Esame di Analisi matematica II Prova di esercizi

Corso del Prof. Franco Obersnel Sessione invernale, I appello

COGNOME e NOME	N. Matricola
Anno di Corso Laurea in Ingegneria	
ESERCIZIO N. 1.	
Si consideri la serie di funzioni $\sum_{n=1}^{+\infty} (-1)^n ^{\frac{2}{n}}$	$\frac{x^2+n}{n^2}.$
$\left(i\right)$ Si determini l'insieme di convergenza della serie.	
(ii) Si determini l'insieme in cui la serie converge assolu	utamente
(ii) 51 determini i misieme in cui la serie converge assort	tvamente.
$\left(iii\right)$ Si determinino i numeri $a>0$ tali che la serie conv	verge uniformemente sull'insieme $[-a, a]$.
(iv) Si verifichi che la serie non converge uniformemente	e su IR.

ESERCIZIO N. 2.

(i) Si disegni approssimativamente l'insieme $\{(x,y)^T\in {\rm I\!R}^2: y \leq e^{-\frac{1}{2}x^2}\}.$	

(ii) Si calcoli il volume generalizzato dell'insieme

$$\{(x, y, z)^T \in \mathbb{R}^3 : |y| \le z \le e^{-\frac{1}{2}x^2}\}.$$

COGNOME e NOME	N. Matricola

ESERCIZIO N. 3.

(i) Si calcoli la soluzione del problema di Cauchy per il sistema lineare di due equazioni differenziali ordinarie

$$(CPL) \begin{cases} x' = x + y - 2, \\ y' = 1 - x, \\ x(0) = \frac{1}{2}, y(0) = 2. \end{cases}$$

(ii) Si determini l'equilibrio (cioè la soluzione costante) $(x_0, y_0)^T$ del sistema di equazioni differenziali ordinarie

 $(E) \left\{ \begin{array}{l} x' = xy - 1, \\ y' = y - xy. \end{array} \right.$

(iii) Si spieghi, giustificando le affermazioni, in quale modo i sistemi in (i) e in (ii) sono legati tra loro. Come si comporta una soluzione del sistema in (ii) nelle vicinanze del punto $(x_0, y_0)^T$?

ESERCIZIO N. 4. Si consideri la funzione $f:\mathbbm{R}^2 \to \mathbbm{R}$ definita da

$$f(x,y) = xy - x^2 + x - \frac{1}{3}y^3.$$

(i) Si determinino • il gradiente di f :
\bullet la matrice Hessiana di $f\colon$
ullet i punti critici di f :
\bullet la natura dei punti critici di $f\colon$
(ii) Al variare di $\alpha \in \mathbb{R}$ sia $L_{\alpha} = \{(x,y)^T \in \mathbb{R}^2 : f(x,y) = \alpha\}$ l'insieme di livello α della funzione f . Per quali valori del parametro α la curva L_{α} ammette in ogni punto una parametrizzazione regolare locale come grafico di una funzione?
(iii) Nel caso $\alpha=0$, si determinino i punti della curva L_0 per i quali L_0 non è localmente il grafico di una funzione derivabile $y=\varphi(x)$.