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A model example: pollution in a channel

A water stream of constant speed v transports the pollutant along the positive direction
of the x—axis;

we neglect the depth of the water (floating pollutant)

we neglect the transversal dimension (narrow channel)

u(x,t) = concentration of the pollutant

z+Az
/ u(y,t) dy

is the mass of pollutant inside the interval [z, z 4+ Ax] at time ¢.
Mass conservation law (no sinks, no sources)

d z+Azx

z+Azx
G wwna= [ wdy =gt - g+ Aa)

d x+Ax
pn u(s,t) ds is the growth rate of the mass contained in the interval [z, x + Ax]

x

q(z,t) — q(x + Az, t) is the net mass flux into [z, z + Ax] through the end-points



1 vhar Q(xa t) — Q(:L' + A[L’, t)
A—x/z ue(s,t)ds = s

ug(x,t) = —qq(x,t).
In higher dimensione (N > 1): e.g. N =3, Q C R3 bounded smooth basin,

///Q u(z,t) dx

is the mass of pollutant inside the basin 2 at time ¢.
Mass conservation law:
d
— u(z,t)de = — q-vdo.
dt Q a0
q flux function
v outward normal

0f) boundary of the basin Q
[/ ... do denotes a surface integral

By the divergence theorem

[ avan= [ va
[t e [[ a-vao == [[[ aieqar

up(z,t) = —div gy (2, 1).

hence

and we derive

Constitutive relation for ¢:
e convection (flux determined by the water stream only; v = constant stream speed)

q(z,t) =v-u(z,t)

e diffusion (pollution expands from higher concentration regions to lower ones; Fick’s
law)
q(x,t) = —kVu(x, t)

In general q(z,t) = v - u(z,t) — kVu(z,t).

divg(z,t) = Vyu-v — kAzu(x,t)

U = kAzu —v-Vau (ifN =1: w(x,t) = kuge(z,t) — vux(x,t))

Suppose ¢ depends only on convection, i.e. k = 0, then we obtain



The transport equation in RY with constant coefficients
x €RN [t €0, +oof, u: RN x [0, +00[— R, u = u(x,t), v € RV constant.
ug(x,t) +v-Vyu(z,t) =0
e, ifw= (v,1), w-Vu=0, that is
Ju
— =0.
ow
u is constant along the direction w.
v(s) = (z,t) + s(v, 1)

is the characteristic line passing through (z,t), along which the value of u is constant.
u(z + sv,t+ 8) = u(z,t) foralls e R, t+ s > 0.

The initial value problem
g: RN R

ug(x,t) + v - Veu(z,t) =0 in RY x [0, +00],
u(z,0) = g(x) on ' =RN x {t =0},

u(z,t) = gz — tv)
Travelling wave moving with velocity v.
If the initial datum is u(z, tg) = g(x) we have u(x,t) =7
u(z,t) = gz + (to — t)v).
The non-homogeneous problem (distributed source)

{ ug(x,t) +v-Veu(z,t) = f(x,t) in RY x [0, +o0],
u(z,0) = g(x) on I' = RN x {t = 0},

z(s) = u(x + sv,t + s)

% :vvxu(m—i—sv,t—i-s)+%(x+sv,t+s) = f(z + sv,t+s)
s

wawzg@—wwyéfm—@—nWmMn

Observe that
u(z,t) = gz — tv)

is a solution of the homogeneous problem

{ ug(w,t) + v - Veu(z,t) in RY x [0, +o00],
u(z,0) = g(x) on ' =RN x {t =0},



while, for each s,
w(z,t) = flx — (t — s)v, s)

is a solution of the problem
wi(z,t) +v - Vew(x,t) =0 in RY x [0, +o0],
w(zx,s) = f(z,s) on I'=RN x {t = 0}.
Duhamel’s Principle.

For all s > 0 let w(-,+;s) be a solution of

wi+v-Vew=0 inRY x [0, 400,
w(z, s;8) = f(x,s) on T =RN x {t =0}.

Then u(x,t) = fot w(x,t;8)ds is a solution of

u(x,t) +v-Veu(z,t) = f(x,t) in RY x [0, +o0],
u(x,0) =0 on I'=RYN x {t = 0}.

A problem is well-posed (according to J. Hadamard) if

1. The problem has a solution.

2. The solution is unique.

3. The solution is stable (a small change in the equation and in the side conditions
gives rise to a small change in the solutions)

Theorem
Let g € CY(RY), f € CY(RY x [0, +00[). Then, problem

{ ug(x,t) +v - Vyu(z,t) = f(x,t) in RY x [0, +00],
u(z,0) = g(x) on I' = RN x {t = 0},

has a unique solution. Moreover, it is stable on finite-time intervals, i.e., for all T > 0,

small changes of fir~ (o) 0 || - ||Lee &N x[0,r)) nOorm and of g in || - || e g~y norm yield
small changes of the solutions in || - || Lee (g~ x [0,77) NOTM.

The problem with decay (exercise)
Due to biological decomposition the pollutant decays at the rate —yu(x,t), v > 0;

{ ug(z,t) + v - Veu(z, t) + yu(z, t) = f(z,t) in RN x [0, +o0],
u(z,0) = g(x) on T =RN x {t =0}.

Multiply the equation by et

w(z,t) = eu(w,t)

u(z,t) =e Mgz —tv) +e 7" /t e f(x+ (n—t)v,n)dn.
0

(if f = 0 damped travelling wave)



An example with a discontinuity
A source of pollutant at = 0 starts working at time ¢ = 0.

0 ift <O,

Heaviside function H(t) = { Lift>0

ur(z,t) +v-Vyu(z,t) =0 (z,t) € [0, +o0[xR,
u(0,t) = BH(t) teR
u(z,0) =0 x € [0, 400l

Here we have both a boundary condition and a initial condition.

u(z,t) = BH(vt — x).

The jump discontinuity in (0, 0) is transported along the characterisctic x = vt.

Compare with the heat equation. In that case the solution is smooth even if the initial
datum is discontinuous.

Inflow characteristics: the characteristics carry the information from the boundary to
the interior of the domain.

Outflow characteristics: no data have to be assigned.

Exercise
Suppose, for i = 1,2, u; is the solution of the problem

u(z,t) + vug(z,t) = 0in ]0, R[ x ]0, +o0],
u(0,t) = fi(t) t>0
u(z,0) = g;(z) in 10, R[.

Prove the least square stability formula

R R t
u\x, — U2\, 2%7 1£C—2£L'2£E v 18—2828.
/0<<t> (t))d</0(g()g())d+/0(f()f())d

The method of characteristics
F:RY xR xRN - R,

F(Vu,u,r) =0in U C RV,
u=yg on I' C OU.

To convert the PDE into an appropriate system of ODEs.
A quasilinear problem

{am T

u+c(r,u) =0in U C RY,
) onI' C 9U.

Theorem



Let U C RY be an open set, u € C*(U) a solution of the equation
a(z,u) - Vu+ c(z,u) = 0.

Set z(s) = u(x(s)) where z(s) is a solution of the system

Then z(s) solves the ODE

for those s such that z(s) € U.
Example: N = 2.

a1 (21, T2, W)Uy, + a2(z1, To, Uy, + (1, 22,u) = 0.

ai,as,c:R3 =R

Suppose u = u(z1,x2) is a solution.

Suppose we know the solution u on the curve I'. We want to span the graph of u
starting from I'.

Parametrize a curve in R? by (21(s), z2(s), 2(s)) with 2(s) = u(x1(s), 22(s)).

Then

d

2(s) = u(wi(s), 22(8)) = ua, (21(5), 22(8))a7 (5) + vy (@1 (5), 22(5)) 23 (8)-
If we set
{x’l(s) = a1 (21, 22, 2)
x5(s) = az(z1, 22, 2)
then

2 = —c(x1, 29, 2).

By solving the ODE system we obtain the value of the solution u along the character-
istic. Imposing the initial conditions we hope to recover the whole solution.

Example: the transport equation.
vER, f:Rx]0,4+00[ =R, g:R = R.

v 4 2% — f(21,22) in R x]0, +00],
u(z1,0) = g(z1) on I' = {(21,0) € R* : 21 € R}.

Characteristic equations:

]

1(s)=v
ah(s) =1
Z'(s) = f(x1,72)

1 = vs + Y, x9 = 5. Fix (v1,22) € U and find the characteristic passing through

(z1,22): invert to find 2§ = 1 — vas to obtain z(s) — 20 = [ f(21(), 22(€)) d&; ie.

u(z,t) = g(x — vt) +/ fWé+x —wvt,€) de.
0



Example: a linear problem

T13 —wagp = win U =]0,+00[ x]0, o0,
u(zy,0) = g(acl) on ' = {(x1,0) € R? : 21 > 0},

where g : |0, +00[ — R.

z1(s) = —w2(s)

z5(s) = 1 ( )

Z'(s) = 2(s)
2(s) = 2%%; 2Y = 2(0) = u(29,0) = g(2?)

(z1(s), 22(s)) = (29 cos 5,29 sin s)

Fix (x1,22) € U and find the characteristic passing through (z1,x2).
We invert the system

0

z1 =20 cos s
To = xjsins

to obtain

2) =\/z3+a3  and s =atan(%2).
u(zy,w2) = g(\/x% + x%) exp (atan (z2/z1)).

Example: a semilinear problem

Therefore

8.’1)1 81}2

Du 4 Ou _ 42 iy U =R x 0, +00],
u(x1,0) = g(x1) on T' = {(x1,0) € R?},

where g : R — R.
g(x1 — x2)
1 —zog(x1 — 2)

u(ry,x2) =

The solution is defined only locally!
The initial value problem
a(z,u) - Vu+ c(r,u) =0in U,
u(z) = g(z onT,
N=2
I parametrized by v(t) = (y1(t), y2(t)), t € I interval, 7(0) = (y1(0), y2(0)) = (y?,49).

{ a1 (21, 2, ) 5a- taz(21, 22, )%+c(z1,x2,u):Oin U,

u(y(t), y2(t)) = g(y1(t), y2(t)) tel,
1 (s) = ax(x1(s), w2(s), 2(s))
xh(s) = ag(x1(s), z2(s), 2(8)) characteristic equations
Z(s) = —c(z1(s), 22(s), 2(s))
21(0) =97, 22(0) =9, 2(0) =2° = g(, v3)



7 (s,t) = ai(z1(s,t), v2(s, 1), 2(s, 1))
xh(s,t) = as(x1(s,t), 22(s,t), 2(s,t))
2'(s,t) = —c(x1(s,t), 2(s, ), 2(s, 1))
xl(ovt) = yl(t)’ xQ(Ovt) = Q(t ) Z(07t) = g(yl(t)’y2(t))'

Inverse function theorem

Assume ¢ : U C RN = RN ¢ € CHU;RYN), 2 € U.

Assume det Jip(2?) # 0, then 1 is a local C!—diffeomorphism, i.e. there exist neigh-
bourhoods U; C U of 2°, V4 of ¥(2°), and a function ¢ € C*(Vy,U;) which is the inverse
of 7/)|U1 .

Y(s,t) = (x1(s,t),22(5,1))  ¢(x1,22) = (s(x1,22), t(x1, 72))

0x Oz

E(Ovo) :al(y?vygazo) E(()?O) =a2(y?,yg,zo)
0xq oy Oxa o,
20,0 =40 22(0,0) = 400)

Transversality condition:

a1 (y1, 99, 2°)y5(0) — az (), 43, 2°)y1 (0) # 0

Call v the unit normal to I':

0 .0y _ 1 / )
v(yi,y2) = yi(0)2+y,2(0)2(3/2(0)7 1(0))

a(y’, z0) - v(y°) #0.

Theorem (Local existence and uniqueness)

Suppose U ¢ RV, I C R interval,

v € CHIL;RN), T =~(I),T C U,

g:T =R, goye CHI;R),

yY = 7(0), J C R is a neighbourhood of g(y°), a,c € C1(U x J).

Assume the transversality condition holds in a neighbourhood W of % in T, i.e. for
ally e W

a(y,9(y)) - v(y) # 0.

Then, there exists a neighbourhood V of 3° in RY and a unique function v € C1(V;R)
which solves

{ a(z,u) - Vu+ c(z,u) =0in V,
u(z) = g(x) onI'NV.

If for some neighbourhood W of ° in I' the transversality condition is not satisfied for
all y € W, then either the problem has no C' solutions or it has infinitely many solutions.

What happens if the transversality condition is not satisfied?



{ AUz, + A2Uz, = —C,

u(yl (t)v yQ(t)) = g(yl (t)a y2(t)) .

Assume u is a solution. Set h(t) = u(y1(t),y2(t)). Then the vector Vu(y{,y3) solves
the algebraic system

{VU(y?vyS) (ar () y8, u@?, v9)), a2 (¥, 49, u(y?, 19))) = —c(ul, u8, u(yy, v9)),
Vu(y?,y9) - (¥1(0),y5(0) = 1/ (0).

By Rouché-Capelli Theorem the vectors (ay, az, —c) and (y;(0),45(0),,'(0)) must be
parallel.

In this case a necessary condition to get a solution is that the curve ~(t) must be
parallel to the characteristic curve at (y?,y3, z°).

Example: non-homogeneous Burgers equation

{ u% * 887;2 =1
u(z1,0) = h(xy)
where h € C1(R), for example if h(z) = .

2
2z — x5

uan ) =t S

Example

1

)

uaa—“ + 887“
T xTro
on ' = {(t3,2t) : t € R}.

u(zy, ) =

uw(wy, w2) = 1/2w9 — 1/24 /4wy — 23 or uw(wy, w2) = 1/229 + 1/24 /421 — 23
non-regular solutions.
Example

ou ou

Bor T e = b

u(t,t) =t teR.
w(xy, x2) = 2 + f(x1 — x2)

for any f such that f(0) = 0.
(infinitely many solutions)

Exercise

ml% —|—x2g—;‘2 = 4u, (71, 12) € R?
u(xy,xe) =1 2 +23=1.
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Scalar Conservation Laws

We consider equations of the form
uz + divy q(u(x,t)) =0, zeRN t>0.

(If N =1 we write u; + g(u), =0, xeR,t>0.)
Denote by u(z,t) the concentration of a physical quantity () inside a set €2 at time ¢

The amount of ) inside the set Q at time ¢ is given by (assume e.g. N = 3)

///Q u(z,t) dx

The conservation law says that
/ / q-vdo,
a0

it /1,0

/ q - vdo is the net

where — /// u(x,t) dx is the rate of change of @ in Q, and — /
Q o0
flux through the boundary of €.
(If N =1 and Q = [z1, 23] we have % f;lz u(z, t) de = q(u(zy,t)) — q(u(za, t)).)

By the divergence theorem

// q- l/da—///dlv:ch:c
hence /// (ug(z, t) + div, q) dz =0,

and we derive
w4 divy g(u(z, t)) = 0.
(If N =1 we write u¢ + q(u); =0.)
Let us consider the following problem
=0,

{ Uy + q/(u)ux
u(z,0) =g(x) xeR.

We shall use the method of the characteritics for the equation ajuz, + asuz, = ¢ with

1=, =1, a1 =¢(u),as=1

The characteristic equations are

The characteristics are straight lines, here s = ¢ hence we can write the cartesian equation

of the lines instead of the parametric equation

2Ot + 20, u(z,t) = g(z).

z(t) = q'(g(
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The transversality condition is always satisfied, indeed a(y, g(y)) = (¢,1), v(y) = (0,1).
Notice however that the characteristics may possibly intersect!
How can we write the solution? Recall the solution of the transport equation:

u(z,t) = g(2°) = g(z — tv).

0

Now we still have u(x,t) = g(z°). Since z(t) — ¢’ (g(z°))t = 2° we can write

u(@,t) = g(x(t) — ¢'(9(z"))t)
We obtain an implicit formula for the solution: u = g(x — t¢'(u))

Implicit Function Theorem:
Consider the level set
F(xz,t,z) =0.
Suppose (22,1, 2%) belongs to the level set, i.e. F(2°,t°, 20) =0.
Then, if 25 (20,10, 20) # 0, there exists locally a funcion u = u(z,t) such that

F(z,t,u(z,t)) =0 forall (x,t).

Moreover
%(x t) - GF(a:,(ta,;t(m,t))
oxr T 8F(a¢,t,u(ac,t))
e
and
@(x t) - 8F(z,g:(m,t))
ot ’ B 8F(I,t,u(w,t))
e

Here we have
u—g(z—tq'(u) =0

Therefore it is possible to write u = u(zx,t) if
L+ tq" (u)g'(x — tq' (u) # 0.

What if ¢"(u) >0 and ¢’ <07

Smooth solutions may fail to exist.

“However, the fluid described by the equation keeps flowing unaware of our mathemat-
ical troubles...”

What kind of solutions can we expect?

Example: Burgers equation (shockwave)

ut—f—(“;) =01in R x ]0, +00]
u(r,0) = g(z) z€R
where
1 ifx<0
glx)=¢ 1—zif 0<z <1
0 ife>1



1 ifz<t, 0<t<lort>1, z<it+3
u(z,t) = =Lifo<t<az<l1
0 ifz>1,0<t<lort>1lax>3it+31

Mild solution

An integrable function u : Rx]0, +0o[— R is a mild solution of
Ut + q(u)I = 07
u(z,0) =g(x) zeR.
if u(z,0) = g(z) for all x € R and, for all x; < x,

d [*

T s u(z,t) dx = q(u(z1,t)) — q(u(ze, t)).

Notice that mild solutions may be discontinuous.

Weak solution
A function v € L*°(Rx]0, +0o0[) is a weak solution of

{ ug + q(u), =0,
u(z,0) =g(xz) zeR.

if, for all test functions ¢ € C*°(R x [0, +00[), with compact support, we have

/O+oo (/+OO u(z, t) o (x,t) + q(u(z,t))de (2, t) dm) dt + /+O<> g(z)p(z,0)dz = 0.

— 00 —00
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Observation: A classical solution is a mild solution, a mild solution is a weak
solution. A function u € C1(Rx]0, +00]) is a classical solution of the problem if and only

if u is a weak solution of the problem.

What information about the u is hidden in the formula for a weak solution if w is, for

example, singular along a shock curve (jump discontinuity)?

The Rankine-Hugoniot condition

We suppose now that u is a weak solution which is C! in some open region V C

R x]0, +-00[ except on a smooth curve C which separates V into two parts: V! and V.

Then the speed of the shock wave is the quotient of the flux jump over the density

jump:
g(u™) —q(u”) = (ut —u7)P' (1),
where y(t) = (p(t),t), v being a parametrization of C.

Example: Burgers equation again

W2\ 1 if 2 <0
{ut+(2)z—01nRx]0,+oo[ glay=¢ 1—zif0<a<1
u(z,0) =g(z) zeR 0 ifz>1



ifz<t,0<t<lort>1 z<it+1

1
u(z,t)={ =Lifo<t<az<l1

0 fz>10<t<lort>1laz>it+3

Example: rarefaction wave
uy + (“;) =01in R x ]0, +o0[
u(z,0) =g(z) z€R

What is u in the wedge x > 0, t > z7

We set
(2.1) = 0if x <
A IR

g9(z) = {

N+ N+

0if z <0
lifx>0

u is a shock solution and the Rankine-Hugoniot condition is satisfied.

Is this an acceptable solution?

13

We expect a shock in presence of a compression wave, not in presence of an expansion

wave.
Looking for a second solution:
Regularised problem:

{ up + (“;)Z:OinRx]O,Jroo[
B

u(z,0) =ge(z) z€R

0 ifz<0
ge(x) =< lzifo<z<e

1 ifz>e

0 ifz<O
u(z,t) =9 Fzif0<z<t+e

1 fx>t+e

When ¢ — 0:

0ifz<O

u(x,t) =¢ Fif0<z<t
lifz>t>0

More in general, assuming ¢’ is invertible, if g has a jump at x = a, in the wedge we

can define

r—a
t

u(,t) = (¢') 7

How can we chose the “right” solution?

The Entropy Condition

We require an “entropy condition”

¢ (u") >0 >q (u")

).
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Characteristics must enter the shock curve and are not allowed to emanate from it.
Assume ¢” > 0. A weak solution is said to be an entropy solution if there exists C' > 0
such that, for every x, Ax € R, Az > 0, and every t > 0, we have

u(z + Azx) —u(x,t) < %Aw.

Assume ¢ > K > 0 and ¢’ > 0. If u is smooth, then u is an entropy solution.
Assume u is an entropy solution. Then, for all fixed ¢t > 0 the function

C
Y (o) == u(z,t) — 7%
is decreasing.
Assume ¢’ > K > 0, u is an entropy solution presenting a shock curve ¢(t). Then the
slope of the shock curve is smaller than the slope of the left characteristics and larger than
the slope of the right characteristics:

q'(u") < ¢'(t) <q'(u)

Lax-Oleinik theorem.
Assume ¢ € C?(R) is strictly convex (or strictly concave) and g € L*®(R). Then
problem
u+q(u)y =0z R, t>0,
{ u(z,0) =g(z) z €R.

has a unique entropy solution.

Furthermore, the solution u is stable and depends continuously on the initial data, in
the following sense: there exists a constant A such that, if h € L>°(R) and v is the entropy
solution for the problem with initial datum h, then, for every z1,z2 € R, 27 <z, t > 0,

X9 xo+ At
/ |u(x,t)—v(x,t)\dxg/ lgle) = hia) o
xrq xr1— t

(For uniqueness the convexity or concavity of ¢ is not necessary, but the entropy must
be suitably defined.)

The Riemann problem
Assume ¢ € C?(R) and ¢” > C > 0. Set

() = uwif 2 <0
= wtife>0

ut A u.
Then, the unique entropy solution of the problem

us +q(u), =0x € Rt > 0,
u(z,0) = g(x) x € R.

is



15

(i) if ut >u™,
u” if z <ot
u(w,t) = { ut if x > ot
o
where o = 7'1(““)73(} ).
(i) if u™ <ut,
u” if z <q'(u™)t
w(z,t)=q (@) () if du )t <z <g(uh)t
ut if x> ¢ (ut)t

A model example: the traffic flow

Traffic on a highway along the positive direction of the x—axis;
no overtaking allowed

no exits or entrances

u(x,t) = density of cars in the point = at the time .

v(x,t) = average speed.

q flux; ¢ = vu

The average speed depends on the density alone: v = v(u).

dv
/ - < O
vi(u) du —
Conservation law

Constitutive relation for v:

v, = maximal velocity,
U, = maximal concentration (bumper to bumper).

2
Ut + U, <1—u)ux—0.

Um

ut+vm(72—“)ux:0 %umifw<0
o g(w) = U if x>0
u(z,0) = g(z) m

Traffic jam ahead (v =0 if z > 0).
On the left v = %vm.

%um if £ < —%Umt
u(z,t) =
Uy if T > f%vmt

Shock line: ¢(t) = —gomt.
The shock is revealed by the breaking lights of the cars, slowing down because of the
traffic jam ahead.
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Example: the green traffic-light

Ut + VU —% Uy =0 . Um if 2 <0
{U(%O) =(g(w) ) o) {

0 ifxz>0
Un if @ < —vpt
u(z,t) =13 tun, (1 - i%) if —vpt <z <vnt
0 if > v,t
Example
W2\ Oifz <0
{ut—l—(Q)w—Ome]Od—oo[ g(z) lifo<z<1
u(z,0) =g(z) z€R 0if 2 >1
Exercise

Determine a weak solution o the Lighthill-Whitham-Richard model for traffic flow

ug + (v(u)u), = 0in R x |0, +00]
0) = g(x) reR
with velocity

u
= 2 _ —
o) =27
and initial density
2 ifx <0
glx) =< z+2if0<z<1
3 ifzx>1
Describe the trajectory of a car initially in position x = —2
Exercise

Discuss existence and uniqueness and determine a weak solution of the scalar conser-
vation law

{ut+4uu$=OinRx]O,+oo[ L

ifx <0
u(z,0) =g(x) z €R 9(x)

0 ifo<ze<1
—lifx>1
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The wave equation

The vibrating string

We consider small transversal vibrations of a tightly stretched perfectly flexible hori-
zontal string (the stress at any point can be modelled by a tangential force, the tension)

we neglect friction

vibrations have small amplitude

we assume there is only vertical displacement, and this depends on the position x and
time ¢t: u = u(z,t)

Consider a string element at a fixed time ¢, represented by the curve y(z) = (z, u(z, t)).

The forces acting to the string= external vertical forces f (gravity, loads) + internal
forces T'(tension)

The horizontal forces have to balance:

T(xQ) ‘horizontal - T(xl ) |horizonta1

T(z2,1t) cos(a(ze,t)) — 7(x1,t) cos(a(zy,t)) =0

7 = |T| magnitude
a(x,t) angle between the z-axis and the tangent of v at «

0
92 (7(z,t) cos(a(x,t))) =0

7(z,t) cos(a(z,t)) = 1o(t)
Vertical tension:

7(z,t) sin(a(x, t)) = 70(, t) tan(a(z, t)) = 70(t)us (2, t)

Conservation of mass:
po = po(x) = linear density of the string at rest
p(z,t) = linear density of the string at time ¢

po(@) Az = plr, ) As

Newton law:

/u”(svt)P(sat) ds = /M ure(x,t)po () dx = /wz [z, t)po(x) dr+7o(t) (ue (22, 1) — ua(21,1))

Z1

ug(z,t) — Uge(x,t) = f(z,t)  (J. d’Alembert 1752)
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Since the string is perfectly elastic 7y is constant; since the string is homogeneous pg is
constant.

Set -
="
Po
The homogeneous equation.
feC*R), ge C(R)
g (2,t) — Cugy(z,t) =02 €R, >0
u(z,0) = f(x) z€eR
ut(%O):g;E) zeR

o ON(D L N,
ot ox ot ox N

Set v = (% + ca%), then solve the linear transport equation vy — cv, = 0.
We have v(z,t) = p(z + ct) for some .
Solve u; + cu, = ¢(z + ct).

u(z,t) = p(x — ct) + /o <p(:1c +(n—t)c+ cn) dn.

Observe that u(x,0) = (x) and us(z,0) = o(x) — )’ (z).

Since u(z,0) = f(z) and u(z,0) = g(x), we deduce
D’Alembert formula:

x+ct
(Flx+et) + fz - ct)) + = / o(€) de

2¢ —ct

N |

u(x,t) =

Theorem The Cauchy problem above has a unique solution, and for all T > 0, this is
uniformly stable on R x [0, 7.

Weak solution
Assume f € C(R) and g € L*(R).
A function u € C(R x [0, +o0]) is a weak solution of

(1) — Py (z,t) =02 €R, >0
u(z,0) = f(x) zeR
ut(2,0) = g(z) z€R

if, for all test functions v € C?(R x [0, +00]), with compact support, we have

/Om ( / ) (vt (2, 1) = g (2, 1)) d:z:) dt

— 00

400
- /_ (g9(z)v(z,0) — f(x)ve(x,0)) dx = 0.
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Observation: the singularities of the solutions of the wave equation are travelling
only along characteristics.

Domain of dependence and region of influence

Example (chord of infinite length plucked at the origin)

U (m,) — Pugy(z,t) =02 € R, t >0
u(z,0) = f(x z€eR
u(x,0) =0 reR
where
0 if —co<r<—1
a1t —1<2<0
F@ =91 zito<z<1

0 ifz>1

The non-homogeneous equation
feC*R), g CY(R)

g (2,t) — Cugy(x,t) = h(z,t) 2 € R, t >0
u(z,0) = f(z reR
wa(2,0) = g(x) eR

Theorem The problem is well-posed for h, h, € C(R?), f € C%(R), g € C*(R), for
each T >0, in R x [0,T].

D’Alembert formula:

x+ct
Uy fa—en+g [ g@act g [f e dsar

—ct

N | =

u(z,t) =

Here A(z,t) is the characteristic triangle with vertex (z,t).

Observation Let f and g be even (odd, periodic of period P) functions; let, for all
t >0, h(-,t) be even (odd, periodic of period P). Then, for all ¢ > 0, the solution w(-,?)
is also even (odd, periodic of period P).

The problem on the half line (a reflection method).
f € C*([0, +00[), g € C([0, +o0]), £(0) = f"(0) = g(0) = 0;

gt (7,t) — Pgy(2,t) =00 < 2 < +00,t >0

u(0,t) =0 t>0
u(z,0) = f(x) 0<z+o00
ug(z,0) = g(x) 0<2<+00

Extend f and g as odd functions f and g over R and consider the problem on R, to
obtain

wat) = | 2@+ f@—c) + 5 [0 g deif x> ct
T LS et) — flet—a) + & [T g(e)deif 0 <x < et
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Peculiarities of dimensione N = 1.
There is no decay of waves.

Once the wave if detected, even if it has a compact support it will never disappear.

Radially symmetric solutions of the wave equation in three dimensions.
2
Ut (1, T2, 3, 1) — ¢ Au(z1, 72, 23,1) =0

Spherical coordinates:

r=+/x? + 2%+ 23, 11 =rsinpcosl, xo = rsinesinb, 1 = rcosp.

Laplacian in spherical coordinates: (radial part) + (spherical part)

pa (P 200 11 0 B conpin
~\or2  ror 72 \sin? p 002 9p?  sinp Iy

gt (21, T2, w3, 1) — 2 Au(x1, T2, 73,1) = 0

utt—cQ(%+%g—ﬁ) =00<7r<400,t>0
u(r,0) = f(r) 0<r<+o0
ug(r,0) = g(r) 0<r<+o0
1 _ 5 1 r+ct
urt) = 5o ((r+efr v o)+ (=) fr—e) + 5 [ eate)ae

In dimension 3 there is a decay of the wave with time at any point.

Examples

) = lifo<r<i
IT)=N 0ifr>1

utthu:() OS'I"<+OO,tZO
u(r,0) = f(r) 0<r < +o0
ug(r,0) =g(r) 0 <r < +o0

Utt—A’LLZO 0§T<+Oo,t20
u(r,0) =g(r) 0<r <+
ut(r,0) = f(r) 0 <r < 40

Spherical means and the general Cauchy problem in R3.
Spherical mean. h € C1(R3),

1
Mh(r7fl7) = 4’7.[_7,‘2\//'8B(a: " h(U) do
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is the average of h over the sphere 0B(z, ).
We have

lim Mp,(r,x) =?
r—0

}1_1% My, (r,x) = h(zx)

9 1
o0 = g [, B
KNy )—_L/// Ah(z)d +L// Ah(o)d
87’2 P E) = 27'('7"3 B(:v,r) r v 47TT'2 BB(I,T) 7 7

1
Ay My (ryz) = ) //83(:8 , Ah(o) do

Darboux equation

0% 290
<8r2 7‘87") Mh('r, .fE) = Ath(T‘, 1’)
Proposition I.

If u is a solution of
ug —Au=0z eR3 t>0

u(z,0) =0 reR?
u(2,0) = g(z) z € R?

then w = M, (r,z,t) is a solution of

wtt_c2(%jg}+%%):OO<T<+OO’t>O
w(r,0) =0 0<r<+o0

wy(r,0) = My(r, z) 0<r<+oo

Proposition II.

If u is a solution of
g —Au=0z R t>0

u(z,0) =0 reR3
u(x,0) = g(x) z € R?

then v(z,t) := us(z,t) is a solution of

v —Av =02 €R3, t>0
v(z,0) = g(z) ze€R3
v(2,0)=0 z€R3

Solution: (Kirchhoft’s formula)

u(x,t) = tMy(ct,x) + % (tMy(ct,x))
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1 0 1
u<x7 t)  Amc?t //BB(x,ct) g(a> dot E (47T62t /~/8B(a:,ct) f(o) dg)

Huygens principle holds.
Theorem Let f € C3(R3?), h € C?(R3). Then Kirchhoff’s formula yields the unique
solution u € C%(R? x [0, +00]) of the problem

ug —Au =0z eR3 t>0
u(z,0) = f(z) x€R3
u(2,0) = g(z) z € R?

The problem in R? (Hadamard’s descent method).

Upp — €2 (Ugyzy + Tanzy) = 0 (21, 72) ERZ, >0
u(xy,x2,0) = f(x1,22) (21, 12) € R?
u(z1,22,0) = g(z1,22) (w1, 22) € R?

Poisson’s formula:

o i 9(51752)
ule,22,1) = 2me //B’(zl,xz;ct) \/C2752 — (1 = &1)? = (22 — &2)? e

o( L f(&1,6)
Tt \ 2 //B(l_wz;ct) JEE (2, 6P (12 &) d§1d€2>

Theorem Let f € C3(R?), g € C?(R?). Then Poisson’s formula yields the unique
solution u € C%(R? x [0, +00]) of the problem.

In dimension 2 Huygens principle does not hold. Any perturbation will leave trace for
all later times.

The wave equation in a bounded interval (separation of variables)
The Dirichlet problem:

Ut (T,1) — gy (,t) =00< 2 <L, t>0
u(0,t) = u(L,t) =0 t>0

u(z,0) = f(x) x €10, L]
ug(x,0) = g(x) x €10, L]

w’ (t) = MPw(t)

k k k
ug(x,t) = (ak cos(%ct) + b sin(WLCt)) sin(%x)

ag,bp e R, k=1,2,3,....
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The Neumann problem: (exercise)

Ut (X, 1) — CUgg(2,t) =00< 2z < L, t>0
uzp(0,t) = ug(L,t) =0 ¢>0

u(z,0) = f(z) z €10,L]
ug(z,0) = g(x) z €10,L]

k k k
ug(z,t) = (ak cos(%t) + by sin(ﬂI/ct)) cos(%m)
ar, b, ER, kE=1,2,3,....
Imposing initial conditions:
A formal solution:
X, wke L ke wk
; (f;€ cos(Tt) + %Qk Sin(Lt)> sin(f:c)
1 L
Energy: E(t) = 5/ (w? 4 Pw?) dx
0
Energy is conserved = uniqueness.
Uniqueness? Stability?
Exercise
Solve the hyperbolic problem
g — 4y, = x, in ]0, +00[ X ]0, 400,
u(0,t) =0, in ]0,4o0],
u(x,0) = z*, in [0, +o0],
ug(x,0) =0, in [0,4o0[.
Exercise
Compute the solution u of the hyperbolic problem
Uy — Au =10 in R3 xR
u(z,y,2,0) =0 (z,9,2) € R®

u(z,y,2,0) = h(z,y,2) (z,y,2) € R3

where

I ) = 2if 22 + 2 +22 <1
LY=L 0if a2 492+ 22> 1

at the point P = (2,0,0) at the times ¢; = %, ty = %, t3=4



