Esame di Analisi matematica II Prova di esercizi Corso del Dr. Franco Obersnel Sessione estiva, I appello

COGNOME e NOM	IE	N. Matricola
Anno di Corso	Laurea in Ingegneria	
SERCIZIO N. 1.		
i) Si scriva la serie di	Taylor-Maclaurin della funzione $f(t) = te^{-t}$.	
ii) Si calcoli un valore	e stimato del numero	
	$\iint_{[0,1]\times[0,1]} xye^{-xy} dxdy,$	
sollerando un errore in	feriore a 10^{-2} .	

$$x^2 - 3xy + 5y^2 = 1.$$

(i) Si determinino i punti di E che hanno massima distanza dall'origine.		
(ii) Si trovino i punti P di E in cui la retta tangente l'elisse è ortogonale alla retta congiungente il punto P con l'origine $(0,0)$.		
(iii) Si trovino i punti di E in un intorno dei quali l'ellisse è rappresentabile come grafico di una funzione nella variabile x .		

COGNOME e NOME	N. Matricola
ESERCIZIO N. 3. Si determini una funzione $u: \mathbb{R}$ - $u(x) = 1 + \int_0^x dx$	$ ightarrow \mathbb{R}$ tale che, per ogni $x \in \mathbb{R}$, verifichi l'equazione $u(t) \operatorname{sen}(t) dt$.
RISULTATO	
SVOLGIMENTO	

4 Università degli Studi di Trieste – Facoltà d'Ingegneria. Trieste, 6 giugno 2011

ESERCIZIO N. 4. (Esercizio per il corso a 6 crediti) Un solido E è costituito da una palla di raggio 5 centimetri in cui è stato scavato sulla verticale un foro a forma di cono di apertura 90 gradi con vertice rivolto verso il basso posto 1 centimetro sopra il centro della palla. Il solido può pertanto essere descritto nel modo seguente:

$$E = \left\{ (x, y, z)^T \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 25, \quad z \le 1 + \sqrt{x^2 + y^2} \right\}.$$

Si calcoli il volume del solido E.

RISULTATO

SVOLGIMENTO

ESERCIZIO N. 4. (Esercizio per il corso a 9 crediti) Si considerino la calotta sferica

$$E = \{(x, y, z)^T \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 4, \quad z \ge \sqrt{3(x^2 + y^2)}\}$$

e il campo vettoriale

$$g(x, y, z) = (x - y + z, -y + z, x + y + z)^{T}.$$

- (i) Si calcoli l'area della superficie E.
- (ii) Si calcoli il rotore di g.
- (iii) Si calcoli la circuitazione $\oint_{\partial E} \langle g, \tau \rangle \, ds$ del campo glungo il bordo della superficie E.