
Esame di Analisi matematica II : esercizi A.a. 2006-2007, sessione invernale, I appello

COGNOME e NOME	N. Matricola
Anno di Corso Laurea in Ingegneria	
Si risolvano gli esercizi : $1\bigcirc 2\bigcirc 3$ (\bigcirc 4 \bigcirc 5 \bigcirc 6 \bigcirc
ESERCIZIO N. 1. Si determini il carattere della s	serie di numeri complessi
$\sum_{n=1}^{+\infty} \left[\frac{(-1)^n}{\sqrt{n}} + i \right]$	$\left(1-\cos(\frac{1}{n})\right)\bigg] .$
RISULTATO	
SVOLGIMENTO	

ESERCIZIO N. 2. Si consideri la funzione

$$f(x) = \int_0^x \cos(t^2) \, dt.$$

(i) Si determini lo sviluppo di f in serie di Taylor-Maclaurin.	

$$(iii)$$
 Si usi lo sviluppo per approssimare $f(1)$ a meno di $10^{-2}.$

COGNOME e NOME	N. Matricola
ESERCIZIO N. 3. Si calcoli il volume del solido compreso tra piano di equazione $z + 2y = 3$.	il paraboloide d'equazione $z = x^2 + y^2$ e il
RISULTATO	
SVOLGIMENTO	

4 Università di Trieste – Facoltà d'Ingegneria. Pordenone, 14 gennaio 2008

 ${\bf ESERCIZIO~N.~4.}$ Si determinino gli estremi relativi e assoluti della funzione

$$f(x, y, z) = x^3 - \frac{1}{2}(x^2 + y^2 + z^2)$$
.

RISULTATO	
SVOLGIMENTO	

COGNOME e NOME	N. Matricola
ESERCIZIO N. 5. Si determinino tutte le soluzio $y'' + 4y'$	ni dell'equazione differenziale lineare $x'-5y=e^x$.
RISULTATO	
SVOLGIMENTO	

ESERCIZIO N. 6. Si calcoli

$$\int_{\gamma} \frac{z^3}{x^2 + y^2} ds,$$

dove γ è l'elica cilindrica d'equazione

$$\gamma(t) = (t\cos(t), t\sin(t), t)^T, \text{ con } t \in [0, 2\pi].$$

RISULTATO	
SVOLGIMENTO	