II PROVA INTERMEDIA DI ANALISI MATEMATICA I

A.a. 2005–2006. Pordenone, 26 novembre 2005

COGNOME e NOM	E	Matr. N
Anno di Corso	Laurea in Ingegr	neria
ESERCIZIO N. 1. Si	a $f(x) = \begin{cases} \arctan(ax) + 1 \\ be^{-x} - x^2 + 2 \end{cases}$	$ \begin{array}{ll} , & \text{se } x \leq 0; \\ 2x, & \text{se } x > 0. \end{array} $
(i) Si determinino, giust	ificando la risposta, i parametri a	$a,b\in {\rm I\!R}$ per i quali f è continua in 0.
(ii) Si determinino, gius	tificando la risposta, i parametri	$a,b\in {\rm I\!R}$ per i quali f è derivabile in 0.
(iii) In corrispondenza εsi calcolino:	ni valori di a e b per i quali f è de $\displaystyle\lim_{x \to -\infty} f(x) =$	
	$\lim_{x \to -\infty} f(x)$ punti di annullamento $x_1 < 0 < x$	$\lim_{x \to +\infty} f(x) =$ 2:
	ndo la risposta, se f ammette ma	

Università di Trieste – Facoltà d'Ingegneria. Pordenone, 26 novembre 2005

 ${\bf ESERCIZIO~N.~2.}$ Si determini, usando i limiti notevoli

$$\lim_{x \to +\infty} \left(\frac{2x}{2x-1} \right)^{3x}.$$

- ((22 1)
RISULTATO
SVOLGIMENTO
ESERCIZIO N. 3. Sia $f(x) = e^{-x} (1 + 2x)$.
(i) Si calcoli $f'(x)$ nei punti in cui f è derivabile.
(ii) Si calcolino $f^\prime(x)$ e $f_+^\prime(x)$ nei punti in cui f non è derivabile.
$\left(iii\right)$ Si determinino, giustificando la risposta, i punti di annullamento e i segni di $f^{\prime}.$
(iv) Si determinino gli intervalli di ${\rm I\!R}$ su cui f è crescente o decrescente.
(v) Si determinino i punti di estremo relativo di f .