Esame di Analisi matematica II Prova di esercizi

Corso del prof. Franco Obersnel Sessione estiva, III appello

COGNOME e NOME		N. I	Matricola
Anno di Corso	_ Laurea in Ingegneria _		

ESERCIZIO N. 1.

Per ogni $n \in \mathbb{N}^+$ si consideri la funzione $f_n : \mathbb{R} \to \mathbb{R}$ definita da $f_n(t) = \frac{1}{n + (t - n)^4}$.

(i) Si calcoli il limite puntuale della successione di funzioni $(f_n)_n$ e si stabilisca se la convergenza della successione è uniforme su \mathbb{R} .

Si ha, per ogni $t \in \mathbb{R}$, $|f_n(t)| \leq \frac{1}{n}$ e $\lim_{n \to +\infty} \frac{1}{n} = 0$. Pertanto la successione di funzioni $(f_n)_n$ converge uniformemente a 0.

- (ii) Si consideri la serie di funzioni $\sum_{n=1}^{+\infty} f_n(t)$.
- \bullet Si stabilisca se la serie è puntualmente convergente su $\mathbb R$ ad una funzione f.

Per ogni t fissato, la successione $\frac{1}{n+(t-n)^4}$ è infinitesima di ordine 4. Pertanto la serie converge puntualmente per ogni $t \in \mathbb{R}$.

• Si stabilisca se la serie è uniformemente convergente su [-1,1].

Per ogni $t \in [-1, 1]$, si ha $|f_n(t)| \le \frac{1}{n + (n-1)^4}$. Si può quindi applicare l'M-test di Weierstrass e si conclude che la serie è uniformemente convergente sull'intervallo [-1, 1] (in effetti si prova facilmente che è uniformemente convergente su tutti gli intervalli compatti).

(iii) Si verifichi che
$$\sum_{n=1}^{+\infty} f_n(0) \leq \frac{6}{5}$$
.

Sia $g:[1,+\infty[\to \mathbbm{R}$ definita da $g(x)=\frac{1}{n^4}$ se $n-1 \le x < n,$ con $n \in \mathbbm{N},$ $n \ge 2.$ Si ha allora

$$\sum_{n=2}^{+\infty} f_n(0) \le \sum_{n=1}^{+\infty} \frac{1}{n^4} = \int_1^{+\infty} g(x) \, dx \le \int_1^{+\infty} \frac{1}{x^4} \, dx = \frac{1}{5}.$$

Pertanto $\sum_{n=1}^{+\infty} f_n(0) \le \frac{1}{2} + \frac{1}{5}$.

Un modo alternativo è quello di osservare che la serie si può confrontare con la serie di Mengoli:

$$f_n(0) = \frac{1}{n+n^4} \le \frac{1}{n(1+n)} = \frac{1}{n} - \frac{1}{n+1}$$

e quindi

$$\sum_{n=1}^{+\infty} f_n(1) \le \sum_{n=1}^{+\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right) = 1.$$

ESERCIZIO N. 2. Si consideri il solido

$$S = \left\{ (x, y, z)^T \in \mathbb{R}^3 : x^2 + \frac{y^2}{4} + \frac{z^2}{9} \le 1, \ z \ge 1 \right\}.$$

La frontiera di S è unione della superficie $\Sigma = \left\{ (x,y,z)^T \in \mathbb{R}^3 : x^2 + \frac{y^2}{4} + \frac{z^2}{9} = 1, z > 1 \right\}$ e della superficie piana ellittica $E = \{(x, y, z)^T \in \mathbb{R}^3 : x^2 + \frac{y^2}{4} \le \frac{8}{9}, z = 1\}.$

- (i) Si consideri il campo scalare $f: S \to \mathbb{R}$ definito da $f(x, y, z) = 2x^2 + y^2$.
- \bullet Si verifichi che f ammette minino e massimo su S.

La funzione f è continua e definita sul compatto S. Si conclude per il teorema di Weierstrass.

• Si verifichi che f non ammette massimo su Σ .

Primo modo: poniamo $g(x,y,z) = x^2 + \frac{y^2}{4} + \frac{z^2}{9}$; se f ammette un punto di massimo $(x_0,y_0,z_0)^T$ su Σ , per il teorema del moltiplicatore di Lagrange deve esistere $\lambda \in \mathbb{R}$ tale che $\nabla f(x_0,y_0,z_0) = \lambda g(x_0,y_0,z_0)$. Si vede allora che necessariamente $\lambda = 0$ e il punto che si trova è $(0,0,3)^T$, dove la funzione assume il valore 0 e pertanto è punto di minimo.

Secondo modo: dal vincolo si ottiene $x^2 = 1 - \frac{z^2}{9} - \frac{y^2}{4}$. Posto $h(y,z) = 2 + \frac{1}{2}y^2 - \frac{2}{9}z^2$, con $1 < z \le 3$ e $-2 \le y \le 2$, si osserva che il gradiente di h non si annulla mai sul dominio, quindi eventuali punti di estremo vanno ricercati sulla frontiera, cioè se $z=3, -2 \le y \le 2$; in questo caso si ottiene soltanto il punto di minimo y = 0, z = 3.

• Si calcolino $\min_E f \in \max_E f$.

Sull'insieme E la funzione è $h(x,y) = f(x,y,1) = 2x^2 + y^2$. Il gradiente di h si annulla soltanto nell'origine $(0,0)^T$ che è punto di minimo. Il punto di massimo deve pertanto trovarsi sulla frontiera di E, cioè sull'ellisse di equazione $x^2 + \frac{y^2}{4} \le \frac{8}{9}$. Ricavando dal vincolo $x^2 = \frac{8}{9} - \frac{y^2}{4}$ si osserva che la funzione ristretta all'ellisse si riconduce alla funzione $h(y) = \frac{16}{9} + \frac{y^2}{2}$, definita per $|y| \le \frac{\sqrt{32}}{3}$, e pertanto il massimo si ottiene agli estremi dell'intervallo, quando $|y| = \frac{\sqrt{32}}{3}$.

In alternativa si può usare il metodo del moltiplicatore dii Lagrange.

In ogni caso si ottiene $\max_E f = \frac{32}{9}$. Naturalmente $\min_E f = 0$.

• Si calcolino $\min_S f \in \max_S f$.

Evidentemente il minimo è 0 essendo $f(x,y,z) \ge 0$ su S e f(0,0,z) = 0 per ogni z. Non ci sono punti di massimo all'interno di S, perché il gradiente di f non si annulla mai in tali punti. Sappiamo che non ci sono punti di massimo su Σ , pertanto il massimo su S coincide con il massimo su E.

In definitiva $\max_S f = \frac{32}{9}$, $\min_S f = 0$.

COGNOME e NOME

Continua Esercizio 2.

(ii) Si consideri il campo vettoriale $g: \mathbb{R}^3 \to \mathbb{R}^3$ definito da

$$q(x, y, z) = (2y^2 + z^2, 2z^2 + x^2, 2x^2 + y^2)^T.$$

 \bullet Si calcolino rotore e divergenza di g:

$$rotg = (2y - 4z, 2z - 4x, 2x - 4y)^T;$$
 $divg = 0$

 \bullet Si stabilisca se il campo g è conservativo.

No, perché non è irrotazionale.

• Si calcoli l'integrale doppio $\iint_D (2x^2+y^2)\,dxdy$ con $D=\big\{(x,y)^T\in \mathbb{R}^2: x^2+\frac{y^2}{4}\leq \frac{8}{9}\big\}.$

Usando coordinate ellittiche:

$$x = \frac{\sqrt{8}}{3}\rho\cos\vartheta, \quad x = \frac{\sqrt{32}}{3}\rho\sin\vartheta,$$

con $0 \le \rho \le 1$ e $\vartheta \in [0, 2\pi]$, si ottiene

$$\int_0^{2\pi} \Big[\int_0^1 \Big(2\frac{8}{9} \rho^2 \cos^2\vartheta + \frac{32}{9} \rho^2 \sin^2\vartheta \Big) \frac{16}{9} \rho \, d\rho \, \Big] d\vartheta = \frac{64}{81} \int_0^{2\pi} \Big(\cos^2\vartheta + \sin^2\vartheta + \sin^2\vartheta + \sin^2\vartheta \Big) \, d\vartheta = \frac{64}{27} \pi.$$

 \bullet Si calcoli il valore assoluto del flusso del campo g attraverso la superficie Σ .

Poiché la divergenza di g è nulla, il flusso del campo uscente dal bordo del solido S è nullo. Questo flusso è somma algebrica del flusso attraverso la superficie Σ e del flusso attraverso la superficie E, che sono quindi uguali in valore assoluto. Possiamo pertanto calcolare il flusso richiesto calcolando in alternativa il flusso attraverso E. Il versore normale di E è il versore dell'asse z e la terza componente del campo g è esattamente il campo f. Pertanto l'integrale che si ottiene è esattamente quello calcolato nel punto precedente:

$$\iint_{E} \langle g, n \rangle \, d\sigma = \iint_{D} (2x^2 + y^2) \, dx dy = \frac{64}{27} \pi.$$

4 Università degli Studi di Trieste – Facoltà d'Ingegneria. Trieste, 15 luglio 2019

ESERCIZIO N. 3. Si consideri l'equazione differenziale lineare a coefficienti continui

$$y' + e^{3x+2}y = e^{3x+2}.$$

(i) Si determinino eventuali soluzioni costanti dell'equazione.

Imponendo y'(x) = 0 per ogni x si ottiene immediatamente y = 1.

(ii) Si determini una base dello spazio delle soluzioni dell'equazione omogenea associata.

Una base è

$$\left\{\exp\left(-\frac{1}{3}\exp(3x+2)\right)\right\}.$$

(iii) Si determini l'insieme delle soluzioni dell'equazione completa.

Conosciamo tutte le soluzioni dell'equazione omogenea associata e la soluzione particolare y=1, pertanto l'insieme delle soluzioni è

$$\Big\{\lambda\exp\big(-\frac{1}{3}\exp(3x+2)\big)+1:\lambda\in{\rm I\!R}\Big\}.$$

(iv) Detta y_{α} la soluzione dell'equazione completa che in x=0 assume il valore $\alpha \in \mathbb{R}$, si calcolino

$$\lim_{x \to -\infty} y_{\alpha}(x) = \lim_{x \to +\infty} y_{\alpha}(x) =$$

Evidentemente per ogni $\alpha \in \mathbb{R}$ si ha $\lim_{x \to +\infty} y_{\alpha}(x) = 1$. Inoltre, $\lim_{x \to -\infty} y_{\alpha}(x) = \lambda + 1$. Poiché, imponendo la condizione iniziale si ottiene $\lambda \exp(-\frac{1}{3}e^2) + 1 = \alpha$, si conclude $\lim_{x \to -\infty} y_{\alpha}(x) = 1 + (\alpha - 1) \exp(\frac{1}{3}e^2)$.