ = RN × {t = 0},
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while, for each s,
w(x, t) = f(x− (t− s)v, s)

is a solution of the problem{
wt(x, t) + v · ∇xw(x, t) = 0 in RN × [0,+∞[,
w(x, s) = f(x, s) on Γ = RN × {t = 0}.

Duhamel’s Principle.
For all s > 0 let w(·, ·; s) be a solution of{

wt + v · ∇xw = 0 in RN × [0,+∞[,
w(x, s; s) = f(x, s) on Γ = RN × {t = 0}.

Then u(x, t) =
∫ t

0
w(x, t; s) ds is a solution of{

ut(x, t) + v · ∇xu(x, t) = f(x, t) in RN × [0,+∞[,
u(x, 0) = 0 on Γ = RN × {t = 0}.

A problem is well-posed (according to J. Hadamard) if

1. The problem has a solution.

2. The solution is unique.

3. The solution is stable (a small change in the equation and in the side conditions
gives rise to a small change in the solutions)

Theorem
Let g ∈ C1(RN ), f ∈ C1(RN × [0,+∞[). Then, problem{

ut(x, t) + v · ∇xu(x, t) = f(x, t) in RN × [0,+∞[,
u(x, 0) = g(x) on Γ = RN × {t = 0},

has a unique solution. Moreover, it is stable on finite-time intervals, i.e., for all T > 0,

small changes of f|RN×[0,T ] in ‖ · ‖L∞(RN×[0,T ]) norm and of g in ‖ · ‖L∞(RN ) norm yield
small changes of the solutions in ‖ · ‖L∞(RN×[0,T ]) norm.

The problem with decay (exercise)
Due to biological decomposition the pollutant decays at the rate −γu(x, t), γ > 0;{

ut(x, t) + v · ∇xu(x, t) + γu(x, t) = f(x, t) in RN × [0,+∞[,
u(x, 0) = g(x) on Γ = RN × {t = 0}.

Multiply the equation by eγt

w(x, t) = eγtu(x, t)

u(x, t) = e−γtg(x− tv) + e−γt
∫ t

0

eγηf(x+ (η − t)v, η) dη.

(if f = 0 damped travelling wave)
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An example with a discontinuity
A source of pollutant at x = 0 starts working at time t = 0.

Heaviside function H(t) =

{
0 if t < 0,
1 if t ≥ 0. ut(x, t) + v · ∇xu(x, t) = 0 (x, t) ∈ [0,+∞[×R,

u(0, t) = βH(t) t ∈ R
u(x, 0) = 0 x ∈ [0,+∞[.

Here we have both a boundary condition and a initial condition.

u(x, t) = βH(vt− x).

The jump discontinuity in (0, 0) is transported along the characterisctic x = vt.
Compare with the heat equation. In that case the solution is smooth even if the initial

datum is discontinuous.
Inflow characteristics: the characteristics carry the information from the boundary to

the interior of the domain.
Outflow characteristics: no data have to be assigned.

Exercise
Suppose, for i = 1, 2, ui is the solution of the problem ut(x, t) + vux(x, t) = 0 in ]0, R[× ]0,+∞[,

u(0, t) = fi(t) t > 0
u(x, 0) = gi(x) in ]0, R[.

Prove the least square stability formula

∫ R

0

(u1(x, t)− u2(x, t))2 dx ≤
∫ R

0

(g1(x)− g2(x))2 dx+ v

∫ t

0

(f1(s)− f2(s))2 ds.

The method of characteristics

F : RN × R× RN → R, {
F (∇u, u, x) = 0 in U ⊂ RN ,
u = g on Γ ⊆ ∂U.

To convert the PDE into an appropriate system of ODEs.

A quasilinear problem

{
a(x, u) · ∇u+ c(x, u) = 0 in U ⊂ RN ,
u(x) = g(x) on Γ ⊆ ∂U.

Theorem
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Let U ⊂ RN be an open set, u ∈ C1(U) a solution of the equation

a(x, u) · ∇u+ c(x, u) = 0.

Set z(s) = u(x(s)) where x(s) is a solution of the system

x′(s) = a(x(s), z(s)).

Then z(s) solves the ODE
z′(s) = −c(x(s), z(s)),

for those s such that x(s) ∈ U .

Example: N = 2.

a1(x1, x2, u)ux1
+ a2(x1, x2, u)ux2

+ c(x1, x2, u) = 0.

a1, a2, c : R3 → R.
Suppose u = u(x1, x2) is a solution.
Suppose we know the solution u on the curve Γ. We want to span the graph of u

starting from Γ.
Parametrize a curve in R3 by (x1(s), x2(s), z(s)) with z(s) = u(x1(s), x2(s)).
Then

z′(s) =
d

ds
u(x1(s), x2(s)) = ux1

(x1(s), x2(s))x′1(s) + ux2
(x1(s), x2(s))x′2(s).

If we set {
x′1(s) = a1(x1, x2, z)
x′2(s) = a2(x1, x2, z)

then
z′ = −c(x1, x2, z).

By solving the ODE system we obtain the value of the solution u along the character-
istic. Imposing the initial conditions we hope to recover the whole solution.

Example: the transport equation.

v ∈ R, f : R× ]0,+∞[→ R, g : R→ R.{
v ∂u
∂x1

+ ∂u
∂x2

= f(x1, x2) in R× ]0,+∞[,

u(x1, 0) = g(x1) on Γ = {(x1, 0) ∈ R2 : x1 ∈ R}.

Characteristic equations: x′1(s) = v
x′2(s) = 1
z′(s) = f(x1, x2)

x1 = vs + x0
1, x2 = s. Fix (x1, x2) ∈ U and find the characteristic passing through

(x1, x2): invert to find x0
1 = x1 − vx2 to obtain z(s)− z0 =

∫ s
0
f
(
x1(ξ), x2(ξ)

)
dξ; i.e.

u(x, t) = g(x− vt) +

∫ t

0

f(vξ + x− vt, ξ) dξ.
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Example: a linear problem{
x1

∂u
∂x2
− x2

∂u
∂x1

= u in U = ]0,+∞[× ]0,+∞[,

u(x1, 0) = g(x1) on Γ = {(x1, 0) ∈ R2 : x1 > 0},
where g : ]0,+∞[→ R. x′1(s) = −x2(s)

x′2(s) = x1(s)
z′(s) = z(s)

z(s) = z0es; z0 = z(0) = u(x0
1, 0) = g(x0

1)(
x1(s), x2(s)

)
=
(
x0

1 cos s, x0
1 sin s

)
Fix (x1, x2) ∈ U and find the characteristic passing through (x1, x2).
We invert the system {

x1 = x0
1 cos s

x2 = x0
1 sin s

to obtain

x0
1 =

√
x2

1 + x2
2 and s = atan

(
x2

x1

)
.

Therefore

u(x1, x2) = g
(√

x2
1 + x2

2

)
exp

(
atan (x2/x1)

)
.

Example: a semilinear problem{
∂u
∂x1

+ ∂u
∂x2

= u2 in U = R× ]0,+∞[,

u(x1, 0) = g(x1) on Γ = {(x1, 0) ∈ R2},
where g : R→ R.

u(x1, x2) =
g(x1 − x2)

1− x2g(x1 − x2)
.

The solution is defined only locally!

The initial value problem{
a(x, u) · ∇u+ c(x, u) = 0 in U,
u(x) = g(x) on Γ,

N = 2
Γ parametrized by γ(t) = (y1(t), y2(t)), t ∈ I interval, γ(0) = (y1(0), y2(0)) = (y0

1 , y
0
2).{

a1(x1, x2, u) ∂u∂x1
+ a2(x1, x2, u) ∂u∂x2

+ c(x1, x2, u) = 0 in U,

u(y1(t), y2(t)) = g(y1(t), y2(t)) t ∈ I,
x′1(s) = a1(x1(s), x2(s), z(s))
x′2(s) = a2(x1(s), x2(s), z(s)) characteristic equations
z′(s) = −c(x1(s), x2(s), z(s))
x1(0) = y0

1 , x2(0) = y0
2 , z(0) = z0 = g(y0

1 , y
0
2).
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
x′1(s, t) = a1(x1(s, t), x2(s, t), z(s, t))
x′2(s, t) = a2(x1(s, t), x2(s, t), z(s, t))
z′(s, t) = −c(x1(s, t), x2(s, t), z(s, t))
x1(0, t) = y1(t), x2(0, t) = y2(t), z(0, t) = g(y1(t), y2(t)).

Inverse function theorem
Assume ψ : U ⊂ RN → RN , ψ ∈ C1(U ;RN ), x0 ∈ U .
Assume det Jψ(x0) 6= 0, then ψ is a local C1−diffeomorphism, i.e. there exist neigh-

bourhoods U1 ⊆ U of x0, V1 of ψ(x0), and a function φ ∈ C1(V1, U1) which is the inverse
of ψ|U1

.

ψ(s, t) = (x1(s, t), x2(s, t)) φ(x1, x2) = (s(x1, x2), t(x1, x2))

∂x1

∂s
(0, 0) = a1(y0

1 , y
0
2 , z

0)
∂x2

∂s
(0, 0) = a2(y0

1 , y
0
2 , z

0)

∂x1

∂t
(0, 0) = y′1(0)

∂x2

∂t
(0, 0) = y′2(0)

Transversality condition:

a1(y0
1 , y

0
2 , z

0)y′2(0)− a2(y0
1 , y

0
2 , z

0)y′1(0) 6= 0

Call ν the unit normal to Γ:

ν(y0
1 , y

0
2) =

1√
y′1(0)2 + y′2(0)2

(y′2(0),−y′1(0))

a(y0, z0) · ν(y0) 6= 0.

Theorem (Local existence and uniqueness)
Suppose U ⊂ RN , I ⊂ R interval,
γ ∈ C1(I;RN ), Γ = γ(I), Γ ⊆ ∂U ,
g : Γ→ R, g ◦ γ ∈ C1(I;R),
y0 = γ(0), J ⊂ R is a neighbourhood of g(y0), a, c ∈ C1(U × J).
Assume the transversality condition holds in a neighbourhood W of y0 in Γ, i.e. for

all y ∈W
a(y, g(y)) · ν(y) 6= 0.

Then, there exists a neighbourhood V of y0 in RN and a unique function u ∈ C1(V ;R)
which solves {

a(x, u) · ∇u+ c(x, u) = 0 in V ,
u(x) = g(x) on Γ ∩ V .

If for some neighbourhood W of y0 in Γ the transversality condition is not satisfied for
all y ∈W , then either the problem has no C1 solutions or it has infinitely many solutions.

What happens if the transversality condition is not satisfied?
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{
a1ux1 + a2ux2 = −c,
u
(
y1(t), y2(t)

)
= g
(
y1(t), y2(t)

)
.

Assume u is a solution. Set h(t) = u
(
y1(t), y2(t)

)
. Then the vector ∇u(y0

1 , y
0
2) solves

the algebraic system

{
∇u(y0

1 , y
0
2) ·

(
a1(y0

1 , y
0
2 , u(y0

1 , y
0
2)), a2(y0

1 , y
0
2 , u(y0

1 , y
0
2))
)

= −c
(
y0

1 , y
0
2 , u(y0

1 , y
0
2)
)
,

∇u(y0
1 , y

0
2) · (y′1(0), y′2(0) = h′(0).

By Rouché-Capelli Theorem the vectors (a1, a2,−c) and (y′1(0), y′2(0), h′(0)) must be
parallel.

In this case a necessary condition to get a solution is that the curve γ(t) must be
parallel to the characteristic curve at (y0

1 , y
0
2 , z

0).

Example: non-homogeneous Burgers equation{
u ∂u
∂x1

+ ∂u
∂x2

= 1,

u(x1, 0) = h(x1)

where h ∈ C1(R), for example if h(x) = x.

u(x1, x2) = x2 +
2x1 − x2

2

2 + 2x2
.

Example {
u ∂u
∂x1

+ ∂u
∂x2

= 1,

u(x1, x2) = x2

2 on Γ = {(t2, 2t) : t ∈ R}.

u(x1, x2) = 1/2x2 − 1/2
√

4x1 − x2
2 or u(x1, x2) = 1/2x2 + 1/2

√
4x1 − x2

2

non-regular solutions.

Example {
∂u
∂x1

+ ∂u
∂x2

= 1,

u(t, t) = t t ∈ R.

u(x1, x2) = x2 + f(x1 − x2)

for any f such that f(0) = 0.
(infinitely many solutions)

Exercise {
x1

∂u
∂x1

+ x2
∂u
∂x2

= 4u, (x1, x2) ∈ R2

u(x1, x2) = 1 x2
1 + x2

2 = 1.
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Scalar Conservation Laws

We consider equations of the form

ut + divx q
(
u(x, t)

)
= 0, x ∈ RN , t > 0.

(If N = 1 we write ut + q(u)x = 0, x ∈ R, t > 0.)

Denote by u(x, t) the concentration of a physical quantity Q inside a set Ω at time t.
The amount of Q inside the set Ω at time t is given by (assume e.g. N = 3)∫∫∫

Ω

u(x, t) dx

The conservation law says that

d

dt

∫∫∫
Ω

u(x, t) dx = −
∫∫

∂Ω

q · ν dσ,

where
d

dt

∫∫∫
Ω

u(x, t) dx is the rate of change of Q in Ω, and −
∫∫

∂Ω

q · ν dσ is the net

flux through the boundary of Ω.

(If N = 1 and Ω = [x1, x2] we have d
dt

∫ x2

x1
u(x, t) dx = q(u(x1, t))− q(u(x2, t)).)

By the divergence theorem∫∫
∂Ω

q · ν dσ =

∫∫∫
Ω

divx q dx

hence

∫∫∫
Ω

(ut(x, t) + divx q) dx = 0,

and we derive
ut + divx q

(
u(x, t)

)
= 0.

(If N = 1 we write ut + q(u)x = 0.)

Let us consider the following problem:{
ut + q′(u)ux = 0,
u(x, 0) = g(x) x ∈ R.

We shall use the method of the characteritics for the equation a1ux1
+ a2ux2

= c with

x1 = x, x2 = t, a1 = q′(u), a2 = 1.

The characteristic equations arex′(s) = q′(z(s))
t′(s) = 1
z′ = 0

The characteristics are straight lines, here s = t hence we can write the cartesian equation
of the lines instead of the parametric equation:

x(t) = q′(g(x0))t+ x0, u(x, t) = g(x0).
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The transversality condition is always satisfied, indeed a(y, g(y)) = (q, 1), ν(y) = (0, 1).

Notice however that the characteristics may possibly intersect!

How can we write the solution? Recall the solution of the transport equation:

u(x, t) = g(x0) = g(x− tv).

Now we still have u(x, t) = g(x0). Since x(t)− q′(g(x0))t = x0 we can write

u(x, t) = g
(
x(t)− q′(g(x0))t

)
We obtain an implicit formula for the solution: u = g(x− tq′(u))

Implicit Function Theorem:
Consider the level set

F (x, t, z) = 0.

Suppose (x0, t0, z0) belongs to the level set, i.e. F (x0, t0, z0) = 0.
Then, if ∂F

∂z (x0, t0, z0) 6= 0, there exists locally a funcion u = u(x, t) such that

F
(
x, t, u(x, t)

)
= 0 for all (x, t).

Moreover

∂u

∂x
(x, t) = −

∂F
(
x,t,u(x,t)

)
∂x

∂F
(
x,t,u(x,t)

)
∂z

and

∂u

∂t
(x, t) = −

∂F
(
x,t,u(x,t)

)
∂t

∂F
(
x,t,u(x,t)

)
∂z

Here we have
u− g(x− tq′(u)) = 0

Therefore it is possible to write u = u(x, t) if

1 + tq′′(u)g′(x− tq′(u)) 6= 0.

What if q′′(u) > 0 and g′ < 0 ?
Smooth solutions may fail to exist.
“However, the fluid described by the equation keeps flowing unaware of our mathemat-

ical troubles...”
What kind of solutions can we expect?

Example: Burgers equation (shockwave){
ut +

(
u2

2

)
x

= 0 in R× ]0,+∞[

u(x, 0) = g(x) x ∈ R

where

g(x) =

 1 if x ≤ 0
1− x if 0 < x ≤ 1
0 if x > 1
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u(x, t) =


1 if x ≤ t, 0 ≤ t ≤ 1 or t > 1, x < 1

2 t+ 1
2

1−x
1−t if 0 ≤ t ≤ x ≤ 1

0 if x ≥ 1, 0 ≤ t ≤ 1 or t > 1, x > 1
2 t+ 1

2

Mild solution
An integrable function u : R×]0,+∞[→ R is a mild solution of{

ut + q(u)x = 0,
u(x, 0) = g(x) x ∈ R.

if u(x, 0) = g(x) for all x ∈ R and, for all x1 < x2,

d

dt

∫ x2

x1

u(x, t) dx = q(u(x1, t))− q(u(x2, t)).

Notice that mild solutions may be discontinuous.

Weak solution
A function u ∈ L∞(R×]0,+∞[) is a weak solution of{

ut + q(u)x = 0,
u(x, 0) = g(x) x ∈ R.

if, for all test functions φ ∈ C∞(R× [0,+∞[), with compact support, we have∫ +∞

0

(∫ +∞

−∞
u(x, t)φt(x, t) + q(u(x, t))φx(x, t) dx

)
dt+

∫ +∞

−∞
g(x)φ(x, 0) dx = 0.

Observation: A classical solution is a mild solution, a mild solution is a weak
solution. A function u ∈ C1(R×]0,+∞[) is a classical solution of the problem if and only
if u is a weak solution of the problem.

What information about the u is hidden in the formula for a weak solution if u is, for
example, singular along a shock curve (jump discontinuity)?

The Rankine-Hugoniot condition
We suppose now that u is a weak solution which is C1 in some open region V ⊂

R×]0,+∞[ except on a smooth curve C which separates V into two parts: V l and V r.
Then the speed of the shock wave is the quotient of the flux jump over the density

jump:
q(u+)− q(u−) = (u+ − u−)ϕ′(t),

where γ(t) = (ϕ(t), t), γ being a parametrization of C.

Example: Burgers equation again{
ut +

(
u2

2

)
x

= 0 in R× ]0,+∞[

u(x, 0) = g(x) x ∈ R
g(x) =

 1 if x ≤ 0
1− x if 0 < x ≤ 1
0 if x > 1
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u(x, t) =


1 if x ≤ t, 0 ≤ t ≤ 1 or t > 1, x < 1

2 t+ 1
2

1−x
1−t if 0 ≤ t ≤ x ≤ 1

0 if x ≥ 1, 0 ≤ t ≤ 1 or t > 1, x > 1
2 t+ 1

2

Example: rarefaction wave{
ut +

(
u2

2

)
x

= 0 in R× ]0,+∞[

u(x, 0) = g(x) x ∈ R
g(x) =

{
0 if x ≤ 0
1 if x > 0

What is u in the wedge x > 0 , t ≥ x?
We set

u(x, t) =

{
0 if x < t

2

1 if x > t
2

u is a shock solution and the Rankine-Hugoniot condition is satisfied.
Is this an acceptable solution?
We expect a shock in presence of a compression wave, not in presence of an expansion

wave.
Looking for a second solution:
Regularised problem: {

ut +
(
u2

2

)
x

= 0 in R× ]0,+∞[

u(x, 0) = gε(x) x ∈ R

gε(x) =


0 if x ≤ 0
1
εx if 0 < x < ε

1 if x ≥ ε

u(x, t) =


0 if x < 0
x
t+ε if 0 < x < t+ ε

1 if x > t+ ε

When ε −→ 0:

u(x, t) =


0 if x < 0
x
t if 0 < x < t

1 if x > t > 0

More in general, assuming q′ is invertible, if g has a jump at x = a, in the wedge we
can define

u(x, t) = (q′)−1(
x− a
t

).

How can we chose the “right” solution?

The Entropy Condition
We require an “entropy condition”

q′(u−) > σ > q′(u+)
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Characteristics must enter the shock curve and are not allowed to emanate from it.
Assume q′′ > 0. A weak solution is said to be an entropy solution if there exists C ≥ 0

such that, for every x,∆x ∈ R, ∆x > 0, and every t > 0, we have

u(x+ ∆x)− u(x, t) ≤ C

t
∆x.

Assume q′′ ≥ K > 0 and g′ > 0. If u is smooth, then u is an entropy solution.
Assume u is an entropy solution. Then, for all fixed t > 0 the function

ψ[t](x) := u(x, t)− C

t
x

is decreasing.
Assume q′′ ≥ K > 0, u is an entropy solution presenting a shock curve ϕ(t). Then the

slope of the shock curve is smaller than the slope of the left characteristics and larger than
the slope of the right characteristics:

q′(u+) < ϕ′(t) < q′(u−).

Lax-Oleinik theorem.
Assume q ∈ C2(R) is strictly convex (or strictly concave) and g ∈ L∞(R). Then

problem {
ut + q(u)x = 0 x ∈ R, t > 0,
u(x, 0) = g(x) x ∈ R.

has a unique entropy solution.
Furthermore, the solution u is stable and depends continuously on the initial data, in

the following sense: there exists a constant A such that, if h ∈ L∞(R) and v is the entropy
solution for the problem with initial datum h, then, for every x1, x2 ∈ R, x1 < x2, t > 0,∫ x2

x1

|u(x, t)− v(x, t)| dx ≤
∫ x2+At

x1−At
|g(x)− h(x)| dx.

(For uniqueness the convexity or concavity of q is not necessary, but the entropy must
be suitably defined.)

The Riemann problem
Assume q ∈ C2(R) and q′′ ≥ C > 0. Set

g(x) =

{
u− if x < 0
u+ if x > 0

u+ 6= u−.
Then, the unique entropy solution of the problem{

ut + q(u)x = 0 x ∈ R t > 0,
u(x, 0) = g(x) x ∈ R.

is
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(i) if u+ > u−,

u(x, t) =

{
u− if x < σt
u+ if x > σt

where σ = q(u+)−q(u−)
u+−u− ;

(ii) if u− < u+,

u(x, t) =

 u− if x < q′(u−)t
(q′)−1

(
x
t

)
if q′(u−)t < x < q′(u+)t

u+ if x > q′(u+)t

A model example: the traffic flow
Traffic on a highway along the positive direction of the x−axis;
no overtaking allowed
no exits or entrances
u(x, t) = density of cars in the point x at the time t.
v(x, t) = average speed.
q flux; q = vu
The average speed depends on the density alone: v = v(u).

v′(u) =
dv

du
≤ 0.

Conservation law
ut + q(u)x = 0

Constitutive relation for v:

v(u) = vm

(
1− u

um

)
,

vm = maximal velocity,
um = maximal concentration (bumper to bumper).

ut + vm

(
1− 2u

um

)
ux = 0.

{
ut + vm

(
1− 2u

um

)
ux = 0

u(x, 0) = g(x)
g(x) =

{
1
8um if x < 0
um if x > 0

Traffic jam ahead (v = 0 if x > 0).
On the left v = 7

8vm.

u(x, t) =

{ 1
8um if x < − 1

8vmt

um if x > − 1
8vmt

Shock line: ϕ(t) = − 1
8vmt.

The shock is revealed by the breaking lights of the cars, slowing down because of the
traffic jam ahead.
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Example: the green traffic-light{
ut + vm

(
1− 2u

um

)
ux = 0

u(x, 0) = g(x)
g(x) =

{
um if x < 0
0 if x > 0

u(x, t) =


um if x ≤ −vmt
1
2um

(
1− 1

vm
x
t

)
if − vmt < x < vmt

0 if x ≥ vmt

Example{
ut +

(
u2

2

)
x

= 0 in R× ]0,+∞[

u(x, 0) = g(x) x ∈ R
g(x) =

 0 if x < 0
1 if 0 ≤ x ≤ 1
0 if x > 1

Exercise
Determine a weak solution o the Lighthill-Whitham-Richard model for traffic flow{

ut + (v(u)u)x = 0 in R× ]0,+∞[
u(x, 0) = g(x) x ∈ R

with velocity

v(u) = 2− u

2

and initial density

g(x) =

 2 if x < 0
x+ 2 if 0 ≤ x < 1
3 if x ≥ 1

Describe the trajectory of a car initially in position x = −2.

Exercise
Discuss existence and uniqueness and determine a weak solution of the scalar conser-

vation law {
ut + 4uux = 0 in R× ]0,+∞[
u(x, 0) = g(x) x ∈ R g(x) =

 1 if x < 0
0 if 0 ≤ x < 1
−1 if x ≥ 1
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The wave equation

The vibrating string

We consider small transversal vibrations of a tightly stretched perfectly flexible hori-
zontal string (the stress at any point can be modelled by a tangential force, the tension)

we neglect friction

vibrations have small amplitude

we assume there is only vertical displacement, and this depends on the position x and
time t: u = u(x, t)

Consider a string element at a fixed time t, represented by the curve γ(x) =
(
x, u(x, t)

)
.

The forces acting to the string= external vertical forces f (gravity, loads) + internal
forces T̄ (tension)

The horizontal forces have to balance:

T̄ (x2)|horizontal = T̄ (x1)|horizontal

τ(x2, t) cos(α(x2, t))− τ(x1, t) cos(α(x1, t)) = 0

τ = |T̄ | magnitude
α(x, t) angle between the x-axis and the tangent of γ at x

∂

∂x
(τ(x, t) cos(α(x, t))) = 0

τ(x, t) cos(α(x, t)) = τ0(t)

Vertical tension:

τ(x, t) sin(α(x, t)) = τ0(, t) tan(α(x, t)) = τ0(t)ux(x, t)

Conservation of mass:
ρ0 = ρ0(x) = linear density of the string at rest
ρ(x, t) = linear density of the string at time t

ρ0(x)∆x = ρ(x, t)∆s

Newton law:∫
γ

utt(s, t)ρ(s, t) ds =

∫ x2

x1

utt(x, t)ρ0(x) dx =

∫ x2

x1

f(x, t)ρ0(x) dx+τ0(t) (ux(x2, t)− ux(x1, t))

utt(x, t)−
τ0(t)

ρ0(x)
uxx(x, t) = f(x, t) (J. d’Alembert 1752)
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Since the string is perfectly elastic τ0 is constant; since the string is homogeneous ρ0 is
constant.

Set
c2 =

τ0
ρ0

The homogeneous equation.
f ∈ C2(R), g ∈ C1(R) utt(x, t)− c2uxx(x, t) = 0 x ∈ R, t > 0

u(x, 0) = f(x) x ∈ R
ut(x, 0) = g(x) x ∈ R(

∂

∂t
− c ∂

∂x

)(
∂

∂t
+ c

∂

∂x

)
u = 0

Set v =
(
∂
∂t + c ∂∂x

)
, then solve the linear transport equation vt − cvx = 0.

We have v(x, t) = ϕ(x+ ct) for some ϕ.
Solve ut + cux = ϕ(x+ ct).

u(x, t) = ϕ(x− ct) +

∫ t

0

ϕ
(
x+ (η − t)c+ cη

)
dη.

Observe that u(x, 0) = ψ(x) and ut(x, 0) = ϕ(x)− cψ′(x).

Since u(x, 0) = f(x) and ut(x, 0) = g(x), we deduce
D’Alembert formula:

u(x, t) =
1

2

(
f(x+ ct) + f(x− ct)

)
+

1

2c

∫ x+ct

x−ct
g(ξ) dξ

Theorem The Cauchy problem above has a unique solution, and for all T > 0, this is
uniformly stable on R× [0, T ].

Weak solution
Assume f ∈ C(R) and g ∈ L∞(R).
A function u ∈ C(R× [0,+∞[) is a weak solution of utt(x, t)− c2uxx(x, t) = 0 x ∈ R, t > 0

u(x, 0) = f(x) x ∈ R
ut(x, 0) = g(x) x ∈ R

if, for all test functions v ∈ C2(R× [0,+∞[), with compact support, we have∫ +∞

0

(∫ +∞

−∞
u(x, t)

(
vtt(x, t)− c2vxx(x, t)

)
dx

)
dt

−
∫ +∞

−∞
(g(x)v(x, 0)− f(x)vt(x, 0)) dx = 0.
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Observation: the singularities of the solutions of the wave equation are travelling
only along characteristics.

Domain of dependence and region of influence

Example (chord of infinite length plucked at the origin) utt(x, t)− c2uxx(x, t) = 0 x ∈ R, t > 0
u(x, 0) = f(x) x ∈ R
ut(x, 0) = 0 x ∈ R

where

f(x) =


0 if −∞ < x < −1
x+ 1 if − 1 ≤ x < 0
1− x if 0 ≤ x < 1
0 if x ≥ 1

The non-homogeneous equation
f ∈ C2(R), g ∈ C1(R) utt(x, t)− c2uxx(x, t) = h(x, t) x ∈ R, t > 0

u(x, 0) = f(x) x ∈ R
ut(x, 0) = g(x) x ∈ R

Theorem The problem is well-posed for h, hx ∈ C(R2), f ∈ C2(R), g ∈ C1(R), for
each T > 0, in R× [0, T ].

D’Alembert formula:

u(x, t) =
1

2
(f(x+ ct) + f(x− ct)) +

1

2c

∫ x+ct

x−ct
g(ξ) dξ +

1

2c

∫∫
∆(x,t)

h(ξ, τ) dξdτ

Here ∆(x, t) is the characteristic triangle with vertex (x, t).

Observation Let f and g be even (odd, periodic of period P ) functions; let, for all
t ≥ 0, h(·, t) be even (odd, periodic of period P ). Then, for all t ≥ 0, the solution u(·, t)
is also even (odd, periodic of period P ).

The problem on the half line (a reflection method).
f ∈ C2([0,+∞[), g ∈ C1([0,+∞[), f(0) = f ′′(0) = g(0) = 0;

utt(x, t)− c2uxx(x, t) = 0 0 < x < +∞, t > 0
u(0, t) = 0 t > 0
u(x, 0) = f(x) 0 ≤ x+∞
ut(x, 0) = g(x) 0 ≤ x < +∞

Extend f and g as odd functions f̃ and g̃ over R and consider the problem on R, to
obtain

u(x, t) =

{
1
2 (f(x+ ct) + f(x− ct)) + 1

2c

∫ x+ct

x−ct g(ξ) dξ if x > ct
1
2 (f(x+ ct)− f(ct− x)) + 1

2c

∫ x+ct

ct−x g(ξ) dξ if 0 ≤ x ≤ ct



20

Peculiarities of dimensione N = 1.

There is no decay of waves.

Once the wave if detected, even if it has a compact support it will never disappear.

Radially symmetric solutions of the wave equation in three dimensions.

utt(x1, x2, x3, t)− c2∆u(x1, x2, x3, t) = 0

Spherical coordinates:

r =
√
x2

1 + x2
2 + x2

3, x1 = r sinϕ cos θ, x2 = r sinϕ sin θ, x1 = r cosϕ.

Laplacian in spherical coordinates: (radial part) + (spherical part)

∆u =

(
∂2u

∂r2
+

2

r

∂u

∂r

)
+

1

r2

(
1

sin2 ϕ

∂2u

∂θ2
+
∂2u

∂ϕ2
+

cosϕ

sinϕ

∂u

∂ϕ

)
utt(x1, x2, x3, t)− c2∆u(x1, x2, x3, t) = 0
utt − c2

(
∂2u
∂r2 + 2

r
∂u
∂r

)
= 0 0 < r < +∞, t > 0

u(r, 0) = f(r) 0 ≤ r < +∞
ut(r, 0) = g(r) 0 ≤ r < +∞

u(r, t) =
1

2r

(
(r + ct)f̃(r + ct) + (r − ct)f̃(r − ct)

)
+

1

2rc

∫ r+ct

r−ct
ξg̃(ξ) dξ

In dimension 3 there is a decay of the wave with time at any point.

Examples

f(r) = 0,

g(r) =

{
1 if 0 ≤ r ≤ 1
0 if r > 1 utt −∆u = 0 0 ≤ r < +∞, t ≥ 0

u(r, 0) = f(r) 0 ≤ r < +∞
ut(r, 0) = g(r) 0 ≤ r < +∞ utt −∆u = 0 0 ≤ r < +∞, t ≥ 0
u(r, 0) = g(r) 0 ≤ r < +∞
ut(r, 0) = f(r) 0 ≤ r < +∞

Spherical means and the general Cauchy problem in R3.

Spherical mean. h ∈ C1(R3),

Mh(r, x) =
1

4πr2

∫∫
∂B(x,r)

h(σ) dσ



21

is the average of h over the sphere ∂B(x, r).

We have

lim
r→0

Mh(r, x) =?

lim
r→0

Mh(r, x) = h(x)

∂

∂r
Mh(r, x) =

1

4πr2

∫∫∫
B(x,r)

∆h(x) dx

∂2

∂r2
Mh(r, x) = − 1

2πr3

∫∫∫
B(x,r)

∆h(x) dx+
1

4πr2

∫∫
∂B(x,r)

∆h(σ) dσ

∆xMh(r, x) =
1

4πr2

∫∫
∂B(x,r)

∆h(σ) dσ

Darboux equation (
∂2

∂r2
+

2

r

∂

∂r

)
Mh(r, x) = ∆xMh(r, x)

Proposition I.
If u is a solution of  utt − c2∆u = 0 x ∈ R3, t ≥ 0

u(x, 0) = 0 x ∈ R3

ut(x, 0) = g(x) x ∈ R3

then w = Mu(r, x, t) is a solution of
wtt − c2

(
∂2w
∂r2 + 2

r
∂w
∂r

)
= 0 0 < r < +∞, t > 0

w(r, 0) = 0 0 ≤ r < +∞
wt(r, 0) = Mg(r, x) 0 ≤ r < +∞

Proposition II.
If u is a solution of  utt − c2∆u = 0 x ∈ R3, t ≥ 0

u(x, 0) = 0 x ∈ R3

ut(x, 0) = g(x) x ∈ R3

then v(x, t) := ut(x, t) is a solution of vtt − c2∆v = 0 x ∈ R3, t ≥ 0
v(x, 0) = g(x) x ∈ R3

vt(x, 0) = 0 x ∈ R3

Solution: (Kirchhoff’s formula)

u(x, t) = tMg(ct, x) +
∂

∂t
(tMf (ct, x))
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u(x, t) =
1

4πc2t

∫∫
∂B(x,ct)

g(σ) dσ +
∂

∂t

(
1

4πc2t

∫∫
∂B(x,ct)

f(σ) dσ

)
Huygens principle holds.

Theorem Let f ∈ C3(R3), h ∈ C2(R3). Then Kirchhoff’s formula yields the unique
solution u ∈ C2(R3 × [0,+∞[) of the problem utt − c2∆u = 0 x ∈ R3, t ≥ 0

u(x, 0) = f(x) x ∈ R3

ut(x, 0) = g(x) x ∈ R3

The problem in R2 (Hadamard’s descent method). utt − c2(ux1x1
+ xx2x2

) = 0 (x1, x2) ∈ R2, t ≥ 0
u(x1, x2, 0) = f(x1, x2) (x1, x2) ∈ R2

ut(x1, x2, 0) = g(x1, x2) (x1, x2) ∈ R2

Poisson’s formula:

u(x1, x2, t) =
1

2πc

∫∫
B(x1,x2;ct)

g(ξ1, ξ2)√
c2t2 − (x1 − ξ1)2 − (x2 − ξ2)2

dξ1dξ2

+
∂

∂t

(
1

2πc

∫∫
B(x1,x2;ct)

f(ξ1, ξ2)√
c2t2 − (x1 − ξ1)2 − (x2 − ξ2)2

dξ1dξ2

)

Theorem Let f ∈ C3(R2), g ∈ C2(R2). Then Poisson’s formula yields the unique
solution u ∈ C2(R2 × [0,+∞[) of the problem.

In dimension 2 Huygens principle does not hold. Any perturbation will leave trace for
all later times.

The wave equation in a bounded interval (separation of variables)
The Dirichlet problem:

utt(x, t)− c2uxx(x, t) = 0 0 < x < L, t > 0
u(0, t) = u(L, t) = 0 t ≥ 0
u(x, 0) = f(x) x ∈ [0, L]
ut(x, 0) = g(x) x ∈ [0, L]

w′′(t) = λc2w(t)

 v′′(x) = λv(x)
v(0) = 0
v(L) = 0

uk(x, t) =

(
ak cos(

πkc

L
t) + bk sin(

πkc

L
t)

)
sin(

πk

L
x)

ak, bk ∈ R, k = 1, 2, 3, . . . .
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The Neumann problem: (exercise)
utt(x, t)− c2uxx(x, t) = 0 0 < x < L, t > 0
ux(0, t) = ux(L, t) = 0 t ≥ 0
u(x, 0) = f(x) x ∈ [0, L]
ut(x, 0) = g(x) x ∈ [0, L]

where f ′(0) = f ′(L) = g′(0) = g′(L) = 0.

uk(x, t) =

(
ak cos(

πkc

L
t) + bk sin(

πkc

L
t)

)
cos(

πk

L
x)

ak, bk ∈ R, k = 1, 2, 3, . . . .

Imposing initial conditions:

A formal solution:

+∞∑
k=1

(
f̂k cos(

πkc

L
t) +

L

πkc
ĝk sin(

πkc

L
t)

)
sin(

πk

L
x)

Energy: E(t) =
1

2

∫ L

0

(w2
t + c2w2

x) dx

Energy is conserved ⇒ uniqueness.
Uniqueness? Stability?

Exercise
Solve the hyperbolic problem

utt − 4uxx = x, in ]0,+∞[× ]0,+∞[,
u(0, t) = 0, in ]0,+∞[,
u(x, 0) = x4, in [0,+∞[,
ut(x, 0) = 0, in [0,+∞[.

Exercise
Compute the solution u of the hyperbolic problem utt −∆u = 0 in R3 × R

u(x, y, z, 0) = 0 (x, y, z) ∈ R3

ut(x, y, z, 0) = h(x, y, z) (x, y, z) ∈ R3

where

h(x, y, z) =

{
2 if x2 + y2 + z2 ≤ 1
0 if x2 + y2 + z2 > 1

at the point P = (2, 0, 0) at the times t1 = 1
2 , t2 = 3

2 , t3 = 4


