Esame di Analisi matematica II - corsi a 9 e a 6 crediti Prova di esercizi Corso del Dr. Franco Obersnel Sessione invernale, III appello

COGNOME e NOME		N. Matricola
Anno di Corso Laure	ea in Ingegneria	
ESERCIZIO N. 1. (Per il corso a		one
	$f(x) = \int_0^x e^{-xy^2} dy.$	
(i) Si calcoli $f'(x)$.		
(ii) Si scriva lo sviluppo in serie di	Taylor-Maclaurin della funzion	ne e^{-t} .
(iii) Si scriva lo sviluppo in serie d	li Taylor-Maclaurin della funzio	one $f(x)$.
(iv) Si scriva lo sviluppo in serie d	i Taylor-Maclaurin della funzion	me $f'(x)$.

$$g(x,y) = (2x^2 + 3y + 1, 3y^2 + 2x - 1)^T$$
.

(i) Si calcoli la circuitazione del campo glungo la curva $\gamma:[0,2\pi]\to {\rm I\!R}^2$ definita da

$$\gamma(t) = \left(3\cos t, -2\sin t\right)^{T}.$$

 $(ii) \text{ Si determini una funzione } \varphi \in C^{\infty}(\mathbb{R}) \text{ tale che il campo } h(x,y) = g(x,y) + \Big(0,\varphi(x)\Big)^T \text{ sia conservativo.}$

(iii) Si trovi un potenziale di h.

COGNOME e NOME	N. Matricola					
ESERCIZIO N. 3. Si calcoli il limite, per $x \to +\infty$, di tutte le soluzioni dell'equazione $y'' - 4y' + y = e^{-x}$.						
RISULTATO						
SVOLGIMENTO						

ESERCIZIO N. 4.

(<i>i</i>)	Si	calcoli	la	massa	dell'	ellissoide
--------------	----	---------	----	-------	-------	------------

$$C = \{(x, y, z)^T \in \mathbb{R}^3 : 4x^2 + y^2 + z^2 \le 1\},$$

avente densità $\mu(x, y, z) = |z|$.

(ii) Si determini il raggio della sfera di centro l'origine avente densità $\mu(x,y,z)=|z|$ e massa uguale a quella dell'ellissoide del punto (i).

${\bf ESERCIZIO~N.~5.}$ Si consideri la funzione

$$f(x,y) = x^2y + 2y^4 - y.$$

Si determinino • il gradiente di f :
\bullet la matrice Hessiana di f :
ullet i punti critici di f :
\bullet la natura dei punti critici di $f\colon$
\bullet gli estremi assoluti di f :
\bullet l'equazione del piano tangente al grafico di f nel punto $(1,1,f(1,1))^T\colon$
• l'equazione della retta tangente la curva di livello $L_2=\{(x,y)^T\in\mathbb{R}^2: f(x,y)=2\}$ nel punto $(1,1)^T$: