Esame di Analisi matematica I Prova di esercizi Corso del Professor Franco Obersnel Sessione estiva, I appello

COGNOME e NOME		N. Matricola	
Anno di Corso	Laurea in Ingegneria		

Verifica delle competenze preliminari.

(i) Si scriva la definizione esplicita di $\lim_{x\to e}f(x)=-\infty.$

Per ogni $M \in {\rm I\!R}$ esiste $\delta > 0$ tale che, per ogni $x \in dom f,$ se $0 < |x - e| < \delta,$ allora f(x) < M.

(ii) Si calcoli il limite
$$\lim_{x\to+\infty} \frac{x^4+2x-3}{1-5x^2} \log(1+e^{-x})$$

$$\frac{x^4 + 2x - 3}{1 - 5x^2} \log(1 + e^{-x}) = \frac{x^4 + 2x - 3}{1 - 5x^2} e^{-x} \frac{\log(1 + e^{-x})}{e^{-x}} \to 0$$

(iii) Si calcoli la derivata della funzione $f(x) = \int_x^2 \sin(t^2) \, dt + 2^{\frac{1}{x}}.$

$$-{\rm sen}(x^2) - \frac{1}{x^2} 2^{\frac{1}{x}} \log 2$$

$$(iv)$$
 Si calcoli l'integrale $\int_0^1 x e^{2x} dx$

$$= \frac{1}{4}(e^2 + 1)$$

 $\left(\frac{1}{a^{\frac{1}{x^2-1}}} \quad \text{so } |x| < 1\right)$

$$f(x) = \begin{cases} e^{\frac{1}{x^2 - 1}} & \text{se } |x| < 1; \\ (x^2 - 1)^2 & \text{se } |x| \ge 1. \end{cases}$$

(i) Si determinino eventuali simmetrie della funzione f. Si determinino i segni e si calcolino i limiti $\lim_{x\to\pm\infty}f(x).$

f pari, $f(x) \ge 0$ per ogni $x \in \mathbb{R}$, f(-1) = f(1) = 0. $\lim_{x \to +\infty} f(x) = +\infty$.

ESERCIZIO N. 2. Si consideri la funzione $f: \mathbb{R} \to \mathbb{R}$ definita da

(ii) Si calcoli, dove possibile, f'(x) e si stabilisca se $f \in C^1(\mathbb{R})$.

$$f'(x) = \begin{cases} e^{\frac{1}{x^2 - 1}} \left(-\frac{2x}{(x^2 - 1)^2} \right) & \text{se } |x| < 1; \\ 2(x^2 - 1) 2x & \text{se } |x| > 1. \end{cases}$$

Si osservi che la funzione è derivabile anche nei punti ± 1 con derivata nulla. La funzione è di classe C^1 su tutto ${\rm I\!R}$.

(iii) Si studi il segno di f', si determinino gli intervalli di monotonia e i punti di massimo e minimo relativo di f.

f'(x) = 0 se $x \in \{-1, 0, 1\}$. f'(x) > 0 su $] - 1, 0[\cup]1, +\infty[$. f è decrescente su $] - \infty, -1]$ e su [0, 1]; crescente su [-1, 0] e su $[1, +\infty[$. $0 = \min f$ (punti di minimo -1, 1). 0 punto di massimo con $f(0) = e^{-1}$.

(iv) Si stabilisca se esiste e, in caso affermativo, si determini, un parametro $\alpha \in \mathbb{R}$, tale che il numero delle soluzioni dell'equazione $f(x) = \alpha$ è esattamente 3.

Disegnando il grafico della funzione si trova subito $\alpha = e^{-1}$.

COGNOME e NOME

N. Matricola

ESERCIZIO N. 3. È nota una funzione $f \in C^2(\mathbb{R})$ che verifica f(0) = 1, f(1) = 2, f'(1) = 4 e

$$\int_0^1 f(x) e^x dx = 3.$$

(i) Si calcoli l'integrale

$$\int_0^1 f'(x) \left(e^x - 1 \right) dx$$

$$\int_0^1 f'(x) \left(e^x - 1 \right) dx = \left[f(x) \left(e^x - 1 \right) \right]_0^1 - \int_0^1 f(x) e^x dx = 2e - 5$$

(ii) Si calcoli l'integrale

$$\int_0^1 f''(x) \left(e^x - 1\right) dx$$

$$\int_0^1 f''(x) \left(e^x - 1 \right) dx = \left[f'(x) \left(e^x - 1 \right) \right]_0^1 - \int_0^1 f'(x) e^x dx = 2e.$$

(iii) Si calcoli l'integrale

$$\int_0^{\frac{\pi}{4}} f(\operatorname{tg}(x)) \exp(\operatorname{tg}(x)) (1 + \operatorname{tg}^2(x)) dx$$

Immediato con il cambio di variabile y = tg(x):

$$\int_0^{\frac{\pi}{4}} f(tg(x)) \exp(tg(x)) (1 + tg^2(x)) dx = \int_0^1 f(y) e^y dy = 3.$$

4 Università degli Studi di Trieste – Facoltà d'Ingegneria. Trieste, 10 giugno 2024

ESERCIZIO N. 4. Si consideri la funzione $f: \mathbb{R} \to \mathbb{R}$ definita da

$$f(x) = \begin{cases} \int_0^{x^2} \operatorname{sen}(t^2) dt & \text{se } x < 0; \\ \operatorname{sen}(x^2) & \text{se } x \ge 0. \end{cases}$$

(i) Si calcolino f'(x) e f''(x):

$$f'(x) = \begin{cases} \sin(x^4) \, 2x & \text{se } x < 0; \\ \cos(x^2) \, 2x & \text{se } x > 0. \end{cases} \qquad f''(x) = \begin{cases} \cos(x^4) \, 8x^4 + 2 \sin(x^4) & \text{se } x < 0; \\ -\sin(x^2) \, 4x^2 + 2 \cos(x^2) & \text{se } x > 0. \end{cases}$$

Si noti che f è derivabile in zero e f'(0) = 0.

Invece f non è due volte derivabile in 0 essendo $f''_{-}(0) = 0$, $f''_{+}(0) = 2$.

(ii) Si stabilisca se $f \in C^n(\mathbb{R})$ per n = 0, 1, 2.

$$f \in C^1(\mathbb{R}) \setminus C^2(\mathbb{R}).$$

(iii) Si determinino i punti critici di f.

$$-\sqrt[4]{k\pi}, \sqrt{\frac{\pi}{2} + k\pi}, k \in \mathbb{N}.$$