Esame di Analisi matematica II : esercizi ${\bf Dr.\ Franco\ Obersnel}$

Sessione estiva, II appello

COGNOME e NOME	N. Matricola
Anno di Corso Laurea in Ingegneria	
Si risolvano gli esercizi : $1\bigcirc 2\bigcirc 3\bigcirc 4\bigcirc$	$oldsymbol{5} \bigcirc oldsymbol{6} \bigcirc$
ESERCIZIO N. 1. Si consideri la serie di potenze	
$\sum_{n=1}^{+\infty} \frac{4^n}{2n-1} (x-1)^{2n}.$	
(i) Si determini il raggio di convergenza della serie.	
(ii) Si determini l'insieme di convergenza della serie.	
(iii) Si calcoli la somma della serie.	

ESERCIZIO N. 2. Si consideri la funzione

$$f(x,y) = (x - y)(y + x^2).$$

Si determinino	
• i segni di f:	
\bullet il gradiente di f :	
on gradiente di j.	
ullet la matrice Hessiana di f :	
• i punti critici di f :	
- I panel effect at J.	
ullet la natura dei punti critici di f :	
• ia natura dei punti critici di j.	
ullet gli estremi assoluti di f :	
• gn estremi assoluti di j.	

COGNOME e NOME	N. Matricola

ESERCIZIO N. 3. Si consideri l'insieme

$$E = \{(x, y)^T \in \mathbb{R}^2 \mid x > 0, \log x < y < 1 - x^2\}.$$

(i) Si calcoli l'area in senso g	eneralizzato di E .	

(ii) Si stabilisca se la funzione $f(x,y)=e^{-y}$ è integrabile in senso generalizzato su ${\cal E}.$

(iii) Si stabilisca se la funzione $f(x,y)=e^y$ è integrabile in senso generalizzato su ${\cal E}.$

ESERCIZIO N. 4. Sia

$$\Gamma = \{(x, y, z)^T : x^2 + 2y^2 - z^2 = 0, \ y + z - 1 = 0\}.$$

(i) Si provi che E è il costagne di une gurre regelere in ferrore implicite in E3
(i) Si provi che Γ è il sostegno di una curva regolare in forma implicita in \mathbb{R}^3 .
(ii) Si determinino i punti di Γ aventi massima e minima quota.
(vi) of determining I panel at I avenue intermine quote.

COGNOME e NOME	N. Matricola

ESERCIZIO N. 5. Si provi che l'equazione di Eulero

$$x^2y'' + 2xy' + 3y = 6$$

ha un'unica soluzione limitata definita su \mathbb{R}^+ , verso la quale convergono tutte le altre soluzioni per $x \to +\infty$.

SVOLGIMENTO

 ${\bf ESERCIZIO~N.~6.}$ Si consideri il campo vettoriale

$$g(x,y,z) = \left(x + \frac{z}{x+y}, y + \frac{z}{x+y}, z + \log|x+y|\right)^{T}.$$

(i) Si determinino
\bullet il dominio di g :
• ii doininio di g.
\bullet il rotore di g :
lacktriangle in rotore at g .
(ii) Si stabilisca se g è conservativo sul suo dominio e, in caso affermativo, si determini un potenziale di g .
(ii) Si stabilista se y e conservativo sui suo dominio e, in caso anermativo, si determini un potenziale di y.