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Chapter I

Groups

1. Preliminaries

Definition 1.1. A set G together with an operation µ : G×G −→ G is called a group if
i) µ is associative (i.e. µ(µ(x, y), z) = µ(x, µ(y, z)), for every x, y, z ∈ G);

ii) there exists an element e of G, called neutral element, such that µ(e, x) = µ(x, e) = x,
for every x ∈ G;

iii) for every x ∈ G, there exists an element x′ ∈ G, called inverse of x, such that
µ(x, x′) = µ(x′, x) = e.

If, in addition, the following property holds:

iv) µ(x, y) = µ(y, x), for every x, y ∈ G,

we say that G is a commutative or abelian group.

Notation. Usually we denote µ(x, y) by xy (or x · y) or by x + y , and we say that G
is, respectively, a multiplicative or an additive group. Note that the additive notation ‘+’
is normally used for abelian groups. In a multiplicative group (respectively additive), the
neutral element is usually denoted by 1G or simply by 1 (resp. 0G or 0) and the inverse of
an element x by x−1 (resp. by −x).

Example 1.1.1. Here are some examples of groups (the notations here given, which are
almost standard, will be used during all the notes).
(Z,+), (Q,+), (R,+), (C,+) are the groups of, respectively, integer numbers, rational
numbers, real numbers, complex numbers, w.r.t. the addition;
Q×, R×, C×, which are the groups of, respectively, not-zero rational, not-zero real and
not-zero complex numbers w.r.t. the product;
the set (Rn,+) of n-uples of real numbers w.r.t. the addition;
the set (Mm,n(R),+) of the m× n real matrices w.r.t. the usual addition of matrices; the
set (GLn(R), ·) of invertible matrices of order n w.r.t. the product of matrices.
Some other examples of groups are:
the set G := {f : A −→ A | f is bijective} w.r.t. the composition of maps, where A is any
set;
the set {f : R −→ R}, with the addition defined pointwise;
the set S1 := {z ∈ C

∣

∣ |z| = 1}, w.r.t. the product of C; the set {z ∈ C
∣

∣ zn = 1}, again
w.r.t. the product of C (n is any natural number).
Another class of groups is that given by the symmetries of some geometric figures. For
instance, if X is a square, then the set of symmetries of X is a group of eight elements
(denoted by D8).

Definition 1.2. A subgroup of G is a subset H of G which itself forms a group with
respect to the operation defining G; we will write H ≤ G (or H < G, if the subgroup H is
proper, i.e. a proper subset of G).
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Remark 1.3. It is easy to verify that a non-empty subset H of G is a subgroup if and
only if xy−1 ∈ H for every x, y ∈ H.

Example 1.3.1. The following are examples of subgroups:
(Z,+) ≤ (Q,+) ≤ (R,+) ≤ (C,+).
{z ∈ C

∣

∣ zn = 1} ≤ S1 ≤ C×.
If n ∈ Z is any element, we shall denote by (n) the set {mn | m ∈ Z}; then (n) is a
subgroup of (Z,+).

Proposition 1.4. Given two subgroups H and J of G, then H ∩ J is a subgroup of G.
More generally, if Hi, i ∈ I, is a family of subgroups of G, then

⋂

i∈I Hi is a subgroup
of G.

Proof. Let x, y ∈ H∩J ; then, since both H and J are subgroups, xy−1 ∈ H and xy−1 ∈ J .
So xy−1 ∈ H ∩ J . Analogously for the case of any family of subgroups. �

Definition 1.5. The smallest subgroup of a group G containing two given subgroups H
and J of G is called product of H and J and it is denoted by HJ . If for G we use the
additive notation, hence if (G,+) is an abelian group and H, J are subgroups of G, then
the smallest subgroup of G which contains H and J is denoted by H + J .

Example 1.5.1. For example, take (2), (3) ⊆ Z, then the subgroup (2) + (3) is Z, while
the subgroup (4) + (6) is (2).

Definition 1.6. Let G and G′ be two groups w.r.t. the laws µ and µ′, respectively.
Then the set G × G′ naturally becomes a group w.r.t. the law µ × µ′ defined as follows:
(µ× µ′) ((g1, g′1), (g2, g

′
2)) = (µ(g1, g2), µ

′(g′1, g
′
2)) . Such group is called product group of G

and G′ and it is denoted by G×G′. Analogously we define the product group G1×· · ·×Gn
of a finite family of groups.

Definition 1.7. Let G be a group, H be a subgroup and g ∈ G; we call, respectively, left
coset and right coset of H with respect to g the two subsets:

gH = {gh | h ∈ H} Hg = {hg | h ∈ H}.

If the number of left (right) cosets of a subgroup H of G is finite, we say that H is of finite
index. Such a number is called index of H in G and it is denoted by [G : H].
If gH is a coset, g is called representative of gH.

Note that two representatives of the same coset are equal up to an element of H; i.e.
gH = fH if and only if there exists some h ∈ H such that g = fh.

Definition 1.8. A subgroup H of G is a normal subgroup if gH = Hg for every g ∈ G;
we will write H ⊳ G.

Example 1.8.1. Let Dn := {aIn | a ∈ R, a 6= 0} (In is the n× n identity matrix). Then
Dn is a normal subgroup of GLn(R).
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Proposition 1.9. Let G be a group and H ≤ G. The following facts are equivalent:
i) H ⊳ G;
ii) gHg−1 ⊆ H for all g ∈ G (where gHg−1 := {ghg−1 | h ∈ H});
iii) gHg−1 = H for all g ∈ G.

Proof. i) ⇒ ii). If x ∈ gHg−1, then x = ghg−1, for a suitable h ∈ H. But gh = h′g by
assumption, so x = h′ ∈ H.
The other parts of the proof are analogous. �

If H is a normal subgroup of G, let us consider the set {gH | g ∈ G}. In this set we
define a multiplication by: g1H · g2H := (g1g2)H. This operation is well-defined, because
H is normal. In fact if g1H = f1H, then g1 = f1h, for some h ∈ H. We want to show that
g1H · g2H = f1H · g2H, i.e. that (g1g2)H = (f1g2)H or, equivalently, that g1g2 = f1g2k,
for some k ∈ H. By assumption g1g2 = f1hg2 and hg2 = g2k, for a suitable k ∈ H, since
H is normal. So we are done.
The given set becomes in this way a group.

Definition 1.10. If H is a normal subgroup of G, the group {gH | g ∈ G}, endowed with
the product defined above, is called quotient group of G by H and is denoted by G/H.

Remark 1.11. Note that a normal subgroup H of a group G defines the following relation:
x ∼ y ⇔ xy−1 ∈ H, which is easily seen to be an equivalence relation. Moreover the
quotient set G/∼ turns out to be G/H, since [g] = {x ∈ G | x ∼ g} = {x | xg−1 ∈ H} =
Hg = gH.

Example 1.11.1. If n ∈ Z, then, since Z is abelian, (n) is a normal subgroup of it. The
quotient Z/(n) is denoted by Zn (or by Z+

n , if we want explicitly refer to the composition law
considered). According to the definition given above, two elements a, b ∈ Z are equivalent
(hence are the same element in Zn) if and only if a−b is divisible by n. Therefore the set of
elements equivalent to a (denoted by [a]) is {. . . ,−2n+a,−n+a, 0+a, n+a, 2n+a, . . .}. In
this way we see that Zn is a finite group of n elements. We shall denote by [0], [1], . . . , [n−1]
its elements (sometimes it can be convenient to denote them simply by 0, 1, . . . , n− 1).

Example 1.11.2. Let G be the subgroup of R× given by all the positive real numbers.
It is easy to verify that C×/G can be identified with the group S1 defined above. In
fact, two elements a + ib, c + id of C× are equivalent w.r.t. G if there exists λ ∈ G s.t.
a+ ib = λ(c+ id); in particular any element a+ ib is equivalent to (a+ ib)/

√
a2 + b2 ∈ S1.

Definition 1.12. Let G and G′ be two groups; a map f : G −→ G′ is a group homo-
morphism if f(g1g2) = f(g1)f(g2), for every g1, g2 ∈ G. (Note that f(1G) = 1G′ and that
f(g−1) = f(g)−1).
A group homomorphism which is injective, surjective or bijective is called, respectively, a
group monomorphism, epimorphism, isomorphism. To mean that there exists an isomor-
phism between G and G′ we shall write G ∼= G′.
A group homomorphism from a group to itself is called an endomorphism; if it is also
bijective, it is called an automorphism.

Examples 1.12.1. If H,G are groups, s.t. H ≤ G, then the inclusion map i : H −→ G is
a group homomorphism.
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Let us try to find all the group homomorphisms f : Z −→ Z. Set m := f(1). If n is any
positive integer, then f(n) = f(1+· · ·+1) = f(1)+· · ·+f(1) = nm, and if n is any negative
integer (so −n is positive), then f(n) = −f(−n) = −f(1 + · · · + 1) = −(−nm) = nm.
Therefore we proved that, if f : Z −→ Z is any homomorphism, then there exists an m ∈ Z

s.t. f(n) = nm for any n ∈ Z. Conversely, if m ∈ Z, then it is easy to see that the map
f : Z −→ Z defined by f(n) = nm is a group homomorphism.
Let φ : C× −→ S1 be defined by: φ(a + ib) := (a + ib)/

√
a2 + b2. It is easy to see that φ

is a group homomorphism.
Let det : GLn(R) −→ R× be the determinant map. It is well known that det(AB) =
det(A) det(B) (Binet theorem), hence det is a homomorphism.
Let f : R2 −→ R2 be defined by

f(a, b) :=

(

cosφ sinφ
− sinφ cosφ

)(

a
b

)

.

The map f gives a rotation in the plane R2 of an angle φ and is a group homomorphism.

Example 1.12.2. Let G be any group. Then the set Aut (G) of all the automorphisms
of G is a group w.r.t. the composition of maps. To each g ∈ G there is associated a map
τg : G −→ G defined by τg(x) := g−1xg , for all x ∈ G. The map τg, being a group
homomorphism, is called inner automorphism of G induced by g. Let τ : G −→ Aut (G)
be defined by τ(g) := τg. It is a group homomorphism.

Definition 1.13. Let f : G −→ G′ be a group homomorphism; the set {g ∈ G | f(g) =
1G′} is called the kernel of f and it is denoted by ker(f). The image of f will be denoted
by Im (f) (it is the set {f(g) | g ∈ G}).
Example 1.13.1. Let f : Z −→ Z be the homomorphism f(n) := mn for a fixed m ∈ Z.
Then Im f = (m) and ker f = (0), if m 6= 0.
If C× −→ S1 is defined as in 1.12.1, then ker(f) = {a ∈ R | a > 0}, i.e. it is the group G
of 1.11.2.
If det is the map considered in 1.12.1, then ker(det) is denoted by SLn(R), and is called
the special linear group.

Theorem 1.14. If f : G −→ G′ is a group homomorphism, then:
i) ker(f) and Im (f) are subgroups of G and G′, respectively;
ii) ker(f) is a normal subgroup of G;
iii) f is injective if and only if ker(f) = 1;
iv) if H is a subgroup of G, then f(H) = { f(h) | h ∈ H} is a subgroup of Im (f).

Proof. i) Let x, y ∈ ker(f); then f(xy−1) = f(x)f(y−1) = f(x)f(y)−1 = 1G; therefore
xy−1 ∈ ker(f). Let now z, t ∈ Im (f); hence there exist x, y ∈ G such that z = f(x) and
t = f(y). Consider xy−1 ∈ G; f(xy−1) = f(x)f(y)−1 = zt−1; so zt−1 ∈ Im (f).
ii) Let us take g ∈ G and h ∈ ker(f). Then f(ghg−1) = f(g)f(h)f(g)−1 = 1G′ ; hence
ghg−1 ∈ ker(f), for all g ∈ G.
iii) Assume f is injective; then take h ∈ ker(f) : f(h) = 1G′ = f(1G), so h = 1G.
Conversely, let ker(f) = {1G} and assume there exist x, y ∈ G such that f(x) = f(y).
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Then f(x)f(y)−1 = 1G′ , so f(xy−1) = 1G′ , i.e. xy−1 ∈ ker(f) = {1G}; therefore x = y.
iv) Let z, t ∈ f(H); so z = f(h), t = f(k) for some h, k ∈ H. Since H is a subgroup of G,
hk−1 ∈ H, hence zt−1 = f(h)f(k)−1 = f(hk−1) ∈ f(H). �

Example 1.14.1. Let f : Z −→ Z be the homomorphism given by f(n) = mn (see
example 1.12.1), then, if H := (a) is a subgroup of Z, its image f(H) is the group (ma),
which indeed is a subgroup of (m).

Let G be any group, g ∈ G and τg : G −→ G be the inner automorphism induced
by g. If H ≤ G, then τg(H) = g−1Hg is a subgroup of Im (τg) (by 1.14.iv) and hence
g−1Hg ≤ G.

Definition 1.15. If H ≤ G and g ∈ G, then the subgroup g−1Hg is said conjugate to H
w.r.t. g.

Note that, by 1.9, that H has no conjugate subgroup (shortly: H is self-conjugate) if
and only if it is normal.

Remark 1.16. Let H ⊳ G; then the map π : G −→ G/H defined by π(g) = gH is a
surjective homomorphism (called canonical homomorphism or canonical projection of G
onto G/H) and ker(π) = H.

Theorem 1.17. (Fundamental theorem) Let f : G −→ G′ be a group homomorphism,
K = ker(f) and π : G −→ G/K be the canonical projection. Then there exists an injective
homomorphism h : G/K −→ G′ such that f = h ◦ π. In particular, Im (f) ∼= G/K.

Proof. Let us define h : G/K −→ G′ by h(gK) := f(g). We have to show that h is well
defined, i.e. if g1K = g2K then f(g1) = f(g2). Since K ⊳ G, from g1K = g2K one has
g−1
2 g1 ∈ K = ker(f); so f(g−1

2 g1) = 1G′ i.e. f(g1) = f(g2).
Moreover h is a homomorphism by definition, since f is a homomorphism.
Assume, finally, that h(gK) = 1G′ ; this means that f(g) = 1G′ , so g ∈ K; this implies
gK = K = 1G/K . By definition h(π(g)) = h(gK) = f(g). So, from f = h ◦π and from the
surjectivity of π, it follows that Im (f) = Im (h) ∼= G/K, since h is injective. �

Proposition 1.18. Let H ⊳ G and π : G −→ G/H be the canonical projection. Then
there is a one-to-one correspondence between the set A := {K | H ≤ K ≤ G} and
B := {K ′ | K ′ ≤ G/H} and this correspondence preserves the inclusions.

Proof. Let K ∈ A; the corresponding element in B is K/H ≤ G/H. Conversely, if
K ′ ≤ G/H, then set K := π−1(K ′). Then K is a subgroup of G and H ⊳K. �

Definition 1.19. The center of a group G is defined to be:

Z(G) = {x ∈ G | xg = gx for all g ∈ G}.

Example 1.19.1. It is easy to verify that the center of GL2(R) is given by the set of
matrices aI, where a ∈ R× and I is the 2× 2 identity matrix.
If we consider the automorphism τ defined in 1.12.2, we see that its kernel is Z(G).
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Definition 1.20. Let H be a subgroup of the group G; we define the centralizer of H
to be:

CG(H) = {x ∈ G | xh = hx for all h ∈ H}.

Remark 1.21.

i) G is abelian iff Z(G) = G;
ii) for any H, CG(H) ⊇ Z(G);
iii) CG(G) = Z(G) =

⋂

x∈GCG(x).

Definition 1.22. Let H be a subgroup of the group G; we define the normalizer of H to
be:

NG(H) = {x ∈ G | x−1Hx = H}.

Remark 1.23. Since NG(H) is the smallest subgroup of G in which H is normal, H is
normal in G if and only if NG(H) = G.

Definition 1.24. Let G be a group and g1, . . . , gn be elements of G. We call subgroup
generated by g1, . . . , gn, and we denote it by 〈g1, . . . , gn〉, the smallest subgroup containing
those elements, i.e. 〈g1, . . . , gn〉 := {x1 · · ·xp | xi ∈ {g1, . . . , gn, g−1

1 , . . . g−1
n }, p ∈ N}.

In particular, 〈g〉 = {gp, p ∈ Z} is called cyclic subgroup generated by g.
If G = 〈g〉 for some g ∈ G, we say that G is a cyclic group.

Example 1.24.1. Let a ∈ C× s.t. |a| = 1. Using the trigonometric notation, let
a = cosφ+ i sinφ. Then

〈a〉 ∼=
{

Zn if 2π/φ = m/n ∈ Q (m,n coprime, n > 0)

Z if 2π/φ 6∈ Q.

Definition 1.25. The order of a group G is the number of its elements and it is denoted
by |G|; G is finite if it has finite order. If g ∈ G, the order of g is |〈g〉|, simply denoted
by |g|.
Remark 1.26. Every subgroup of a cyclic group is cyclic; every quotient of a cyclic group
is cyclic. In particular, if G ≤ Z is a subgroup of Z, then it is cyclic, hence it is of the form
(n) for a suitable n ∈ Z.
Moreover, if G is a cyclic group, then two possibilities can arise: either it is finite of order n
and so isomorphic to Zn, or it is infinite and so it is isomorphic to Z. To see this, suppose
that G =< g > and consider the following map:

f : Z −→ G

defined by a 7→ ga. Clearly f is an epimorphism and

ker(f) =

{

(0)
(n)

If ker(f) = (0), then G ∼= Z; if ker(f) = (n), then G ∼= Zn (see thm. 1.17).
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Example 1.26.1 Let us recall that the set of the roots of xn− 1 is an (abelian) subgroup
of C× (see 1.3.1). It is well-known that these roots are distinct; for instance, using the
trigonometric notation, those roots have the form

εk = cos(2(k − 1)π/n) + i sin(2(k − 1)π/n)

for k = 1, . . . , n.
So the (multiplicative) group {ε1 = 1, . . . , εn} of nth roots of unity has order n; it is usually
denoted by Cn.
Since εk = εk1 , for all k, then Cn is cyclic; therefore Cn ∼= Zn. A generator of Cn is called
a primitive nth root of unity.

Definition 1.27. If |g| <∞, we say that g is a torsion element.
If a group G has no torsion elements, we say that G is torsion free; if every element of G
is a torsion element, we say that G is periodic or a torsion group.

Remark 1.28. A finite group is obviously periodic; in particular a finite cyclic group is
of the form G = {1, g, g2, . . . , gn−1}, where n = |G|.
Clearly a periodic group is not necessarily finite: the orders of its elements can be even
unbounded. For example, let us consider the additive group Q and its subgroup Z. The
quotient Q/Z, whose elements are the cosets [a/b], is infinite and periodic; in fact |[a/b]| =
b, if a and b are coprime and b positive.

2. Finite groups

Theorem 2.1. (Lagrange) Let G be a finite group and H ≤ G; then |H| divides |G|.
Proof. Just note that G can be partitioned as the union of a (finite) number of disjoint
cosets gH, each containing |H| elements. �

Corollary 2.2. Let G be a finite group and H ⊳ G; then |G|/|H| = |G/H|.
Proof. The thesis follows from the proof of 2.1, noting that the number of the cosets gH
is |G/H| by definition. �

Example 2.2.1. As an example of Lagrange theorem, let us consider the group G := Z15

and its subgroup H := {0, 5, 10}. Then (note that here we use the additive notation):
0 + H = 5 + H = 10 + H = {0, 5, 10}, 1 + H = 6 + H = 11 + H = {1, 6, 11}, 2 + H =
7 + H = 12 + H = {2, 7, 12}, 3 + H = 8 + H = 13 + H = {3, 8, 13}, 4 + H = 9 + H =
14+H = {4, 9, 14}, hence the elements of G are divided into five classes of three elements
each, as expected.

A natural question arises about the existence and the number of “substantially dif-
ferent” groups of a given order. More precisely, if n ∈ N, we can consider the family of
groups of order n. If this family is non empty, we can consider the following equivalence
relation on it: two groups of order n, say G and H, are equivalent if there exists a group
isomorphism from G to H. We call type of G the equivalence class of G.
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Definition 2.3. For each positive integer n, let us denote by ν(n) the number of different
types of groups of order n.

Remark 2.4. i) For each positive integer n, there exists at least one group of order n (i.e.
ν(n) ≥ 1, for all n).
In fact it is enough to consider, for each n, the additive group Zn.
ii) For each positive integer n, there are only finitely many different types of groups of
order n (i.e. ν(n) <∞, for all n).
In order to see this, let G be a finite set. A group structure on G is a map µ : G×G −→ G
satisfying some conditions. In particular, µ can be identified with a subset of (G×G)×G.
Since the subsets of G×G×G are finite, there are only a finite number of group structures
on a finite set.

Example 2.4.1. Let us compute ν(4). First of all note that Z4 is a cyclic group, while
Z2 × Z2 is not cyclic. Hence ν(4) ≥ 2. Let G be any group of order 4. If it is cyclic,
then G ∼= Z4 by 1.26. Then assume G is not cyclic. By Lagrange theorem, any element
in G \ {1} has order 2. Take a, b ∈ G, a 6= 1 6= b, a 6= b. Then it is easy to see that
G = {1, a, b, ab}; otherwise ab = 1 would imply that b = a−1, while a2 = 1 gives a−1 = a.
One can verify that the bijection f : G −→ (a)× (b) defined by:

f(1) := (1, 1); f(a) := (a, 1); f(b) := (1, b); f(ab) := (a, b)

is a group homomorphism. Since (a) and (b) are cyclic groups of order 2, it follows that
G ∼= Z2 × Z2.

Proposition 2.5. For each prime number p, ν(p) = 1.

Proof. Let G be a group of order p prime. Take any element g ∈ G, g 6= 1. Then, as a
consequence of Lagrange theorem, the subgroup 〈g〉 of G must be G, hence G is cyclic and
we already observed that all the cyclic groups of fixed order are isomorphic (see 1.26). �

Corollary 2.6. If |G| is a prime number p, then G ∼= Zp; in particular G is abelian since
cyclic. �

Definition 2.7. A group G is called a p-group if |G| = pn, where p is a prime number
and n is a positive integer.

Example 2.7.1. Z9 is a 3-group (since 9 = 32), while Z6 is clearly not a p-group.

A fundamental result regarding finite groups is the following:

Theorem 2.8. (Sylow) Let G be a finite group, with |G| = pmr, where p, m, r are positive
integers, p a prime number not dividing r. Then:
a) G has a subgroup of order pm (called a Sylow p-subgroup of G);
b) all the Sylow p-subgroups are conjugate; moreover denoting by n the number of dis-

tinct Sylow p-subgroups of G, then n divides r and n ≡ 1 (mod p);
c) any subgroup of order ph is contained in a Sylow p-subgroup;
d) there exists an element x ∈ G of order p.

Proof. See [R], thm. 5.9; [J], 1.13; [L], Ch. I, 6.3. �
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3. Series

Definition 3.1. Let G be a group. We call a series of G a finite sequence G0, G1, . . . , Gn
of subgroups of G, such that

1 = G0 ⊳ G1 ⊳ · · · ⊳ Gn = G (a)

i.e. Gi is a normal subgroup of Gi+1 for i = 0, . . . , n− 1.
The subgroups G0, G1, . . . , Gn are called terms of the series and the quotient groups
Gi+1/Gi, for i = 0, . . . , n− 1, are called factors of the series.
We say that the series (a) is proper if Gi 6= Gi+1, for all i.

Definition 3.2. Let G be a group with a series (a). We say that another series

1 = H0 ⊳ H1 ⊳ · · · ⊳ Hm = G (b)

is a refinement of (a) if (a) can be obtained from (b) by deleting some terms. We say that
(b) is a proper refinement of (a) if, furthermore, the two series are different.

Definition 3.3. A proper series which has no proper refinement is called a composition
series and its factors are called composition factors.

Example 3.3.1. Infinite groups need not have a composition series: the additive group Z

is abelian, so each subgroup is normal. But each subgroup of Z is isomorphic to Z itself;
hence any series of Z has a proper refinement.

Remark 3.4. i) Every finite group G has a composition series. One can prove it by
induction on |G|; in fact, let G = Gn and let Gn−1 be a normal proper subgroup of G with
|Gn−1| as large as possible. So |Gn−1| < |G| and conclude by induction.
ii) By 1.18, the factors of a series have no proper normal subgroups if and only if they are
composition factors.

Definition 3.5. Two series of G, say

1 = G0 ⊳ G1 ⊳ · · · ⊳ Gn = G (a)

and
1 = H0 ⊳ H1 ⊳ · · · ⊳ Hm = G (b)

are said to be equivalent if m = n and there exists a one-to-one correspondence between
the two sets of factors

{Gn/Gn−1, Gn−1/Gn−2, . . . , G1/G0} and {Hn/Hn−1, Hn−1/Hn−2, . . . , H1/H0}

such that corresponding factors are isomorphic groups.

Remark 3.6. This relationship defines an equivalence relation on the set of series of G.

The problem we want to solve is to understand which are the equivalence classes of
such a relation, in particular regarding composition series. The answer will be given by
the Jordan-Hölder theorem; for, we need some preliminary facts.
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Lemma 3.7. (Zassenhaus) Let G be a group and A,A∗, B, B∗ be subgroups of G such
that A ⊳ A∗, B ⊳ B∗. Then:
i) (A∗ ∩B)A ⊳ (A∗ ∩B∗)A;
ii) (A ∩B∗)B ⊳ (A∗ ∩B∗)B;

iii)
(A∗ ∩B∗)A
(A∗ ∩B)A

∼= (A∗ ∩B∗)B
(A ∩B∗)B

.

Proof. See [L], Ch. I, thm. 4.2. �

Theorem 3.8. (Schreier) Any two series of G have equivalent refinements.

Proof. Let us consider the two series of G:

1 = G0 ⊳ G1 ⊳ · · · ⊳ Gn = G (a)

1 = H0 ⊳ H1 ⊳ · · · ⊳ Hm = G. (b)

The main idea is to construct a refinement of (a) by inserting m − 1 subgroups Gi1, . . . ,
Gi,m−1 between Gi−1 and Gi, for all i. Analogously, we will construct a refinement of (b)
by inserting n− 1 subgroups H1j , . . . , Hn−1,j between Hj−1 and Hj , for all j.
Set Gij = (Gi ∩Hj)Gi−1 and Hij = (Hj ∩Gi)Hj−1, for all i = 1, . . . , n and j = 1, . . . , m.
Denote by (a′) and (b′), respectively, these refinements of (a) and (b). Note that both (a′)
and (b′) have nm terms. Let us set Gi0 = Gi−1, Gim = Gi, H0j = Hj−1, Hnj = Hj .
We want to show that (a′) and (b′) are equivalent; more precisely, that

Gij
Gi,j−1

∼= Hij

Hi−1,j

for all i and j. But the two quotients

Gij
Gi,j−1

=
(Gi ∩Hj)Gi−1

(Gi ∩Hj−1)Gi−1
and

Hij

Hi−1,j
=

(Hj ∩Gi)Hj−1

(Hj ∩Gi−1)Hj−1

are isomorphic by 3.7 (part iii), applied to A = Gi−1, A
∗ = Gi, B = Hj−1, B

∗ = Hj . �

Corollary 3.9. Let (a) and (b) be two series of G; if (a) and (b) are equivalent and (b) is
a composition series, then (a) is a composition series.

Proof. If (a) is not a composition series, it admits a refinement (a′) equivalent to (b), by
3.8. But, by transitivity, (a) and (a′) are equivalent. So (a) and (a′) coincide; therefore
(a) does not admit proper refinements, i.e. it is a composition series. �

Corollary 3.10. Suppose that G has a composition series. Then every proper series of
G has a refinement which is a composition series.

Proof. Directly from 3.8. and 3.9. �

Corollary 3.11. (Theorem of Jordan-Hölder) Any two composition series of G are equiv-
alent.

Proof. Directly from 3.8. �

An important example of the notions introduced above will be given in next section.
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4. A fundamental example: symmetric groups

Definition 4.1. Let Xn be a set of n elements, where n ∈ N; for simplicity Xn =
{1, 2, . . . , n}. The set {σ : Xn −→ Xn | σ is a bijection} has a natural group structure,
given by the composition of maps, i.e. σ · ρ will denote the map σ ◦ ρ : Xn −→ Xn defined
by (σ ◦ ρ)(i) = σ(ρ(i)), for all i ∈ Xn.
Such a group is called the group of permutations of n objects or symmetric group of n
objects or simply symmetric group of order n and it is denoted by Sn.

Notation. A permutation σ ∈ Sn will be explicitly denoted by

σ =

(

1 2 . . . n
a1 a2 . . . an

)

meaning that σ(i) = ai for all i.

For example the identity of Sn is σ1 =

(

1 2 . . . n
1 2 . . . n

)

.

Note that |Sn| = n!.

Example 4.1.1. Let us examine the first cases. For n = 2, |S2| = 2, in fact S2 = {σ1, σ2},
where

σ1 =

(

1 2
1 2

)

and σ2 =

(

1 2
2 1

)

.

Obviously, σ2
1 = σ2

2 = σ1.
For n = 3 we get S3: |S3| = 6, in fact S3 = {σ1, σ2, σ3, σ4, σ5, σ6}, where

σ1 =

(

1 2 3
1 2 3

)

, σ2 =

(

1 2 3
1 3 2

)

, σ3 =

(

1 2 3
2 1 3

)

,

σ4 =

(

1 2 3
2 3 1

)

, σ5 =

(

1 2 3
3 1 2

)

, σ6 =

(

1 2 3
3 2 1

)

.

A direct computation leads to the following table of the group law (here the σi’s written
in the vertical column operate first on the set X3):

σ1 σ2 σ3 σ4 σ5 σ6
σ1 σ1 σ2 σ3 σ4 σ5 σ6
σ2 σ2 σ1 σ4 σ3 σ6 σ5
σ3 σ3 σ5 σ1 σ6 σ2 σ4
σ4 σ4 σ6 σ2 σ5 σ1 σ3
σ5 σ5 σ3 σ6 σ1 σ4 σ2
σ6 σ6 σ4 σ5 σ2 σ3 σ1

table 1
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Now we are going to introduce a particular kind of permutations, those which involve
only a subset of elements of Xn, moving the first to the second one, the second to the third
one, and so on until the last one, sent to the first. More precisely:

Definition 4.2. Let r be an integer, 2 ≤ r ≤ n. A cycle of order r or an r-cycle is
an element σ ∈ Sn such that there exists a subset {a1, . . . , ar} ⊆ {1, . . . , n} such that
σ(a1) = a2, . . . , σ(ar−1) = ar, σ(ar) = a1, while σ(i) = i if i 6∈ {a1, . . . , ar}. We will
denote such a cycle σ by (a1, . . . , ar).

Example 4.2.1. The permutation σ =

(

1 2 3 4 5
1 3 4 2 5

)

is a 3-cycle and precisely

σ = (2, 3, 4). Of course we can also express σ in other forms, like (3, 4, 2) and (4, 2, 3).

Remark 4.3. Note that, if σ is an r-cycle, then σr = σ1, so the order of σ in the group
Sn is really r in the sense of 1.25.
Note also that the composition of disjoint cycles (i.e. cycles involving disjoint sets of
elements) commute, that is (a1, . . . , ar) · (b1, . . . , bs) = (b1, . . . , bs) · (a1, . . . , ar), if ai 6= bj
for all i and j.

Clearly the elements of S2 and S3 are all cycles. In general this is no more true, but
cycles are enough to generate any symmetric group.

Remark 4.4.

i) Any permutation is a composition of disjoint cycles;
ii) any r-cycle (a1, . . . , ar) can be immediately written as a composition of 2-cycles; in

fact (a1, . . . , ar) = (a1, ar) · · · (a1, a3)(a1, a2).
iii) any 2-cycle (mr) is the product (1m)(1r)(1m).

Theorem 4.5. For any n ∈ N, we have:
i) Sn is generated by the 2-cycles (1, 2), (1, 3), . . . , (1, n);
ii) Sn is generated by (1, 2, . . . , n) and (1, 2).

Proof. i) follows from 4.4. ii) can be proved with similar arguments. �

The knowledge of cycles is therefore useful to understand the structure of the sym-
metric group. First of all let us compute their number.

Proposition 4.6. The number of r-cycles of Sn is n!
(n− r)!r

.

Proof. A cycle (a1, . . . , ar) arises from n(n − 1) · · · (n − r + 1) = n!
(n−r)! choices between

{1, . . . , n}. Furthermore an r-cycle can be written in r different ways. �

4.7. Let A3 := {σ1, σ4, σ5} ⊆ S3. From table 1, one easily checks that A3 is a normal
subgroup of S3, by showing that σiA3 = A3σi, for i = 2, 3, 6. Furthermore, since |S3| = 6
and |A3| = 3, then A3 is a maximal subgroup of S3 and it has no proper subgroups. So
here a composition series is easily computable:

1 = {σ1} ⊳ A3 ⊳ S3.

4.8. In S4, card {2-cycles} = 6, card {3-cycles} = 8, card {4-cycles} = 6 (card (A) denotes
the number of elements of the set A).
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Since |S4| = 24, there are 4 other elements. One of them is the identity σ1. The three
elements left are σ2 = (1, 2)(3, 4), σ3 = (1, 3)(2, 4), σ4 = (1, 4)(2, 3), which are compositions
of 2-cycles.

Let us compute the series of S4.
Let A4 := {3-cycles} ∪ {σ1, σ2, σ3, σ4}. We will see later (in the general case) that A4 is
a subgroup of S4. To see that A4 is normal, we need to show that ρ−1σρ ∈ A4, for all
σ ∈ A4 and ρ ∈ S4.
Since S4 is generated by {(1, i) , i = 2, 3, 4} by 4.5 and (1, i)−1 = (1, i), we can write

ρ = (1, i1)(1, i2) · · · (1, in),
then ρ−1 = (1, in)

−1 · · · (1, i2)−1(1, i1)
−1 = (1, in) · · · (1, i2)(1, i1). Hence

ρ−1σρ = (1, in) · · · (1, i2)(1, i1)σ(1, i1)(1, i2) · · · (1, in).
To show the above claim, it is enough to show that (1, i)σ(1, i) ∈ A4, for all σ ∈ A4 and
i = 2, 3, 4.
For instance, applying 4.3, one sees that

(1, 2)σ2(1, 2) = (1, 2)(1, 2)(3, 4)(1, 2) = (1, 2)(3, 4) = σ2 ∈ A4

and, in the same way, that

(1, 3)σ2(1, 3) = σ4 ∈ A4 and (1, 4)σ2(1, 4) = σ3 ∈ A4.

Analogously for the other elements of A4, so A4 ⊳ S4.
Since |A4| = 12, then |S4/A4| = 2, so S4/A4

∼= Z2.
Let now V := {σ1, σ2, σ3, σ4}. As we noted above, ρ−1σjρ ∈ V , for all j = 1, . . . , 4

and ρ ∈ S4; hence V ⊳ S4, in particular V ⊳ A4.
Since |V | = 4, then |A4/V | = 3, so A4/V ∼= Z3.

Note also that V ∼= Z2 × Z2, since each element of V has order at most 2, hence it
has a (normal) subgroup of order 2, e.g. W = {σ1, σ2}. So we have constructed a series

1 = {σ1} ⊳ W ⊳ V ⊳ A4 ⊳ S4.

Since the orders of the quotients are prime numbers, this is a composition series (see
3.4 ii)). In particular the set of the composition factors of S4 (uniquely determined by the
Jordan Hölder theorem) is {Z2,Z3,Z2,Z2}.

We already stated that any permutation can be written as product of 2-cycles. This
product doesn’t need to be unique. Anyway the following fact holds:

Theorem 4.9. If a permutation is a product of an even number of 2-cycles, then it cannot
be written as a product of an odd number of 2-cycles.

Proof. See [J], 1.6. �

So we can give the following definition:

Definition 4.10. A permutation σ ∈ Sn is even if it can be given by a product of an even
number of 2-cycles (odd otherwise).
The set of even permutations is denoted by An and it is called the alternating group of n
objects. It is indeed a group, since it holds:
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Proposition 4.11. The set An of the even permutations is a subgroup of Sn.

Proof. It immediately follows from 4.9. �

Remark 4.12. Note that the definition of A3 and A4 given above is consistent with the
general definition given in 4.10. In 4.7, A3 is the alternating group of 3 objects, in fact:
σ2 = (2, 3), σ3 = (1, 2), σ6 = (1, 3) and, by table 1, σ4 = σ3σ2, σ5 = σ2σ3. So the even
permutations are σ1, σ4, σ5.
In 4.8, A4 is the alternating group of 4 objects (hence a subgroup of S4); in fact σ2, σ3, σ4
are even by definition and by 4.4 ii); moreover any 3-cycle can be written as product of
two 2-cycles, e.g. (1, 2, 3) = (1, 3)(1, 2).

Remark 4.13. Note that An is a normal subgroup of Sn since the product σ1σ2 of two
permutation is even either if both σ1 and σ2 are even or if both σ1 and σ2 are odd. So
σ−1ρσ ∈ An for all ρ ∈ An, σ ∈ Sn. Observe also that |An| = n!/2, so |Sn/An| = 2 and
Sn/An is Z2.

Remark 4.14. We observe that there exists the following alternative definition of An.
Let x1, . . . , xn be variables. Consider the polynomial φ :=

∏

i>j(xi − xj). If σ ∈ Sn,
then call φσ the polynomial

∏

i>j(xσ(i) − xσ(j)). Then φ = εφσ , where ε = +1 or −1.
The permutation σ turns out to be even if ε = +1, odd if ε = −1. In this way we get
the map f : Sn −→ {−1, 1} which associates to any permutation its sign; f is a group
homomorphism and An is its kernel. In particular An is a normal subgroup of Sn.

It is clear that any composition series of Sn must have An as biggest term. But it
happens that, except in the case of S4, one cannot go further in computing a chain of
normal subgroups.

Definition 4.15. A group G is simple if it has no proper normal subgroups out of {1}.

The main result of this section is the following:

Theorem 4.16. An is a simple group, for n 6= 4.

Proof. See [R], thm. 5.28; [S], thm. 13.4. �

We will prove this result only in the case n = 5. First we need the following results:

Lemma 4.17. If G is any group, K ≤ G and N ⊳ G, then N ∩K ⊳K and

|K/(N ∩K)| ≤ |G/N |.

Proof. Denoting by i : K −→ G the inclusion map and by π : G −→ G/N the canonical
projection, let us consider the map f := π ◦ i : K −→ G/N . Then ker(f) = N ∩K, hence
N ∩K is normal in K.
Moreover, by 1.17, there exists a monomorphism K/(N ∩K) −→ G/N and this proves the
lemma. �
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Lemma 4.18. The elements of A5 different from the identity σ1 are of the following types:
3-cycles (20 of them), 5-cycles (24 of them) and 15 products of two disjoint 2-cycles.
In particular, the possible order of an element of A5 is 2,3 or 5.

Proof. Just compute the number of 3-cycles and 5-cycles by 4.6. Note also that a 3-cycle
is a product of two 2-cycles and a 5-cycle is a product of four 2-cycles; so both are even
permutations (see 4.4 ii)).
Since |A5| = 60, there are no more elements. �

Lemma 4.19. The group A5 has:
i) 6 subgroups of order 5 (Sylow 5-subgroups);
ii) 10 subgroups of order 3 (Sylow 3-subgroups);
iii) 5 subgroups of order 4 (Sylow 2-subgroups).

Proof. i) Since |A5| = 60 = 22 · 3 · 5, by Sylow theorem (2.8), we get that the number n5

of distinct Sylow 5-subgroups divides 12 and n5 ≡ 1 (mod 5). Hence n5 is either 1 or 6.
Let K be one of these 5-subgroups; since |K| = 5, then K is cyclic, so its four elements
different from σ1 are of order 5. By lemma 4.18 there are 24 elements of order 5 in A5;
hence it must be n5 = 6.
ii) In a similar way, one sees that the number n3 of Sylow 3-subgroups divides 20 and
n3 ≡ 1 (mod 3). So n3 must be 1, 4 or 10. Again by 4.18, the number of elements of order
3 is 20; since in each Sylow 3-subgroup there are two such elements, we get n3 = 10.
iii) Again, the number n2 of Sylow 2-subgroups divides 15 and n2 ≡ 1 (mod 2). So n2

must be 1, 3, 5 or 15. Let N be one of these subgroups; so either N ∼= Z4 or N ∼= Z2 ×Z2.
Since in A5 there is no element of order 4 (4.18), only the second possibility can occur. So
N has exactly three elements of order 2. Since the total number of such elements in A5 is
15, we get n2 = 5. �

Theorem 4.20. A5 is a simple group.

Proof. By 4.19, any subgroup of A5 of order 5, 4 or 3 is not normal since the Sylow
p-subgroups are conjugate (see 2.8).
Assume that there exists a proper normal subgroup N of A5, N 6= {1}.
By Lagrange theorem, |N | ∈ {30, 20, 15, 12, 10, 6, 5, 4, 3, 2}.
I) |N | < 30.

Assume that |N | = 30. Let A
(1)
5 be the subgroup of A5 of the permutations which fix

1. Since A
(1)
5

∼= A4, then |A(1)
5 | = 12. Furthermore N ∩ A(1)

5 is normal in A
(1)
5 and

∣

∣

∣

∣

∣

A
(1)
5

N ∩ A(1)
5

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

A5

N

∣

∣

∣

∣

= 2

by 4.17. So |N ∩A(1)
5 | is either 6 or 12.

In the first case N ∩A(1)
5 should be a normal subgroup of A

(1)
5 of order 6, but A4 has

no normal subgroup of order 6 (see ex. 4.8).

In the second case, A
(1)
5 should be a subgroup of N , but 12 doesn’t divide 30 and this

gives I).
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II) |N | is not a multiple of 5.
If 5 divides |N |, by Sylow theorem (2.8) N has a subgroup of order 5, say P , which
must be one of the six Sylow 5-subgroups of A5, which are all conjugate, so of the
form: P1 = P , P2 = x−1

2 Px2, . . . , P6 = x−1
6 Px6, for suitable x2, . . . , x6 ∈ A5.

Since N is normal, for each x ∈ A5, we have N = x−1Nx ⊃ x−1Px. In particular N
contains all subgroups P1, . . . , P6. Moreover Pi ∩Pj is a proper subgroup of Pi; so its
order divides 5, hence Pi ∩ Pj = {σ1}, for all i and j.
This implies that |N | ≥ |{σ1}|+ 6× (|Pi| − 1) = 25. But there are no allowed orders
between 30 and 25.

III) |N | is not a multiple of 3.
As in the previous case, we show that |N | ≥ 21. But there are no allowed orders
between 30 and 21.

IV) |N | 6= 2.
If |N | = 2, then N is of the form N = {σ1, σ}. Since x−1Nx = N for every x ∈ A5, it
must be x−1σx = σ, for all x ∈ A5. Since σ 6= σ1, there exists i such that σ(i) = h 6= i.
In A5 there exists a permutation ϕ such that ϕ(i) = i and ϕ−1(h) = k 6= h. So
(ϕ−1σϕ)(i) = k and σ(i) = h; therefore it cannot be ϕ−1σϕ = σ. �

5. Solvable and simple groups

Definition 5.1. A group G is solvable if G admits a finite series of subgroups

1 = G0 ⊳ G1 ⊳ · · · ⊳ Gn = G (a)

having abelian factors, i.e. such that Gi+1/Gi are abelian groups for i = 0, . . . , n− 1.

Example 5.1.1. Every abelian group G is solvable, with series 1 = G0 ⊳ G1 = G.

Example 5.1.2. The symmetric group S3 is solvable. In fact in 4.7 we constructed a
composition series

1 ⊳ A3 ⊳ S3.

Since |A3| = 3 and |S3/A3| = 2, then both factors are abelian simple groups.

Example 5.1.3. The symmetric group S4 is solvable. In fact in 4.8 we constructed a
composition series

1 ⊳ W ⊳ V ⊳ A4 ⊳ S4

whose factors are: {Z2,Z3,Z2,Z2}; as we noted in 3.4 ii), all of them are abelian groups.

Let us present some fundamental properties of solvable groups. To do this, we first
need a lemma.

Lemma 5.2. Let G be a group, H ⊳ G and A ≤ G.
i) It holds: H ∩A ⊳ A and

A

H ∩ A
∼= HA

H
.

16



ii) If H ≤ A, H ⊳ G, then H ⊳ A, A/H ⊳ G/H and

G/H

A/H
∼= G

A
.

Proof. i) Consider the group homomorphism f : A −→ HA/H defined by f(a) = [a] (it
is the composition of the inclusion i : A → HA and the canonical projection π : HA →
HA/H).
Note first that f is surjective. In fact: HA is generated by the elements of the form ha,
h ∈ H, a ∈ A; soHA/H is generated by the elements [ha]. But [ha] = [h][a] = [a] ∈ Im (f).
So Im (f) = HA/H.
Moreover ker(f) = H ∩ A. Therefore H ∩ A ⊳ A by 1.14 ii) and A/H ∩ A = A/ ker(f) ∼=
Im (f) = HA/H, by 1.17.
ii) Obviously H ⊳ A. Consider the group homomorphism f : G/H −→ G/A defined by
f([x]H) = [x]A. Note that f is well-defined, since if [x]H = [y]H then xy−1 ∈ H ≤ A,
hence [x]A = [y]A. Clearly f is surjective and ker(f) = A/H. So, by 1.14 ii), A/H ⊳ G/H
and, by 1.17:

G/H

ker(f)
=
G/H

A/H
∼= Im (f) ∼= G/A.

�

Theorem 5.3. Let G be a group, H be a subgroup of G and N be a normal subgroup of
G. Then:
i) if G is solvable, then H is solvable;
ii) if G is solvable, then G/N is solvable;
iii) if N and G/N are solvable, then G is solvable.

Proof. i) Let
1 = G0 ⊳ G1 ⊳ . . . ⊳ Gn = G

be a series of G with abelian factors. Setting Hi := Gi ∩H, we get the series of H:

1 = H0 ⊳ H1 ⊳ . . . ⊳ Hn = H.

We want to show that the factors are abelian. Clearly

Hi+1

Hi
=
Gi+1 ∩H
Gi ∩H

=
Gi+1 ∩H

Gi ∩ (Gi+1 ∩H)
∼= Gi(Gi+1 ∩H)

Gi

the last isomorphism coming from 5.2 i). But the last quotient is a subgroup of Gi+1/Gi,
which is abelian by assumption. Hence Hi+1/Hi is abelian, as required.
ii) Let

1 = G0 ⊳ G1 ⊳ . . . ⊳ Gn = G

be a series of G with abelian factors. Then G/N has a series

1 = N/N = G0N/N ⊳ G1N/N ⊳ . . . ⊳ GnN/N = G/N.
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We want to show that the factors

Gi+1N/N

GiN/N
∼= Gi+1N

GiN

of such a series are abelian (this isomorphism coming from 5.2 ii)).
We have, applying again 5.2 i) and ii):

Gi+1N

GiN
=
Gi+1(GiN)

GiN
∼= Gi+1

Gi+1 ∩ (GiN)
∼= Gi+1/Gi

(Gi+1 ∩ (GiN))/Gi

and this last group is abelian since it is a quotient of Gi+1/Gi, which is abelian by as-
sumption.
iii) First note that any subgroup of G/N is of the form H/N , where N ⊳ H ≤ G, by 1.18.
By assumption there exists a series of G/N with abelian factors; so this series must be of
the form:

1 = N/N = G0/N ⊳ G1/N ⊳ . . . ⊳ Gs/N = G/N.

Also by assumption, there exists a series of N :

1 = N0 ⊳ N1 ⊳ . . . ⊳ Nr = N

with abelian factors. Let us consider the series of G:

1 = N0 ⊳ N1 ⊳ . . . ⊳ Nr = N = G0 ⊳ G1 ⊳ . . . ⊳ Gs = G.

Its quotients are either Ni+1/Ni or Gi+1/Gi which is isomorphic (by 5.2 ii)) to

Gi+1/N

Gi/N

and both are abelian by assumption. So G is solvable. �

We may reformulate the above theorem by saying that the class of solvable groups is
closed under taking subgroups, quotients and extensions. Note that the class of abelian
groups is closed under taking subgroups and quotients, but not extensions.

Let us recall a notion (given in 4.15) which is, in some sense, the “opposite” of that
of solvability.

Definition 5.4. A group G is simple if its only normal subgroups are {1} and G.

Remark 5.5. Every cyclic group of prime order is both simple and solvable. In fact, by
Lagrange theorem, it has no subgroups out of {1} and G; therefore it is simple. Moreover,
a cyclic group is abelian and therefore solvable (see 5.1.1.).

The converse is also true; more precisely:
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Theorem 5.6. A group is both simple and solvable if and only if it is cyclic of prime
order.

Proof. Since G is solvable, it must have a proper series

1 = G0 ⊳ G1 ⊳ · · · ⊳ Gn = G

with abelian factors. But G is simple, so Gn−1 = 1 and G/Gn−1 = G is abelian.
Since any element of an abelian group generates a cyclic (normal) subgroup and G is
simple, then G itself must be cyclic with no proper subgroups. Hence G has prime order.

�

The above theorem makes clear that simple groups and solvable groups are quite
different classes.

In addition, combining this result with 4.15, we get an important consequence on
symmetric groups.

Corollary 5.7. The symmetric group Sn is not solvable if n ≥ 5.

Proof. If Sn were solvable, then by 5.3, also An would be solvable. But An is also simple,
by 4.15; hence it must be cyclic of prime order by 5.6; while |An| = n!/2, which is not
prime if n ≥ 5. �

Finally we get the following interesting fact regarding finite solvable groups.

Remark 5.8. Let G be a finite solvable group and let

1 = G0 ⊳ G1 ⊳ . . . ⊳ Gn = G (a)

be a series with abelian factors. Then, by 3.4 i) and 3.10, (a) has a refinement

1 = H0 ⊳ H1 ⊳ . . . ⊳ Hm = G (b)

which is a composition series.
We claim that the factors Hi+1/Hi of (b) are cyclic of prime order.
In fact the factors of (b) are simple groups by 3.4 ii). Moreover Hi+1 ≤ G, hence it is
solvable, by 5.3 i); finally observe that Hi+1/Hi is solvable, again by 5.3 ii).
Since Hi+1/Hi is both simple and solvable, we get the claim applying 5.6.
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Chapter II

Commutative Rings

1. Preliminaries

Definition 1.1. A ring is a non-empty set R together with two binary operations +, ·
and two distinguished elements 0R, 1R (or simply 0, 1) in R such that (R,+) is an abelian
group (0 is its neutral element), the product · is associative (i.e. a · (b · c) = (a · b) · c)), 1
is its neutral element, and the following distributive laws

a · (b+ c) = a · b+ a · c
(b+ c) · a = b · a+ c · a

hold for all a, b, c ∈ R.
A ring R is commutative if ab = ba for all a, b ∈ R.

If S ⊆ R, then S is a subring of R if 1, 0 ∈ S and +, · induce a ring structure on S.
Clearly the intersection of any set of subrings of R is a subring of R; hence if A is a subset
of R, one can define the subring generated by A to be the intersection of all subrings of R
which contain A. This is characterized by the properties: it is a subring, it contains A,
and it is contained in every subring containing A.
In the sequel, we shall usually omit the symbol ‘·’ for the product.

Examples 1.1.1. 1) Z, Q, R, C are all rings. Moreover Z is a subring of Q which is a
subring of R, which is a subring of C.
2) All the groups Zn (defined in Ch.I, 1.11.1) are rings. The product is the product induced
by Z.
3) If A is any set, let Γ := {f : A −→ R}. Then we can define in Γ the sum and the
product pointwise, and with these operations Γ becomes a ring (0Γ is the function which
sends every element of A to 0 ∈ R, 1Γ is the function which sends every element of A to
1 ∈ R).
4) If G is an abelian group, then on the set End (G) of group endomorphisms one can
define a structure of abelian group pointwise (as in the previous example). Moreover, if we
consider the product defined in Ch.I, 1.12.2 (i.e. the composition of maps), then End (G)
becomes a ring (the ring of endomorphisms of G).
5) Let Z[

√
2] be the set of the real numbers of the form: m+

√
2n (m,n ∈ Z). Then Z[

√
2]

is a subring of R.
6) Let R = Mn,n(R) be the set of all n × n matrices over R. Then (R,+) is an abelian
group (see Ch.I, 1.1.1) and with the multiplication row by column it becomes a ring.
All the previous examples are commutative rings, except 4) and 6).

Let R be any ring. Here we list some properties, which are an easy consequence of
the axioms of rings. For instance, it holds: −(a · b) = (−a) · b = a · (−b). If a ∈ R, then
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a · 0 = 0 · a = 0. If n ∈ Z, then by na we mean a+ a + · · ·+ a (n times, if n is positive),
or −a− a− · · · − a (−n times, if n is negative). Then it holds:

n(a+ b) = na+ nb;

(n+m)a = na+ma;

(nm)a = n(ma)

for all m,n ∈ Z and all a, b ∈ R.

Definition 1.2. A ring is called a domain (or an integral domain) if the condition

a, b ∈ R, ab = 0 ⇒ a = 0 or b = 0,

holds.
Note that in a domain the cancellation law holds, i.e. if ab = ac and a 6= 0, then b = c
(analogously ba = ca, a 6= 0 ⇒ b = c).

Examples 1.2.1. The rings in 1) and 5) in 1.1.1 are domains; while Zn is a domain if
and only if n is prime. The rings considered in 3), 4), 6) in general are not domains.

Definition 1.3. If R is a ring, an element a ∈ R is a left (right) zero-divisor if there exists
an element b ∈ R, b 6= 0 such that ab = 0 (resp. ba = 0).

For example, in Z6 the element [2] is a (left and right) zero-divisor, since 2 · 3 = 6 ≡ 0
in Z6.

Remark 1.4. A ring is a domain if and only if the only zero-divisor is the element 0.

Definition 1.5. An element a ∈ R is called invertible or a unit if there exists b ∈ R such
that ab = ba = 1R. It is obvious that the set of units of R is a multiplicative group w.r.t.
the product defined in R, called group of units of R.

Example 1.5.1. The group of units of Z is {1,−1}. The group of units of Zn is
{[m] |m,n coprime}. The group of units of Mn,n(R) is GLn(R). The groups of units
of End (G) is Aut (G).

Definition 1.6. A ring R is a division ring (also a skew field) if every non-zero element
is a unit, i.e. if (R \ {0}, ·) is the group of units. A commutative division ring is called a
field.

Examples 1.6.1. Q, R, C are fields; Zn is a field if and only if n is prime (hence Zn is a
domain if and only if it is a field). More generally, a finite domain R is a field, in fact if
a ∈ R, a 6= 0, then the set {an | n ∈ N} is finite, so there exist m,n ∈ N, m 6= n, such that
an = am, so there exists r ∈ N such that ar = 1, therefore a(ar−1) = 1.

Remark 1.7. A division ring is a domain; in fact if ab = 0 and a 6= 0, then there exists
the (two-sided) inverse a−1 of a. So a−1ab = 0 which gives b = 0. The converse, in general,
is not true: Z is a domain, but not a field.
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Definition 1.8. Let R be a ring and a, b ∈ R. We say that b is a factor or divisor of a if
there exists c ∈ R such that a = bc or a = cb. In this case we shall write b|a (b divides a)
and a is called a multiple of b.

Remark 1.9. Units are factors of every element, since a = u(u−1a) for any a ∈ R, for
any unit u.

Definition 1.10. Let a, b ∈ R; if b|a and a|b, then a and b are associates and we shall
write a ∼ b (in this case a and b differ by a unit factor).
If b | a but a 6 | b (a is not a factor of b) then we say that b is a proper factor of a.

Definition 1.11. An element a ∈ R is said to be irreducible if a is not a unit and a has
no proper factors other than units (i.e. if a = bc then either b or c is a unit).

Example 1.11.1. In Z an element is irreducible if and only if it is a prime number
(different from 1 and −1). Therefore a factorization of an integer number n into prime
factors is a factorization into irreducible factors. Moreover the expression

n = p1 · · · ps

where the pi’s are prime numbers, is essentially unique, since two factorizations of n differ,
at most, by a permutation of the prime factors and by the sign of each factor. E.g.
6 = 2 · 3 = 3 · 2 = (−2) · (−3) = . . . .

In general we have the following:

Definition 1.12. Let R be a ring and a ∈ R be any element. The expression

a = p1 · · · ps

is an essentially unique factorization of a into irreducible elements pi’s if for any other
factorization

a = q1 · · · qt
where the qi’s are irreducible elements, we have t = s and qi ∼ pi′ for a suitable permutation
i 7→ i′ of {1, 2, . . . , s}.
Definition 1.13. A domain R is factorial (also UFD: Unique Factorization Domain) if
every non-unit element of R \ {0} has an essentially unique factorization into irreducible
elements.

Example 1.13.1. As observed before, Z is a UFD. Trivially, any field is a UFD. We will
give in the sequel other examples of factorial rings (see section 3).

Definition 1.14. A ring homomorphism is a map f : R −→ R′ between two rings R and
R′ such that

f(1R) = 1R′ and

{

f(a+ b) = f(a) + f(b)

f(ab) = f(a)f(b)
for every a, b ∈ R.
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A ring homomorphism is an epimorphism, a monomorphism, an isomorphism if it is,
respectively, surjective, injective, bijective. If R′ = R, then f is called an endomorphism;
if, moreover, it is also bijective, it is an automorphism.

Example 1.14.1. If R is a ring and a ∈ R, the map fa : R −→ R defined by fa(x) := ax
is a group homomorphism (monomorphism if and only if a is a non zero-divisor), but not
a ring homomorphism, unless a = 1 i.e. f = idR.

Definition 1.15. If f : R −→ R′ is a ring homomorphism, its kernel is the set ker(f) :=
{a ∈ R | f(a) = 0}. The image of f is the set Im(f) := {f(a) | a ∈ R}.
Remark 1.16. Since a ring homomorphism is, in particular, a group homomorphism
between the underlying additive group structures, ker(f) and Im(f) are subgroups of R
and R′, respectively (see Ch.I, 1.14). It is easy to see that Im(f) is also a subring of R′,
while ker(f) is not a subring of R, since 1 6∈ ker(f). However ker(f) has the important
structure of ideal that will be introduced in next section.

Let us denote by AutG (R) and by AutR (R) the sets of (additive) group automor-
phisms and ring automorphisms of a ring R, respectively (these sets turn out to be
groups with respect to the composition of maps). In general, as observed above, it holds
AutR (R) ⊆ AutG (R).

Example 1.16.1. If R = Zn, the strict inclusion holds. In fact, let f : Zn −→ Zn
be a group automorphism; if f [1] = [a] for some a ∈ Z, then f [m] = [am], for every m.
Therefore Im(f) = 〈[a]〉; hence f is an automorphism if and only if a and n are coprime, i.e.
[a] is a unit in the ring Zn. Therefore AutG (Zn) is isomorphic to the group of units of Zn.
On the other hand, since f : Zn −→ Zn defined by f [m] = [am] is a ring homomorphism
if and only if [a] = [1], we have that AutR (Zn) consists only of the identity map.

Warning. Since we are mostly interested in giving results for commutative rings, from
now on, we shall assume that all the rings considered are commutative.

2. Ideals (part I)

Note that the kernel of a ring homomorphism f : R −→ R′ satisfies the following
property: if x ∈ ker(f) and r ∈ R, then xr belongs to ker(f), since f(xr) = f(x) · f(r) =
0 · f(r) = 0.
This leads to the following definition:

Definition 2.1. If R is a ring and I ⊆ R, then I is an ideal if it is a subgroup of (R,+)
and if the following condition

if a ∈ R and b ∈ I, then ab ∈ I

holds.
An ideal I is proper if it is properly contained in R.

Obviously the kernel of a ring homomorphism is an ideal.
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If I is an ideal, then it is a normal subgroup of (R,+), since R is abelian; so we can
consider the quotient group R/I, whose elements are of the kind [a] = a+I = {a+b | b ∈ I}.
It is clear that (R/I,+) is an abelian group since [a] + [b] = [a + b] (see Ch.I, 1.10). If
we define in a similar way a product by [a] · [b] := [ab], it is immediate to verify that
this product is well defined (this is a consequence of the condition defining an ideal given
in 2.1).

Definition 2.2. The ring (R/I,+, ·) constructed above is called the quotient ring of R
w.r.t. I.

The canonical projection π : R −→ R/I (defined in Ch.I, 1.16), whose kernel is I
itself, turns out to be a ring homomorphism (epimorphism).

The following results are analogous to the results 1.14, 1.17 and 1.18 given in Ch.I.
Also the proofs are quite similar to the proofs given in there.

Proposition 2.3. If f : R −→ R′ is a ring homomorphism, then f is a monomorphism if
and only if ker(f) = (0). �

Theorem 2.4. (Fundamental theorem of ring homomorphisms) Let f : R −→ R′ be a
ring homomorphism, I := ker(f) and π : R −→ R/I be the canonical projection. Then
there exists an injective ring homomorphism h : R/I −→ R′ such that f = h ◦ π. In
particular, Im (f) ∼= R/I. �

Theorem 2.5. Let I ⊆ R be an ideal and π : R −→ R/I be the canonical projec-
tion. Then there is a one-to-one correspondence between the set A := {J ⊆ R | I ⊆
J, J ideal of R} and B := {J ′ | J ′ ideal of R/I} and this correspondence preserves the
inclusions. �

It is easy to see that if {Is | s ∈ Σ} is any family of ideals of a ring R, then ∩s∈ΣIs is
an ideal.

Definition 2.6. If A ⊆ R is any subset, then the ideal generated by A is the intersection
of all the ideals containing A and it is denoted by (A).

Note that (A) is the smallest ideal in R which contains A. It is easy to verify that
(A) is the the following set:

{a1r1 + · · ·+ anrn | ai ∈ A, ri ∈ R, n ∈ N}

in fact this set is an ideal, it contains A and if an ideal I contains A, then (A) is surely
contained in I. Hence we have a representation of (A) in terms of its elements.

Definition 2.7. If A = {a}, then the ideal generated by A is denoted by (a) and it is said
principal ideal generated by a. It is clear that (a) = {ar | r ∈ R}.
More generally, if A = {a1, . . . , am} is a finite set of elements, then the ideal (A) is
{∑m

i=1 airi | ri ∈ R} and is denoted by (a1, . . . , am), instead of ({a1, . . . am}). If I =
(a1, . . . , am), then I is said a finitely generated ideal and {a1, . . . , am} is called a system of
generators of I.

Examples 2.7.1. 1) Let us compute all the ideals of Z. Assume I ⊆ Z is an ideal. Hence,
in particular, I is a subgroup of Z; therefore, as seen in Ch.I, 1.3.1 and 1.26, I is the set

24



{mn | m ∈ Z}, so it is the principal ideal (n) generated by n. In this way we see that in
Z all the ideals are principal.
2) We already defined the group quotient Zn = Z/(n). Since (n) is an ideal, this is the
quotient ring of Z w.r.t. (n) (already considered in 1.1.1). Also in the ring Zn all the ideals
are principal. In fact, by 2.5, an ideal of Zn is of the form (m)/(n), i.e. of the form ([m]).
3) If F is a field, then it has only two ideals, which are (0) and (1) = F .

Definition 2.8. A ring R whose ideals are all principal is said principal ideals ring, shortly
PIR. If, furthermore, it is a domain, then it is said principal ideals domain, shortly PID.

As we noted before, Z is a PID and Zn is a PIR (it is a PID if and only if n is a
prime number). Furthermore a field F is a PID, since its only ideals (0) and (1) = F are
principal.

Let R be a ring and a ∈ R. Recall that if n ∈ Z, then with the notation n · a we
mean a + · · · + a (n times, if n > 0) or −a − · · · − a (−n times, if n < 0). The map
φ : Z −→ R defined by φ(n) := n · 1R is a ring homomorphism. From 2.4 the subring
Im (φ) is isomorphic to Z/ ker(f).

Definition 2.9. Let R be a ring and f be as above. Two possibilities can arise:
either ker(f) = (0), i.e. f is a monomorphism, hence R contains (an isomorphic copy of)
Z; or ker(f) = (n), hence R contains (an isomorphic copy of) Zn.
In the first case we say that R is of characteristic zero; in the second one, that R is of
characteristic n. The characteristic of the ring R will be denoted by char (R).

Proposition 2.10. If R is an integral domain, then its characteristic is either 0 or a prime
number.

Proof. Assume char (R) = n. If n 6= 0, then suppose n = rs (r ≤ n, s ≤ n). We know
that n · 1R = 0. Hence (rs) · 1R = 0, but (rs) · 1R = (r · 1R) · (s · 1R). Since R is a domain,
then for example r · 1R = 0 and this implies r = n, so n is prime. �

3. Polynomial rings

Suppose that R is a (commutative, as usual) ring and assume it is a subring of a ring
R′. Let U ⊆ R′ be any subset. Then we can consider the intersection of all the subrings
of R′, containing R and U . This is a ring and is denoted by R[U ]. It is the smallest
subring of R′ containing R and U . If U = {u1, . . . , un} is a finite set, then the ring R[U ]
is denoted by R[u1, . . . , un]. If U, V are subsets of R′, then it holds: R[U ][V ] = R[U ∪ V ].
In particular we see that R[u1][u2] · · · [un] = R[u1, u2, . . . , un].
We can see in more details how are represented the elements of R[u]. It is clear that in
R[u] we have any element of the form a0+a1u+ · · ·+amum, where a0, . . . , am ∈ R, which
is called a polynomial expression in u with coefficients in R. It is easy to verify that the
set of polynomial expressions in u is indeed a subring of R′, and therefore we get that

R[u] = {a0 + a1u+ · · ·+ amu
m | a0, . . . , am ∈ R, m ∈ N}.
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In considering the polynomial expressions in u one difficulty can arise: it may happen
in fact that we have two different-looking expressions for the same element. For example,
consider the rings Q ⊆ R, and take u =

√
2 ∈ R. Then in the ring Q[

√
2] an element

can be given by many different polynomial expressions; for instance 1 + 3
√
2 + 2(

√
2)2 =

5 + 3
√
2 = −1 +

√
2− (

√
2)2 + (

√
2)3 + 2(

√
2)4 = . . . .

Hence we want to construct a ring in which the following condition holds:

a0 + a1x+ · · ·+ amx
m = b0 + b1x+ · · ·+ bnx

n ⇒ m = n, ai = bi , for all i = 1, . . . , n.

To do this, it is necessary to define polynomial expressions in a symbol “x” having
no algebraic relation with the elements of R. For instance, in the previous example the
element

√
2 does have the following algebraic relation: (

√
2)2 = 2 ∈ Q. The “good” notion

will turn out to be that one of polynomials. Let us first start with the abstract definition
of polynomials; then we will show that it corresponds to the usual idea introduced in the
basic algebra courses.

Definition 3.1. Let R be any ring (here we do not assume anymore that it is a subring of a
bigger ring). By a polynomial with coefficients in R we mean a sequence (a0, a1, . . . , an, . . .)
of elements of R where the ai’s are all zero but a finite number of them.

Definition 3.2. Let now R′ be the set of all polynomials with coefficients in R, i.e. the
set of the sequences (a0, a1, . . . , an, . . .) such that ai ∈ R, ai = 0 for almost all i. In other
words, R′ = {f : N −→ R | f(i) = 0 for almost all i}. In R′ we can define a sum pointwise:

(a0, a1, . . . , an, . . .) + (b0, b1, . . . , bn, . . .) := (a0 + b0, a1 + b1, . . . , an + bn, . . .).

In this way (R′,+) becomes an abelian group (the zero is the sequence (0, 0, . . . , 0, . . .)).
Then in R′ we can define a product as follows:

(a0, a1, . . . , an, . . .) · (b0, b1, . . . , bn, . . .) := (c0, c1, . . . , cn, . . .),

where

ci :=

i
∑

j=0

ajbi−j =
∑

j+k=i

ajbk.

With this product R′ becomes a commutative ring (with the unity 1 = (1, 0, 0, . . .)), said
ring of polynomials over R.

Notation. Usually we express a polynomial in a simpler way, by making some identifica-
tions. Firstly, since the map R −→ R′ defined by a 7→ (a, 0, 0, . . .) is a ring monomorphism,
we may identify R with its image in R′, so we consider R as a subring of R′. On the other
hand, let x := (0, 1, 0, . . .). It holds, using the product law defined above:

xk = (0, 0, . . . , 0, 1, 0, . . .)

where 1 is placed in the (k + 1)-th position. Note that x0 = (1, 0, . . . , 0) = 1R = 1R′ .
Therefore we have:

(a0, a1, . . . , an, 0, 0, . . .) = (a0, 0, . . .)(1, 0, . . .) + (a1, 0, . . .)(0, 1, 0, . . .) + · · ·
+ (an, 0, . . .)(0, . . . , 1, 0, . . .)

= a0 + a1x+ · · ·+ anx
n.
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It is natural, using the analogous of the notation of polynomial expressions, to denote the
ring R′ by R[x]. The addition and multiplication that we get from the above definitions
are clearly the usual addition and multiplication of polynomials.

Definition 3.3. The ring R[x] is called the ring of polynomials over R in the indeterminate
(or variable) x.

We want now to study the polynomial ring R[x] in one variable in more details.
Let us first recall the following

Definition 3.4. If f(x) = a0+a1x+ · · ·+anxn is an element of R[x], then the expression
aix

i occurring in f(x) is called monomial of degree i of f(x); the element ai ∈ R is called
coefficient of the monomial aix

i. The degree of f(x), denoted by deg(f), is the greatest i
such that ai 6= 0 (i.e. if f(x) = a0 + a1x+ · · ·+ anx

n and an 6= 0, then deg(f) = n).

Remark 3.5. A polynomial has degree 0 if and only if it belongs to R \ {0}. We set
deg(0) = −∞. Two polynomials are equal if and only if they have the same degree and
have coefficients respectively equal, i.e. a0 + a1x+ · · ·+ anx

n = b0 + b1x+ · · ·+ bmx
m if

and only if n = m and ai = bi for all i = 1, . . . , n.

It is immediate to verify:

Proposition 3.6. If R is an integral domain, f, g ∈ R[x], then:

deg(f + g) ≤ max{deg(f), deg(g)}, deg(fg) = deg(f) + deg(g). �

Proposition 3.7. If R is an integral domain, then R[x] is an integral domain.

Proof. If f, g ∈ R[x], f 6= 0 6= g, say f = anx
n + · · ·+ a0 and g = bmx

m + · · ·+ b0, then
fg = anbmx

n+m + · · ·+ a0b0 , but an 6= 0 6= bm, so anbm 6= 0 since R is a domain. �

The following result (also known as Gauss lemma) shows that the UFD property, as
well as other important properties, is preserved by polynomial extensions.

Theorem 3.8. If R is a UFD, then the ring of polynomials R[x] is a UFD.

Proof. See [J], theorem 2.25 or [L], Ch.V, theorem 6.3. �

Let us now give some interesting results regarding polynomial rings over a field.

Proposition 3.9. Let f, g ∈ K[x], where K is a field, and suppose f 6= 0. Then there
exist unique polynomials q, r ∈ K[x] such that:

g = fq + r

where deg(r) < deg(f).

Proof. By induction on deg(g). If deg(g) = −∞, then g = 0 and we take q = r = 0. If
deg(g) = 0, then g ∈ K, and it is easy to choose suitable q and r (namely, if deg(f) = 0,
choose q = 1/f and r = 0; if deg(f) > 0, choose q = 0 and r = g).
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Hence we can assume deg(g) = n > 0 and the theorem proved for polynomials of degree
less than n. If deg(f) > deg(g), we take q = 0, r = g. Otherwise, let

f = amx
m + · · ·+ a0, g = bnx

n + · · ·+ b0

where am 6= 0 6= bn, m ≤ n. Let

g1 := g − bna
−1
m xn−mf.

It is easy to see that deg(g1) < deg(g), hence, by induction, there exist q1, r1 such that
g1 = fq1 + r1 with deg(r1) < deg(f). Then set:

q := q1 − bna
−1
m xn−m, r := r1.

In this way we get g = fq + r and deg(r) < deg(f), as required.
To see the uniqueness, suppose that

g = fq1 + r1 = fq2 + r2, where deg(r1), deg(r2) < deg(f).

Then f(q1−q2) = r2−r1. From 3.6, by comparing the degrees of the polynomials involved,
and by recalling that f 6= 0, we see that q1 = q2 and r1 = r2. �

Definition 3.10. Using the above notations, q is called the quotient and r the remainder
(on dividing g by f).

We are going to mention two kind of consequences of the previous result: on one hand
about the divisibility (and zeros) of a polynomial; on the other hand about the ideals in
K[x].
Recall that if f, g ∈ K[x], then f divides g (f |g) if there exists a polynomial h ∈ K[x] such
that g = fh.

Proposition 3.11. Let f(x) be a non-zero polynomial in K[x]. Then f(x) has a zero
a ∈ K (i.e. f(a) = 0) if and only if x− a divides f(x).

Proof. From 3.9 we have that there exist q, r ∈ K[x] such that f = q(x − a) + r with
deg(r) < deg(x− a) = 1, hence r is a constant. Since f(a) = 0, from f = q(x− a) + r we
get: f(a) = 0 = r, so x− a divides f . The converse is trivial. �

As an easy consequence of this result we get:

Corollary 3.12. If f ∈ K[x] is a polynomial of degree n, then it has at most n zeros
in K. �

Theorem 3.13. If K is a field, then the ring K[x] is a PID.

Proof. Note first that K[x] is a domain by 3.7. Let now I ⊆ K[x] be an ideal and assume
I 6= (0). Let f ∈ I be a non-zero polynomial of minimum degree. If g ∈ I, then we can
divide g by f and, according to 3.9, we get: g = qf + r, with deg(r) < deg(f). From
r = g − qf , we see that r ∈ I, and therefore r = 0, since its degree is less than the degree
of f . This shows that I = (f). �

A polynomial d ∈ K[x] is a greatest common divisor (gcd) of f and g if d divides f
and g and further, whenever e divides f and g, then e divides d.

Note that if d is a gcd of f, g ∈ K[x], and if a ∈ K, a 6= 0, then ad is another gcd.
Conversely, if d and e are two gcd’s, then there exists an a ∈ K, a 6= 0 such that e = ad.

An immediate consequence of 3.13 is the following:
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Corollary 3.14. Let f, g ∈ K[x]. Then the ideal generated by f and g is the ideal (d),
where d is a gcd of f and g.

Proof. From 3.13 we know that (f, g) = (d) for a suitable d ∈ K[x]. From f ∈ (d)
we deduce that d|f ; analogously d|g. Since d ∈ (f, g), there exist a, b ∈ K[x] such that
d = af + bg, hence if e divides f and g, then e divides d, and this shows that d is a gcd of
f and g. �

The following method (known as the Euclidean Algorithm) shows that if f, g ∈ K[x],
then there exists a gcd of f and g and, moreover, it is possible to compute it.

Let f, g ∈ K[x], f, g 6= 0. Set r−1 := g, r0 := f . With the division algorithm we can
construct polynomials qi and ri as follows:

rj = qj+2rj+1 + rj+2 j = −1, 0, 1, . . .

where deg(r0) > deg(r1) > deg(r2) > · · · . Since the degree of the rj ’s decreases, we must
eventually reach a point where the process stops; and this can only happen when some
rs+2 = 0. Hence rs = qs+2rs+1. �

Proposition 3.15. With the above notation rs+1 is a gcd for f and g.

Proof. First note that rs+1 divides f and g. In fact it divides rs(= qs+2rs+1), hence it
divides rs−1 since rs−1 = qs+1rs + rs+1, and so on. Eventually we get rs+1 divides r0,
which is f and r−1, which is g.
Suppose e divides f and g. Then it follows inductively that e divides ri. Hence e divides
rs+1. Therefore rs+1 is a gcd. �

Remark 3.16. Let f, g ∈ K[x] be non-zero polynomials, then in 3.14 we saw that any
gcd d is the generator of the ideal (f, g). In particular there exist a, b ∈ K[x] such that
d = af + bg. It is easy to see that from the computation of the gcd with the Euclidean
algorithm one can read off the polynomials a and b.

Let us first remark that, if R is a domain, then the units of R[x] are precisely the
elements of R which are units. In particular, if K is any field, the units of K[x] are the
non-zero elements of K.
From this observation, accordingly to 1.11, we get that in K[x] a polynomial f(x) is
reducible (over K) if and only if it is the product of two polynomials of K[x] of smaller
degree. Any polynomial of degree one in K[x] is clearly irreducible. The converse is not
true, in general. For instance, x2−2 ∈ Q[x] is irreducible; in fact if x2−2 = (ax+b)(cx+d),
then ac = 1, ad+ bc = 0, bd = −2, and there are no solutions (in Q) to these equations.
Anyway x2−2 may be reducible in a suitable polynomial ring. In fact x2−2 ∈ Q[x] ⊂ R[x]
and in R[x] the equality x2 − 2 = (x +

√
2)(x−

√
2) holds. Therefore, if R ⊆ R′ are two

factorial domains, it may happen that an element a ∈ R is irreducible in R but reducible
in R′.
Finally remark that, if R ⊆ R′ and R′ is a UFD, then R is not necessarily a UFD. In fact
Z[
√
5] ⊂ R, R is obviously a UFD, while Z[

√
5] is not a UFD. To see this, consider the

factorizations 4 = 2 · 2 = (
√
5 − 1)(

√
5 + 1); it is straightforward to verify that 2 is not

associate in Z[
√
5] neither to

√
5− 1 nor to

√
5 + 1.
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Using the definition of polynomials in one variable, we can inductively define the ring
of polynomials in n variables, by the equality:

R[x1, . . . , xn] := R[x1, . . . , xn−1][xn].

Hence a polynomial in R[x1, . . . , xn] is an expression like

p(x1, . . . , xn) =
∑

ai1...inx
i1
1 · · ·xinn , where ai1...in ∈ R.

The monomials of p(x1, . . . , xn) are the expressions ai1...inx
i1
1 · · ·xinn . The total degree of

such a monomial is i1 + · · ·+ in. The total degree of a polynomial p is the greatest total
degree of its monomials. Of course p can also be considered as a polynomial in the variable
xi (i.e. as an element of S[xi], where S = R[x1, . . . , xi−1, xi+1, . . . , xn]). The degree of p
w.r.t. xi is the degree of p as a polynomial in S[xi].
An immediate consequence of 3.8 is:

Corollary 3.17. If K is any field, then the ring of polynomials K[x1, . . . , xn] is a UFD.

Proof. In fact K is clearly a UFD and to see the result we can use induction, recalling
that K[x1, . . . , xn] = K[x1, . . . , xn−1][xn]. �

The following result will be frequently applied in next chapter.

Theorem 3.18. Let f : R −→ S be a ring homomorphism and fix α1, . . . , αn ∈ S. Then
there exists a unique ring homomorphism

φ : R[x1, . . . , xn] −→ S

such that φ|R = f and φ(xi) = αi (i = 1, . . . , n).

Proof. If p(x1, . . . , xn) =
∑

ai1...inx
i1
1 · · ·xinn , define

φ(p) :=
∑

f(ai1...in)α
i1
1 · · ·αinn .

Clearly, φ is a ring homomorphism and satisfies the requirements. Uniqueness follows
straightforward. �

4. Ideals (part II)

As we already remarked, the intersection of a finite number of ideals is still an ideal.
We are going to define two other operations between ideals.

Definition 4.1. Let I, J be two ideals of a ring R. The smallest ideal containing them,
i.e. (I ∪ J), is called the sum of I and J and it is denoted by I + J . More generally, we
can define the sum of any family {It | t ∈ T} of ideals by:

∑

t∈T It := (∪t∈T It).
The product of two ideals I, J is defined as the ideal generated by the set {ab | a ∈ I, b ∈ J}
and is denoted by IJ .
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Remark 4.2. It is clear that I + J = {a+ b | a ∈ I, b ∈ J}.
Moreover a finitely generated ideal I = (a1, . . . , an) is exactly (a1)+ · · ·+(an). In general,
(a1, . . . , an) + (b1, . . . , bm) = (a1, . . . , an, b1, . . . , bm).
By definition, the elements of IJ are of the form

∑

i aibi, where ai ∈ I, bi ∈ J .
Note that IJ ⊆ I ∩ J and, in general, the opposite inclusion doesn’t hold.
As a particular case of the product, we can define the power of an ideal by setting I0 := R,
I1 := I, I2 := II and, in general, In := I(In−1).

Example 4.2.1 Let us consider the case of the ring Z. If (m), (n) ⊆ Z are two ideals, then
(m) + (n) is the ideal (r), where r := gcd(m,n), while (m)(n) is the ideal (mn) generated
by the product ofm and n. Here (m)∩(n) = (s), where s = lcm (m,n) is the least common
multiple of m and n. Hence (m) ∩ (n) = (m)(n) if and only if m and n are coprime.

Let us now introduce two very important notions in ideals theory, mainly relevant
from the geometric point of view.
Let us first note that in the ring Z a prime number p satisfies the following property: if
p|nm then either p|n or p|m; in terms of ideals, if nm ∈ (p), then either n ∈ (p) or m ∈ (p).
This naturally leads to the following

Definition 4.3. An ideal P of a ring R is called prime if it verifies the property:

ab ∈ P ⇒ a ∈ P or b ∈ P.

Proposition 4.4. Let R be a domain and a ∈ R. If (a) is prime then a is irreducible. If
R is a UFD then also the converse is true, i.e. if a is irreducible, then (a) is prime.

Proof. If a = 0, then a is irreducible since R is a domain. So assume that 0 6= a = bc; then
bc ∈ (a). By assumption, either b ∈ (a) or c ∈ (a); hence either there exists p ∈ R such
that b = ap (so 1 = pc i.e. c is a unit) or there exists q ∈ R such that c = aq (so 1 = bq
i.e. b is a unit).
Suppose now that R is a UFD and that a is irreducible. If bc ∈ (a), then bc = da for a
suitable d ∈ R. Hence a is one of the irreducible factors in bc; using the UFD hypothesis,
a must be a factor of b or of c, so b ∈ (a) or c ∈ (a) and (a) is prime. �

Definition 4.5. A proper ideal M of a ring R is maximal if it verifies the property:

I is a proper ideal, I ⊇ M ⇒ I = M.

Using Zorn’s lemma, it is not difficult to prove that:

Theorem 4.6. Every ring R 6= 0 has at least a maximal ideal.

Proof. See [AMD], theorem 1.3. �

Corollary 4.7. If I is a proper ideal of a ring R, then there exists a maximal ideal of R
containing I.

Proof. Apply 4.6 to the ring R/I and take into account 2.5. �
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Theorem 4.8. Let R be a ring. It holds:
i) An ideal P is prime if and only if R/P is a domain.
ii) An ideal M is maximal if and only if R/M is a field.
iii) Any maximal ideal is prime.

Proof. i) Assume P prime and let [x], [y] ∈ R/P such that [x][y] = [0]. This means
[xy] = [0], i.e. xy ∈ P. By assumption, either x ∈ P or y ∈ P, hence either [x] = [0] or
[y] = [0]. The converse is analogous.
ii) AssumeM is maximal. Let [x] ∈ R/M, [x] 6= [0]. Therefore x 6∈ M, so (x)+M contains
M properly. Then, since M is maximal, it must be (x) +M = R, so 1 ∈ (x) +M, hence
1 = ax+m for some a ∈ R and m ∈ M. Taking the classes modulo M, we get [1] = [a][x],
i.e. [x] is a unit in R/M. The converse is analogous.
iii) Follows from i) and ii) since any field is a domain. �

Example 4.8.1. 1) In Z a number p is prime if and only if (p) is prime if and only if (p)
is maximal.
2) Let R := K[x, y, z] be the ring of polynomials in x, y, z over K. Then the ideal (x, y) is
prime. To see this, consider the map:

f : K[x, y, z] −→ K[z]

defined by x 7→ 0, y 7→ 0, z 7→ z (see 3.18). The map f is an epimorphism. Let us
compute its kernel I. It is clear that (x, y) ⊆ I. Conversely suppose that F ∈ I. Write F
as follows: F (x, y, z) = xF1(x, y, z) + yF2(x, y, z) + F3(z), where F3 ∈ K[z]. Then, since
f(F ) = 0, we get F3 = 0, so F ∈ (x, y). Hence I = (x, y). From 2.4 we get:

K[x, y, z]/I ∼= K[z].

Since K[z] is a domain also K[x, y, z]/I is a domain and this shows that (x, y) is a prime
ideal. Since K[z] is not a field, (x, y) is not a maximal ideal. In fact (x, y) ⊂ (x, y, z) ⊂ (1).
Using the same procedure considered above to see that (x, y) is prime, one can show that
(x, y, z) is a maximal ideal.

Corollary 4.9. The ideal (0) of a ring R is prime if and only if R is a domain. �

As observed in the above example, in general a prime ideal is not maximal. A class of
rings in which the converse holds is given by the PID’s, where the following result holds:

Theorem 4.10. Let R be a PID and a ∈ R. Then a is irreducible if and only if (a) is
prime if and only if (a) is maximal.

Proof. By 4.4 and 4.8 iii), it is enough to show that, if R is a PID, then:
a irreducible ⇒ (a) maximal.
Assume that (a) is not maximal; then there exists a proper principal ideal of R (being R
a PID), say (b), such that (b) ⊃ (a). So a = bc, for some c ∈ R. But a is irreducible, then
either b is a unit (hence (b) = R) or c is a unit (hence (a) = (b)). In both cases we get a
contradiction. �

An immediate consequence is:
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Corollary 4.11. If p(x) ∈ K[x] is an irreducible polynomial over K of degree > 0, then
K[x]/(p) is a field. �

As an application of the above results, we shall conclude this section with some ex-
amples. First of all we add the following:

Remark 4.12. If R is any ring, if f, g ∈ R[x] and if the coefficient of the highest degree
monomial of f is a unit (for instance if f is monic), then we can use the procedure explained
in the proof of 3.9 to divide g by f and we get g = fq + r, where r is a polynomial whose
degree is smaller than the degree of f .

Example 4.12.1. Let us verify that the ideal I := (xy − 1) ⊆ K[x, y] is a prime ideal
(where K is any field).
From 4.4, it follows that it is enough to check that xy−1 is irreducible. Assume xy−1 = fg,
f, g ∈ K[x, y], where f and g are not units. We can consider f and g as polynomials
in y with coefficients in K[x]. From 3.6 it follows that degy(f) ≤ 1 and degy(g) ≤ 1.
Analogously, degx(f) ≤ 1 and degx(g) ≤ 1, therefore we can assume that f(x, y) =
a0 + a1x+ a2y and g(x, y) = b0 + b1x+ b2y, hence fg = xy − 1 gives (using 3.5) a2b2 = 0
and a1b1 = 0. Therefore we can assume a2 = 0. If a1 = 0, then f is a unit, against the
assumption. So b1 = 0; from (a0 + a1x)(b0 + b2y) = xy − 1 we get a0b2 = 0, a1b0 = 0,
a0b0 = 1, a1b2 = 1. The first equation gives a0 = 0 (and this contradicts the third
equation) or b2 = 0 (and this contradicts the last equation). Hence xy − 1 is irreducible
and the ideal is prime.

Example 4.12.2. Let us verify that the ideal I := (y2 − x3) ⊆ K[x, y] is prime (K any
field).
Let us consider the map φ : K[x, y] −→ K[t] defined by φ(a) := a for all a ∈ K, φ(x) := t2,
φ(y) := t3 and then extend φ to a ring homomorphism using 3.18; therefore if F (x, y) ∈
K[x, y] is any polynomial, then φ(F (x, y)) = F (t2, t3)).

Claim: ker(φ) = (y2 − x3).

Proof (of the claim). First of all it is clear that (y2 − x3) ⊆ ker(φ). Hence we have to
verify only the other inclusion. Take F (x, y) ∈ ker(φ). We can consider F and (y2 − x3)
as polynomials in y with coefficients in K[x]. Since the coefficient of y2 in y2 − x3 is 1, so
invertible, we can apply 4.12 and divide F by (y2 − x3). We get:

F (x, y) = (y2 − x3)q(x, y) + r(x, y), (1)

where r(x, y) is a polynomial of degree at most one in y. So r(x, y) = r0(x) + r1(x)y for
suitable r0 = r00 + r01x+ r02x

2 + · · ·, r1 = r10 + r11x+ r12x
2 + · · · ∈ K[x]. If we apply φ

to (1), we get r(t2, t3) = 0, so r0(t
2) + r1(t

2)t3 = 0. By expanding we get:

r00 + r01t
2 + r10t

3 + r02t
4 + r11t

5 + r03t
6 + r12t

7 + · · · = 0

and this forces r0 = r1 = 0 (see 3.5). Hence F (x, y) ∈ (y2 − x3) so the claim is proved.
From 2.4 we get that K[x, y]/ ker(φ) is isomorphic to a subring of K[t]. Since K[t] is a
domain, K[x, y]/(y2 − x3) is a domain, hence (y2 − x3) is prime.
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Example 4.12.3. Let us verify that I := (y− x2, z − x3) ⊆ K[x, y, z] is a prime ideal (K
is any field).
Using the same procedure seen in the previous example, we can consider the map

φ : K[x, y, z] −→ K[t]

defined by φ(a) := a for every a ∈ K, φ(x) := t φ(y) := t2 and φ(z) := t3. Let us verify
that ker(φ) = (y− x2, z− x3). Take F (x, y, z) ∈ ker(φ). Then we can divide, in K[x, z][y],
F by y − x2 and we get:

F (x, y, z) = (y − x2)q1(x, y, z) + r1(x, z).

Then we can divide, in K[x][z], r1(x, z) by (z−x3) and we get r1(x, z) = (z−x3)q2(x, z)+
r2(x). Since φ(F ) = 0, we get φ(r2(x)) = 0, therefore r2 = 0 and we get F ∈ (y−x2, z−x3).
Since the other inclusion is obvious, we see that ker(φ) = (y − x2, z − x3). Therefore
K[x, y, z]/ ker(φ) ∼= K[t], so the given ideal is prime.

Example 4.12.4. If K is a field and a1, . . . , an ∈ K, then the ideal

(x1 − a1, . . . , xn − an) ⊆ K[x1, . . . , xn]

is maximal.
Proof. Let φ : K[x1, . . . , xn] −→ K be defined by φ(xi) := ai and φ(k) := k for every
k ∈ K. Then φ is surjective and clearly (x1−a1, . . . , xn−an) ⊆ ker(φ). Suppose conversely
that F (x1, . . . , xn) ∈ ker(φ). Since in the polynomial xn−an the coefficient of xn is a unit,
we can divide F by xn − an and we get:

F (x1, . . . , xn) = (xn − an)Q1(x1, . . . , xn) + F1(x1, . . . , xn−1).

(Note that the remainder is a polynomial in x1, . . . , xn−1 only, since its degree in xn must
be zero).
Now we can divide F1 by xn−1 − an−1 and we get: F1 = (xn−1 − an−1)Q2 + F2, where F2

is a polynomial in x1, . . . , xn−2 only. Then we can divide F2 by xn−2 − an−2 and so on.
After n divisions we get:

F = (xn − an)Q1 + (xn−1 − an−1)Q2 + · · ·+ (x1 − a1)Qn +R,

where R is an element of K. Applying φ, we get R = 0, so F ∈ (x1 − a1, . . . , xn − an).
Therefore

ker(φ) = (x1 − a1, . . . , xn − an)

and since K[x1, . . . , xn]/ ker(φ) ∼= K, the ideal (x1 − a1, . . . , xn− an) is maximal (see 4.8).

Example 4.12.5. The ideal (x2 + 2x− 1, y2 − 2y − 1) ⊆ Q[x, y] is not prime.
Proof. First of all note that

Q[x]/(x2 + 2x− 1) ∼= Q[
√
2].
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To see this, consider the map φ : Q[x] −→ Q[
√
2] defined by φ(a) := a for all a ∈ Q and

φ(x) := −1+
√
2. Then take F (x) ∈ ker(φ); using 3.9 we get: F (x) = (x2+2x− 1)Q(x)+

R(x), where deg(R) ≤ 1, i.e. R(x) = a+bx, a, b ∈ Q. Applying φ we get R(−1+
√
2) = 0 =

a+(−1+
√
2)b which can be satisfied only if a = b = 0 since a and b are rational numbers.

Hence R = 0. In this way we see that the ring S := Q[x]/(x2 + 2x − 1) is isomorphic to
Q[

√
2]. It is not hard to see that Q[x, y]/(x2 + 2x− 1, y2 − 2y − 1) ∼= S[y]/(y2 − 2y − 1),

hence
Q[x, y]/(x2 + 2x− 1, y2 − 2y − 1) ∼= Q[

√
2][y]/(y2 − 2y − 1)

and y2 − 2y − 1 = (y − 1 −
√
2)(y − 1 +

√
2) in Q[

√
2][y], so it is reducible. Therefore

Q[
√
2][y]/(y2−2y−1) is not a domain and the ideal (x2+2x−1, y2−2y−1) is not prime

(see 4.8).

5. Noetherian Rings

We saw some examples of rings where all the ideals are principal (like Z, the ring
of polynomials K[x] over a field K, the rings Zn). Note however that this property is
quite strong, and in particular, is not preserved by polynomial extensions (for examples
K[x, y] = K[x][y] is not a PID anymore). A natural generalization of ‘principal ideal’ is
that of ‘finitely generated ideal’. In this section we shall study the class of rings where all
the ideals are finitely generated and we shall see that this property, as well as other nice
properties (like being a domain, or a UFD) is preserved under polynomial extensions.

Let R be a commutative ring. It holds:

Proposition 5.1. The following conditions are equivalent:
i) Every chain of ideals

I1 ⊆ I2 ⊆ I3 ⊆ · · ·

is stationary (i.e. there exists n ∈ N such that In = In+1 = · · ·).
ii) If Σ is any non-empty subset of ideals of R, then Σ has a maximal element (i.e. there

exists J ∈ Σ such that if I ∈ Σ, I ⊇ J , then I = J).

Proof. i) ⇒ ii) Let Σ be any non-empty subset of ideals of R and let I1 ∈ Σ. If I1 is not
maximal, then there exists an element I2 ∈ Σ such that I1 ⊆ I2. If I2 is not maximal, then
there exists I3 ∈ Σ such that I1 ⊆ I2 ⊆ I3. From i) it follows that after a finite number of
steps we pick up a maximal element of Σ.
ii) ⇒ i) Let I1 ⊆ I2 ⊆ I3 ⊆ · · · be an increasing sequence of ideals; set Σ := {I1, I2, I3, . . .}.
Then, by hypothesis, there exists a maximal element In for Σ. It is clear that the sequence
of the Ii’s is stationary for i > n. �

Definition 5.2. A ring R is noetherian if it satisfies one (and hence both) of the conditions
of the above proposition.

Examples 5.2.1. 1) If K is a field, then it is a noetherian ring (since it has only two
ideals).
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2) The ring of integers Z is noetherian. In fact we know that all the ideals of Z are
principal. If (a) ⊆ (b), then b divides a, and from this it is immediate to see that every
chain of ideals is stationary.
3) The ring K[x] of polynomials in one indeterminate over a field K is noetherian (the
proof is analogous to the previous one given for Z since also K[x] is a PID and a UFD). A
more general result will be proved in 5.5.
4) Let R := {f : Z −→ Z} (the addition and the multiplication in R are defined pointwise).
Then R is not noetherian. To see this, let us consider the functions:

δk(n) :=

{

0 if n 6= k

1 if n = k.
k = 1, 2, . . .

Let Ik := (δ1, . . . , δk). We have δk+1 6∈ Ik (if δk+1 =
∑k
j=1 ujδj for suitable uj ∈ R, then

δk+1(k+1) =
∑k
j=1 ujδj(k+1) = 0). Therefore the following is an infinite chain of ideals:

I1 ⊂ I2 ⊂ I3 ⊂ · · ·

Recall (see 2.7) that an ideal I of a ring R is finitely generated if there exist elements
a1, . . . , an ∈ I such that I = (a1, . . . , an). The following is the main characterization of
noetherian rings:

Theorem 5.3. A ring R is noetherian if and only if every ideal of R is finitely generated.

Proof. Let I ⊆ R be an ideal. Take Σ := {J ⊆ I | J is finitely generated}. The set Σ is
not empty (for instance (0) is in Σ), hence it has a maximal element N . If N 6= I, then
take a ∈ I \ N . Then the ideal (N, a) should be in Σ but contains N properly. Hence
I = N and so I is finitely generated.
To see the converse, let I1 ⊆ I2 ⊆ I3 ⊆ · · · be a chain of ideals. Set I := ∪∞

j=1Ij . Then I is
finitely generated, say I = (f1, . . . , fm). Hence there exists an n such that f1, . . . , fm ∈ In.
Therefore In = In+1 = · · · . �

Proposition 5.4. If R is a noetherian ring and I ⊆ R is an ideal, then the ring R/I is
noetherian.

Proof. This result follows immediately from the inclusion-preserving bijection that there
is between the ideals of R containing I and the ideals of R/I (see 2.5). �

A fundamental theorem regarding noetherian rings is the following:

Theorem 5.5. (Hilbert Basis theorem) If R is a noetherian ring, then the ring of polyno-
mials R[x] is noetherian.

Proof. Suppose R[x] is not noetherian. Then there exists an ideal I ⊆ R[x] which is
not finitely generated. We can recursively define a sequence of polynomials f1, f2, . . . as
follows:

- take f1 ∈ I such that deg(f1) is minimal;
- suppose f1, . . . , fk are already defined; then define fk+1 as a polynomial of minimal
degree among those in I \ (f1, . . . , fk).
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The sequence f1, f2, . . . can be found, since I is not finitely generated. Let deg(fk) = nk
and let fk = akx

nk + terms of lower degree. From the choice of the fk’s, we have n1 ≤
n2 ≤ n3 ≤ · · · .
Let us consider the following chain of ideals of R:

(a1) ⊆ (a1, a2) ⊆ (a1, a2, a3) ⊆ · · ·

Since R is noetherian, this chain is stationary, hence there exists k such that ak+1 =
∑k
i=1 uiai (ui ∈ R). Let:

g := fk+1 −
k

∑

i=1

uix
nk+1−nifi.

We have: g 6∈ (f1, . . . , fk) (since fk+1 6∈ (f1, . . . , fk)). But g ∈ I and deg(g) < nk+1, hence
we get a contradiction. �

Corollary 5.6. If R is a noetherian ring, then the ring of polynomials R[x1, . . . , xn] is
noetherian.

Proof. It follows by induction, recalling that R[x1, . . . , xn] = R[x1, . . . , xn−1][xn]. �

Remark 5.7. In particular, from the above corollary, we get that if K is any field, then
K[x1, . . . , xn] is a noetherian ring. This result has an important geometric meaning: it
claims that any set of zeros of a family of polynomials in the affine space AnK can also be
described as the zeros of a finite set of polynomials.
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Chapter III

Galois Theory

1. Preliminaries

If K is a field, recall that the characteristic of K is either a positive integer (in this
case it is the smallest n ∈ N such that n · 1 = 0) or it is 0 (if n · 1 6= 0 for all n ∈ N).
Since a field is a domain, its characteristic, if not zero, is a prime number (see Ch.II, 2.10).
For instance Q, R and C are fields of characteristic zero, while for each prime p, Zp is a
field of characteristic p. In general, if K is a field of characteristic zero, then it contains
(an isomorphic copy of) Q, since it contains an isomorphic copy of Z (see Ch.II, 2.9); if
char (K) = p, then it contains Zp.

We recall the following result:

Theorem 1.1. (Fundamental theorem of algebra) If f(x) =
∑n
i=0 aix

i ∈ C[x] is a poly-
nomial of degree n > 0, then there exists α ∈ C such that f(α) = 0.

For the proof see, for instance, [A] (thm.1.3.4) or [L1] (Ch.II, thm.6.3 and Ch.V, section
1) or [M] (Ch.III, ex. 3.6). �

Corollary 1.2. If f(x) =
∑n
i=0 aix

i ∈ C[x] is a polynomial of degree n > 0, then there
exist α1, . . . , αn ∈ C (not necessarily all distinct) such that f(x) = an(x−α1) · · · (x−αn).

Proof. It is an immediate consequence of 1.1 and of Ch.II, 3.11. �

Remark 1.3. If K and L are fields, then a ring homomorphism f : K −→ L is also a
field homomorphism, in the sense that f(k−1) = f(k)−1 for all k ∈ K \ {0}. In the sequel
we shall call such a homomorphism simply a (field) morphism. Furthermore, note that a
morphism f : K −→ L is always injective, hence we can consider K as a subfield of L.

Definition 1.4. If i : K −→ L is a morphism, then L is said a field extension of K. If L
is a field extension of K, with an abuse of notation, we shall usually write K ⊆ L.
If K is a field and X is any subset of K, the field generated by X is the intersection of all
the subfields of K containing X . It is the smallest subfield of K containing X .

Example 1.4.1. Let X := {1, i} ⊆ C, (where i2 = −1), then it is easy to see that the
field generated by X is the field {a+ ib | a, b ∈ Q}.

Let us now introduce a kind of field extensions, which will be particularly important
in this chapter.

Definition 1.5. Let K ⊆ L be a field extension and let Y be any subset of L; the field
generated by X := K∪Y is usually denoted by K(Y ) and it is called subfield of L generated
by Y over K. Note that K ⊆ K(Y ) ⊆ L.

For instance if K = Q, L = R and Y = {
√
2}, it is easy to see that Q(

√
2) =

{a+
√
2b | a, b ∈ Q}. If K = R, L = C and Y = {i}, then R(i) = C.
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Definition 1.6. A simple extension of a fieldK is an extensionK ⊆ L such that L = K(α),
for a suitable α ∈ L.

Let us recall that in Ch.II, section 3 we defined K[α] to be the smallest subring of L
containing K and α; analogously here K(α) is the smallest subfield of L containing K and
α. In general K[α] ⊆ K(α); more precisely K(α) consists of the quotients f(α)/g(α) of
polynomial expressions f(α), g(α) ∈ K[α] (g(α) 6= 0). We shall characterize those α’s for
which K[α] is a field, hence it coincides with K(α).

Example 1.6.1. It is not difficult to verify that Q(
√
2,
√
3) = Q(

√
2+

√
3); here Q(

√
2,
√
3)

and Q(
√
2 +

√
3) are considered subfields of R.

In fact
√
2 +

√
3 ∈ Q(

√
2,
√
3), so Q(

√
2 +

√
3) ⊆ Q(

√
2,
√
3). Conversely, we want to see

that
√
2,
√
3 ∈ Q(

√
2 +

√
3). First note that

√
6 = 1/2(

√
2 +

√
3)2 − 5/2 ∈ Q(

√
2 +

√
3),

hence (
√
2+

√
3)
√
6 ∈ Q(

√
2+

√
3). So 3

√
2+2

√
3 ∈ Q(

√
2+

√
3), therefore

√
2 = (3

√
2+

2
√
3)− 2(

√
2+

√
3) ∈ Q(

√
2 +

√
3) and

√
3 = 3(

√
2 +

√
3)− (3

√
2 + 2

√
3) ∈ Q(

√
2 +

√
3).

In particular, this example shows that Q(
√
2,
√
3) is a simple extension of Q, although it

is not given with the notation of a simple extension.

Definition 1.7. Let K ⊆ L be an extension. An element α ∈ L is algebraic over K if
there exists a polynomial f(x) ∈ K[x] such that f(α) = 0. Otherwise α is transcendental
over K.

For instance in the extension Q ⊆ R,
√
3 ∈ R is algebraic over Q since the polynomial

x2 − 3 ∈ Q[x] has
√
3 as a zero. It is possible to prove that the real numbers e and π are

transcendental over Q (see, for instance, [S] Ch.6).

Remark 1.8. One can show that the set {α ∈ R | α is algebraic over Q} is numerable.
Hence in particular, its complement in R, which is the set of transcendental elements over
Q, has the same cardinality of R itself.

An algebraic element is strictly related to a particular polynomial, as follows. Let
K ⊆ L and let α ∈ L be algebraic over K. Then, among the polynomials f(x) =

∑n
i=0 aix

i

admitting α as a zero, we can choose a polynomial of minimum degree and monic (i.e. with
an = 1). From the proposition below, it follows that this polynomial is unique.

Proposition - Definition 1.9. LetK ⊆ L, α ∈ L be algebraic overK and let p(x) ∈ K[x]
be a monic polynomial such that p(α) = 0 and deg(p) is minimum. Then:
i) p(x) is unique; it is called the minimum polynomial of α over K;
ii) p(x) is irreducible and divides every polynomial in K[x] which has α as a zero;
iii) in particular, if a polynomial is monic, irreducible and has α as a zero, then it is the

minimum polynomial of α over K.

Proof. i) If p(x) and q(x) are both monic, of minimum degree and with α as a zero, then
the polynomial h(x) := p(x)− q(x), is of degree lower than deg(p) = deg(q) and has α as
a zero, hence is the zero polynomial. Therefore p(x) = q(x).
ii) If f(x) is such that f(α) = 0, then we can divide f by p and we get: f = ps + r with
deg(r) < deg(p) (see Ch.II, 3.9). Since f(α) = 0, also r(α) = 0, hence r(x) = 0. Therefore
p divides any polynomial having α as zero. It follows immediately that p is irreducible.
iii) Let q(x) be a monic, irreducible polynomial having α as a zero; then, by ii), p(x) divides
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q(x). But q(x) is irreducible, so necessarily q(x) = a · p(x), where a is a unit, i.e. a ∈ K.
Since both q(x) and p(x) are monic, we get a = 1. �

Example 1.9.1. Let α =
√

1 +
√
5 ∈ R. Let us verify that α is algebraic over Q,

and let us find its minimum polynomial. Since α2 = 1 +
√
5, we get (α2 − 1)2 = 5, i.e.

α4−2α2−4 = 0. Let p(x) := x4−2x2−4 ∈ Q[x], then α is a root of p(x), so it is algebraic
over Q. Recalling that a polynomial is irreducible if and only if it cannot be expressed as
product of two polynomials of lower degree (see Ch.II, section 3), we can directly verify
that p(x) is irreducible over Q, then from 1.9 we have that p is the minimum polynomial of
α. Of course we could get other polynomials over Q which admit α as a root. For instance,

from α =
√

1 +
√
5, we get: α4 = (1+

√
5)2, i.e. (α4 − 6) = 2

√
5, so (α4 − 6)2 = 20. Then

if we define f(x) := x8 − 12x4 + 16, α is a root of f(x). It is immediate to verify that,
according to 1.9, p divides f .

Let K ⊆ L be an extension and let K[x] be the ring of polynomials over K. If α ∈ L,
we can define a (ring) homomorphism

φα : K[x] −→ L

by φα(k) := k, for every k ∈ K, φα(x) := α (see Ch.II, 3.18). The image of φα is K[α],
the smallest subring of L containing K and α, defined in Ch.II, section 3. It is clear that
α is transcendental over K iff ker(φα) = (0). If α is algebraic then ker(φα) is a principal
(non-zero) ideal of K[x] (see Ch.II, 3.13); moreover p(x) (the minimum polynomial of α
over K) divides every element of ker(φα), by 1.9. Hence ker(φα) = (p(x)).

Example 1.9.2. Let us consider Q[
√
3] ⊆ R. Take the map φ : Q[x] −→ Q[

√
3] defined

by φ(k) := k for every k ∈ Q, φ(x) :=
√
3, hence

φ(a0 + a1x+ · · ·+ amx
m) = a0 + a1

√
3 + · · ·+ am(

√
3)m.

Obviously φ is surjective; moreover ker(φ) = (x2 − 3), hence Q[x]/(x2 − 3) is a field, and
so Q[

√
3] is a field. It is also easy to directly verify that Q[

√
3] is a field: first of all observe

that Q[
√
3] = {a+

√
3b | a, b ∈ Q}; if a+

√
3b ∈ Q[

√
3] and a+

√
3b 6= 0 (i.e. (a, b) 6= (0, 0)),

then it is invertible in Q[
√
3], since (a+

√
3b)−1 = a/(a2 − 3b2)− b/(a2 − 3b2)

√
3.

Using the above observation and recalling that in a PID an irreducible element gen-
erates a maximal ideal (see Ch.II, 4.10), we get the following result:

Proposition 1.10. Let K ⊆ L be an extension and α ∈ L. Then:
i) if α is transcendental over K, then K[α] ∼= K[x];
ii) if α is algebraic over K, then K[α] is a field; in particular K[α] = K(α). Conversely,

if K[α] is a field, then α is algebraic over K.

Proof. Since K[α] = Im(φα) ∼= K[x]/ ker(φα), we get immediately i).
If α is algebraic and p is the minimum polynomial of α, then it is irreducible, hence K[α] ∼=
K[x]/(p) is a field. Since K(α) is the smallest subfield of L containing K and α, then
K[α] = K(α). If conversely, K[α] is a field and α were not algebraic (i.e. transcendental),
then by i) K[α] would be isomorphic to the ring of polynomials K[x], which is not a field
(for instance x is not invertible). �
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Recall that if K ⊆ L is an extension and α1, . . . , αn ∈ L, then K[α1, . . . , αn] is the
smallest subring of L which contains K and α1, . . . , αn (see Ch.II, section 3). The result
in 1.10 can be generalized for any set {α1, . . . , αn} of algebraic elements:

Proposition 1.11. If K ⊆ L is a field extension and if α1, . . . , αn ∈ L are algebraic over
K, then K[α1, . . . , αn] = K(α1, . . . , αn).

Proof. We can use induction on n. If n = 1, the result is given by 1.10. If n > 1, then, by
induction, K[α1, . . . , αn−1] = K(α1, . . . , αn−1), hence we have:

K[α1, . . . , αn] = K[α1, . . . , αn−1][αn] = K(α1, . . . , αn−1)[αn] = K(α1, . . . , αn).

The last equality follows again from 1.10, since αn is algebraic over K(α1, . . . , αn−1). �

Notation 1.12. If K ⊆ L is a field extension, then L can be considered as a vector space
over K (if v ∈ L, λ ∈ K, then λv is simply the product of the two elements as elements of
L). The dimension of L as a K vector space is denoted by [L : K].

Examples 1.12.1. [C : R] = 2 (in fact 1 and i, where i2 = −1, is a basis); [Q(π) : Q] = ∞;
in fact 1, π, π2, . . . πn, . . . are linearly independent, since π is transcendental over Q.

Theorem 1.13. If K ⊆ L ⊆M are fields, then

[M : K] = [M : L] · [L : K].

Proof. (We consider only the case [M : K] < ∞, although the proof for the general case
is also straightforward). If x1, . . . , xn is a basis of L over K and if y1, . . . , ym is a basis of
M over L, it is easy to verify that the mn elements xiyj, i = 1, . . . , n, j = 1, . . . , m are a
basis for M over K. �

Theorem 1.14. Let K ⊆ K(α) be a simple extension. Then α is transcendental over K
iff [K(α) : K] = ∞. If α is algebraic, then [K(α) : K] = deg(p), where p is the minimum
polynomial of α over K.

Proof. If α is transcendental, then 1, α, α2, . . . , αn, . . . are linearly independent (otherwise a
linear dependency relation among 1, α, α2, . . . , αn would give a polynomial in K[x] vanish-
ing on α). So the dimension of K(α) is infinite. If α is algebraic, let p(x) be the minimum
polynomial of α over K and let n = deg(p). Then 1, α, α2, . . . , αn−1 are linearly indepen-
dent over K. Take now any element f of K[α] (= K(α) by 1.10), f = u0 + · · ·+ umα

m.
Let f̃(x) := u0+ · · ·+umxm ∈ K[x]. Then, dividing f̃ by p we get f̃(x) = p(x)q(x)+ r(x),
with deg(r(x)) < deg(p(x)). Then f̃(α) = f = r(α) and r(α) is a linear combination of
1, α, . . . , αn−1. So 1, α, . . . , αn−1 is a basis of K(α) over K. �

Example 1.14.1. Let us consider Q[ 3
√
2] ⊆ R. Then 3

√
2 is algebraic over Q and its

minimum polynomial is x3 − 2. From the proof of 1.14 we have that 1, 3
√
2, 3

√
4 are a basis

of Q[ 3
√
2] over Q, hence Q[ 3

√
2] = {a + 3

√
2b + 3

√
4c | a, b, c ∈ Q}. In the same way, we

reobtain the representation for the elements of Q[
√
3] considered in 1.9.2.

Definition 1.15. The extension K ⊆ L is a finite extension if [L : K] <∞. In this case,
if [L : K] = n, then n is the degree of the extension.

Clearly, from the above theorem, if α is algebraic over K, then K(α) is a finite
extension. A more general result holds:
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Theorem 1.16. If α1, . . . , αn are algebraic overK, thenK[α1, . . . , αn] is a finite extension
of K.

Proof. First note that K[α1, . . . αi] is a field for all i = 1, . . . , n by 1.11. Since αi+1 is alge-
braic over K, then it is algebraic over K[α1, . . . , αi]; hence [K[α1, . . . , αi+1] : K[α1, . . . , αi]]
is finite by 1.14. Therefore

[K[α1, . . . , αn] : K] = [K[α1, . . . , αn] : K[α1, . . . , αn−1]] · · · [K[α1] : K]

by 1.13, so it is finite. �

Definition 1.17. An extension K ⊆ L is algebraic if every element of L is algebraic
over K.

Example 1.17.1. It is easy to verify that Q ⊆ Q(
√
3) is an algebraic extension of Q,

with a direct computation. In fact from 1.9.2 it follows that Q(
√
3) = Q[

√
3] therefore

any element of Q(
√
3) is of the kind a +

√
3b (a, b ∈ Q). Hence fix an element a+

√
3b in

Q(
√
3). Then let f(x) := x2 − 2ax+ a2 − 3b2 ∈ Q[x]. Since f(a+

√
3b) = 0, any element

of Q(
√
3) is algebraic over Q, and the extension is algebraic.

This argument essentially comes from the fact that
√
3 is algebraic over Q.

More generally we have:

Theorem 1.18. If K ⊆ L is a finite extension, then it is an algebraic extension. In
particular, if α1, . . . , αn are algebraic over K, then K[α1, . . . , αn] is an algebraic extension
of K.

Proof. If α ∈ L and if [L : K] = n, then 1, α, . . . , αn are n + 1 elements in L, so must
be linearly dependent over K. Hence there exist λ0, . . . , λn ∈ K such that the polynomial
f(x) := λ0 + · · · + λnx

n ∈ K[x] has α as a zero. This shows that α is algebraic over K.
In particular, since K[α1, . . . , αn] is a finite extension of K by 1.16, then it is an algebraic
extension of K. �

Definition 1.19. Let A := {α ∈ C | α is algebraic over Q}. The elements of A are called
algebraic numbers.

Using the above results, we can show that A is a field. In fact if α, β ∈ A, then Q[α, β]
is a finite algebraic extension by 1.18. Therefore, Q[α, β] is a field and Q[α, β] ⊆ A. So
α− β and αβ−1 ∈ Q[α, β] ⊆ A.

2. Extensions of Morphisms

Warning. In this section, as well as in the next ones, we shall restrict the attention to
fields which are subfields of C. This is done in order to simplify several proofs. Note
however that most of the results established here still hold in the general case.

Let f(x) ∈ K[x], f(x) := a0 + a1 + · · · + anx
n be a polynomial over a field K. The

formal derivative of f is the polynomial

Df(x) := a1 + 2a2x+ · · ·+ nanx
n−1.

It is a straightforward verification to see that if f , g are polynomials overK, thenD(f+g) =
Df +Dg, D(fg) = D(f)g + fD(g); if λ ∈ K, then D(λ) = 0, and D(λf) = λD(f).
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Proposition 2.1. If f(x) ∈ K[x] is an irreducible polynomial over K ⊆ C of degree n,
then it has n distinct roots in C.

Proof. Let f(x) be irreducible over K[x] and assume that it has a multiple root in C, this
means that f(x) = (x − α)2g(x), for a suitable α ∈ C (clearly this factorization of f(x)
occurs in C[x], while f is irreducible in K[x]!). So α is a root also for Df(x) ∈ K[x]. Hence
f and Df have x − α as common factor in C[x]. Let g := gcd(f,Df); then deg(g) ≥ 1.
One can compute g from f and Df with the division algorithm (see Ch.II, 3.15). Let us
remark that all the coefficients of the polynomials produced by the division algorithm are
in the field K containing the coefficients of f and Df ; therefore also g is surely in K[x].
We have: deg(g) ≥ 1, g divides f and f is irreducible; then we necessarily get f = g up to
a unit. This, in a field of characteristic zero is a contradiction, since f should divide Df ,
and deg(Df) < deg(f). �

Theorem 2.2. Let K ⊆ L (L ⊆ C, as specified above); assume [L : K] = n (n finite) and
let φ : K −→ C be a morphism. Then there exist exactly nmorphisms ψ1, . . . , ψn : L −→ C

extending φ (i.e. such that ψi
∣

∣

K = φ for all i = 1, . . . , n).

Proof. Assume first that L is a simple extension: L = K(α) for a suitable α ∈ L. The
minimum polynomial of α is a polynomial p(x) =

∑n
i=0 aix

i, (an = 1) of degree n (see
1.14). Then 1, α, . . . , αn−1 is a basis of L as a K-vector space. Let ψ : L −→ C be an
extension of φ. Then, since ψ is a field morphism,

ψ(λ0 + λ1α+ · · ·+ λn−1α
n−1) = φ(λ0) + φ(λ1)ψ(α) + · · ·+ φ(λn)ψ(α)

n−1

for every λ0, . . . , λn−1 ∈ K. Hence ψ is uniquely determined by ψ(α).
We want to show that ψ(α) can assume n values, which are precisely the n distinct roots
of a suitable polynomial q(x) ∈ C[x], and conversely that for each root β of q(x) we can
construct a morphism ψβ : L −→ C, extending φ.
Let Φ : K[x] −→ C[x] be defined by:

Φ(b0 + · · ·+ bmx
m) := φ(b0) + · · ·+ φ(bm)xm,

(here K[x] and C[x] are rings of polynomials and b0 + · · · + bmx
m is any polynomial of

K[x]).
It is a straightforward verification to see that Φ is a ring homomorphism. It is clear that,
for any polynomial f(x) ∈ K[x], it holds

ψ(f(α)) = Φ(f(x))|x=ψ(α)

where the last expression means the value of the polynomial Φ(f(x)) computed in x = ψ(α).
Setting

q(x) := Φ(p(x)) =

n
∑

i=0

φ(ai)x
i

we have
0 = ψ(0) = ψ(p(α)) = Φ(p(x))|x=ψ(α) = q(ψ(α))
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so ψ(α) is a zero of q(x).
Conversely, let β be a root of q(x). Setting

ψβ(λ0 + λ1α + · · ·+ λn−1α
n−1) := Φ(λ0 + λ1x+ · · ·+ λn−1x

n−1)(β)

we clearly have ψβ(α) = β.
Claim. The map ψβ : K(α) −→ C is a field morphism.
Since ψβ is additive, i.e. ψβ(u+ v) = ψβ(u) + ψβ(v), for every u, v ∈ K(α), then we have
only to show that ψβ(uv) = ψβ(u)ψβ(v), for every u, v ∈ K(α). If u = u0+· · ·+un−1α

n−1,
let ũ be the polynomial u0 + · · ·+un−1x

n−1 ∈ K[x] and define analogously ṽ. If we divide
ũ · ṽ by p, we get: ũ · ṽ = fp + r, where r is the remainder of the division. Hence
uv = (ũ · ṽ)(α) = r(α), so ψβ(uv) = ψβ(r(α)) = Φ(r)(β). Moreover

ψβ(u)ψβ(v) = ψβ(ũ(α))ψβ(ṽ(α)) = Φ(ũ)(β)Φ(ṽ)(β)

= (Φ(ũ)Φ(ṽ))(β) = Φ(ũṽ)(β) = Φ(fp+ r)(β) = Φ(r)(β).

The last equality follows from Φ(fp)(β) = Φ(f)(β)Φ(p)(β) = 0, since Φ(p)(β) = q(β) = 0.
Hence we have ψβ(uv) = ψβ(u)ψβ(v), and this shows the claim.
To conclude the proof in the case of simple extensions we just need to observe that p(x)
has n distinct roots in C by 2.1. Moreover a root of p is a root of q and deg(q) = deg(p).
So p and q have the same roots.
Let now L be any finite extension, and let α1, . . . , αn be a basis of L over K. Then we
have the following chain of fields:

K ⊆ K(α1) ⊆ K(α1)(α2) ⊆ · · · ⊆ K(α1, . . . , αn−1)(αn) = L

and we see that every intermediate field is a simple extension of the previous one. Let
φ : K −→ C be a morphism and set n1 := [K(α1) : K]. Then, from the first part of the
proof, we have that there exist exactly n1 morphisms σ1, . . . , σn1

: K(α1) −→ C extending
φ. For the same reason, each σi : K(α1) −→ C can be extended in exactly n2 morphisms
σij : K(α1)(α2) −→ C, j = 1, . . . , n2 (where n2 := [K(α1)(α2) : K(α1)]), and so on.
Recalling that, by 1.13,

[L : K] = [K(α1, . . . , αn−1)(αn) : K(α1, . . . , αn−1)] · · · [K(α1) : K],

we get the result. �

We shall prove (see theorem 2.8) that if L is a finite algebraic extension of K, then L
is a simple extension of K, and one can give a proof of this result which do not depend on
2.2. Using this fact, one can deduce 2.2 only from the first part of the proof given here.

Remark 2.3. Let f(x) ∈ K[x] be an irreducible polynomial and suppose that α, β ∈ C

are two zeros of f . Note that the first part of the above proof (the definition of the map
ψβ) can be used to prove the following relevant fact:
there exists a unique morphism ψ : K(α) −→ K(β) which is the identity map on the
elements of K and such that ψ(α) = β.
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Example 2.3.1. Let us compute all the morphisms ψ : Q[
√
2] −→ C such that ψ|Q =

idQ. The minimum polynomial of
√
2 over Q is x2 − 2. Following the procedure (and

the notations) of 2.2, we have: ψ(a +
√
2b) = a + ψ(

√
2)b, so ψ(

√
2) must be a root of

Φ(x2−2) = x2−2, hence ψ(
√
2) =

√
2 or ψ(

√
2) = −

√
2. Therefore we find two morphisms:

ψ1 : Q[
√
2] −→ C such that ψ1(a+

√
2b) = a+

√
2b

ψ2 : Q[
√
2] −→ C such that ψ1(a+

√
2b) = a−

√
2b

Note that, according to 2.2,
[

Q[
√
2] : Q

]

= 2.

Example 2.3.2. Let us now compute all the morphisms ψ : Q[
√
2,
√
3] −→ C such that

ψ|Q = idQ. First of all recall that Q[
√
2,
√
3] = {a + b

√
2 + c

√
3 + d

√
6 | a, b, c, d ∈ Q}.

Let’s consider the morphism φ := ψ|
Q[

√
2]. Then, from example 2.3.1 above, we have

two possibilities for φ: either φ(a + b
√
2) = a + b

√
2 or φ(a + b

√
2) = a − b

√
2. We

have Q[
√
2,
√
3] = Q[

√
2][

√
3], and x2 − 3 is the minimum polynomial of

√
3 over Q[

√
2].

Therefore ψ(
√
3) must be

√
3 or −

√
3. In this way we get the following four morphisms

ψ1, . . . , ψ4 : Q[
√
2,
√
3] −→ C:

ψ1(a+ b
√
2 + c

√
3 + d

√
6) = a+ b

√
2 + c

√
3 + d

√
6,

ψ2(a+ b
√
2 + c

√
3 + d

√
6) = a+ b

√
2− c

√
3− d

√
6,

ψ3(a+ b
√
2 + c

√
3 + d

√
6) = a− b

√
2 + c

√
3− d

√
6,

ψ4(a+ b
√
2 + c

√
3 + d

√
6) = a− b

√
2− c

√
3 + d

√
6.

We remark that in this example the image of any ψi (i = 1, . . . , 4) is the field Q[
√
2,
√
3],

hence ψ1, . . . , ψ4 are automorphisms of Q[
√
2,
√
3].

Definition 2.4. Let K ⊆ L be an extension. A morphism σ : L −→ C such that σ|K is the
identity will be called a K-morphism of L. We denote by I(L,K) the set of K-morphisms
of L.

From 2.2, I(L,K) has n elements, where n = [L : K] (which is assumed finite).
It is clear that if K ⊆ H ⊆ L, then I(L,H) is a subset of I(L,K). Hence I(L, ·) is
a (contravariant) map that associates to every subfield of L containing K a subset of
I(L,K).
More precisely, let H := {H | K ⊆ H ⊆ L} and consider the map

I(L, ·) : H −→ {subsets of I(L,K)}

defined by
H 7→ I(L,H).

If H1 ⊆ H2 are elements of H, then I(L,H1) ⊇ I(L,H2).

Conversely, if T = {t1, . . . , ts} ⊆ I(L,K), then we can construct a field defined by:

LT := {a ∈ L | t(a) = a for every t ∈ T}.
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It is easy to see that LT is a field contained in L and containing K.
Equivalently, there is a map

L(·) : {subsets of I(L,K)} −→ H
defined by

T 7→ LT .

Proposition 2.5. Let T ⊆ I(L,K) be any subset and let H be any field K ⊆ H ⊆ L.
Then it holds:
i) T ⊆ I(L, LT );
ii) H = LI(L,H).

Proof. i) is immediate, since for any t ∈ T , for any a ∈ LT , we have t(a) = a; so
t|LT = idLT , i.e. t ∈ I(L, LT ).
ii) It is clear that H ⊆ LI(L,H), since for any h ∈ H, t ∈ I(L,H), we have t(h) = h; hence
h ∈ LI(L,H). To see the other inclusion, first recall (see 2.2) that ♯I(L,H) = [L : H].
From 1.13 we have that [L : H] = [L : LI(L,H)][LI(L,H) : H]. If σ ∈ I(L,H), then σ is a
morphism from L to C extending the identity on LI(L,H); in fact: take x ∈ LI(L,H), so
σ(x) = x, hence σ ∈ I(L, LI(L,H)). Therefore I(L,H) ⊆ I(L, LI(L,H)), so [L : LI(L,H)] ≥
♯(I(L,H)). So, using the above equalities, we get:

♯I(L,H) = [L : H] ≥ ♯
(

[I(L,H)
)

[LI(L,H) : H].

Therefore [LI(L,H) : H] ≤ 1, and this gives LI(L,H) = H. �

As a consequence, we get:

Corollary 2.6. The map

I(L, ·) : H −→ {subsets of I(L,K)}
defined by H 7→ I(L,H), is injective.

Proof. It is an immediate consequence of 2.5 ii). �

Corollary 2.7. Let, as usual, [L : K] < ∞. Then the number of fields H such that
K ⊆ H ⊆ L, i.e. ♯(H), is finite.

Proof. It immediately follows from the fact that I(L,K) is finite and from 2.6. �

Theorem 2.8. (Abel’s theorem) If K ⊆ L is a finite extension, then it is simple.

Proof. If α1, . . . , αn is a K-basis of L, then L = K(α1, . . . , αn) and αi are algebraic over
K, from 1.18. It is enough to prove the result for n = 2. Let L = K(α, β), α and β
algebraic over K. Let h ∈ N, and consider the field Lh := K(α+ hβ). Since K ⊆ Lh ⊆ L,
from 2.7 it follows that there exist h, k ∈ N, h 6= k, such that Lh = Lk. In particular
α+ kβ ∈ K(α+ hβ), hence

β(k − h) = (α+ hβ) − (α+ kβ) ∈ K(α+ hβ).

Since k − h ∈ K(α + hβ), we get that β = β(k − h)(k − h)−1 ∈ K(α + hβ). But if
β ∈ K(α+hβ), then α ∈ K(α+hβ) since α = (α+hβ)−hβ, thereforeK(α, β) ⊆ K(α+hβ)
and since the other inclusion is obvious, we get the proof. �
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3. Galois Correspondence

Once more, let us recall that we always assume that all the fields considered are
subfields of C.

A natural question arising from 2.6 is the following: given an extension K ⊆ L, which
subsets of I(L,K) are of the type I(L,H)? Or, equivalently, what is the image of the map

I(L, ·) : H −→ {subsets of I(L,K)}?

It is possible to give a satisfactory answer to this question if we consider a particular
kind of finite extensions K ⊆ L, as we shall see in this section (see 3.13).

Definition 3.1. A finite extension K ⊆ L is a normal (or a Galois) extension if φ(L) ⊆ L
for every φ ∈ I(L,K).

Remark 3.2. If we have that φ(L) ⊆ L, then φ(L) = L. In fact if α1, . . . , αn is a basis
of L over K, then φ(α1), . . . , φ(αn) is a basis of φ(L) over φ(K) = K. Therefore φ(L) is a
subvector space of L of the same dimension of L over K, therefore φ(L) = L.

The following is a characterization of normal extensions:

Proposition 3.3. The following are equivalent:
i) K ⊆ L is a normal extension;
ii) If f(x) ∈ K[x] is an irreducible polynomial which has a zero in L, then all its zeros

are in L.

Proof. i) ⇒ ii) Let f(x) ∈ K[x] be an irreducible polynomial and suppose α ∈ L is a root
of f . Let β ∈ C be another zero of f and consider the K-morphism σ : K(α) −→ C defined
by σ(α) := β (see 2.3). From 2.2 we can extend σ to a map φ : L −→ C. By i), φ(L) ⊆ L,
so β = φ(α) ∈ L.
ii) ⇒ i) Let φ : L −→ C be any K-morphism and let α ∈ L. We want to see that
φ(α) ∈ L. Assume that f(x) ∈ K[x] is the minimum polynomial of α over K. Then
0 = φ(0) = φ(f(α)) = f(φ(α)), so φ(α) is a zero of f and, therefore, by ii), it is in L. �

Definition 3.4. If K ⊆ L is an extension, a K-automorphism of L is a K-morphism (see
2.4) whose image is contained in L, i.e. it is a morphism φ : L −→ L ⊆ C such that
φ|K = idK .
Let G(L,K) be the set of K-automorphisms of L. It is clearly a group under composition
and it is called the Galois group of L over K.

Since the K-automorphisms are particular K-morphisms, we have that G(L,K) ⊆
I(L,K); clearly K ⊆ L is a normal extension iff equality holds.

Definition 3.5. Let f(x) ∈ K[x] and let L := K(α1, . . . , αn), where α1, . . . , αn are all
the roots of f in C; the field L is called the splitting field of f(x) over K. By the Galois
group of f we mean the group G(L,K).
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Lemma 3.6. Let f(x) ∈ K[x] be a polynomial and let α1, . . . , αn be the roots of f in C.
Set L := K(α1, . . . , αn) the splitting field of f over K. If φ : L −→ C is any K-morphism,
then for any i ∈ {1, . . . , n} there exists a j ∈ {1, . . . , n} such that φ(αi) = αj (i.e. φ sends
roots of f into roots of f).
Moreover, any K-morphism φ : L −→ C is determined by the values of φ(α1), . . . , φ(αn),
since

φ(F (α1, . . . , αn)) = F (φ(α1), . . . , φ(αn)),

for every F ∈ K[α1, . . . , αn] = L. In particular φ(L) ⊆ L.

Proof. If φ : L −→ C is any K-morphism, then 0 = φ(f(αi)) = f(φ(αi)), hence φ(αi) ∈
{α1, . . . , αn}. By 1.11, L = K[α1, . . . , αn]. Since φ is a ring homomorphism, we get
φ(F (α1, . . . , αn)) = F (φ(α1), . . . , φ(αn)), as requested. This completes the proof. �

Theorem 3.7. Let L := K(α1, . . . , αn) be the splitting field of f overK (where α1, . . . , αn
are the roots of f in C). It holds:
i) L is a normal extension of K.
ii) G(L,K) can be embedded in Sn (the symmetric group of n objects).

Proof. If φ : L −→ C is any K-morphism, then φ(L) ⊆ L, by 3.6; so i) is proved.
Let φ ∈ G(L,K), then, from 3.6, it follows that for each i ∈ {1, . . . , n}, there exists
σ(i) ∈ {1, . . . , n} such that φ(αi) = ασ(i). In this way we get a permutation σ ∈ Sn, so we
define a map Ψ : G(L,K) −→ Sn and it is easy to verify that it is a group homomorphism.
If φ ∈ kerΨ, then φ(αi) = αi, i = 1, . . . , n, so by 3.6, φ = idL, hence Ψ is injective. �

Recall that if G is a group and X is a set, an action of G on X is a map G×X −→ X
((g, x) 7→ g · x) such that 1G · x = x, for all x ∈ X , and g1 · (g2 · x) = (g1g2) · x, for all
g1, g2 ∈ G, for all x ∈ X .
If x ∈ X , then the orbit of x is the set {g ·x | g ∈ G}. The set of all orbits gives a partition
of X . The action is transitive if for all x, y ∈ X there exists a g ∈ G such that g · x = y.
Hence an action is transitive on each orbit; in particular it is transitive on X iff the orbit
of any x ∈ X is the whole set X .

If L = K(α1, . . . , αn) is the splitting field of f and if G := G(L,K) is the Galois group
of f , then we can define an action of G on the set {α1, . . . , αn} of the roots of f as follows:
φ · αi := φ(αi), for all φ ∈ G, i = 1, . . . , n. This means that we realize G as a subgroup of
Sn (see 3.7), which acts on {α1, . . . , αn}.

Theorem 3.8. If f is irreducible over K[x], then the above action is transitive; in general,
if p is an irreducible factor of f , then the set of its roots is an orbit of the action of G on
{α1, . . . , αn}. Conversely, if {β1, . . . , βk} ⊆ {α1, . . . , αn} is an orbit, then the polynomial

p :=
∏k
i=1(x− βi) is an irreducible factor of f .

Proof. Let f be irreducible in K[x] and let αi, αj be two roots of f in C. Then f is, up to
a unit, the minimum polynomial of αi (see 1.9), hence from 2.3 there exists a K-morphism
φ1 : K(αi) −→ K(αj) such that φ(αi) = αj . From 2.2 we can extend φ1 to a morphism
φ : L −→ C. Since L is normal (by 3.7), then φ ∈ G. Since φ(αi) = φ1(αi) = αj , we see
that the action is transitive.
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Take now a prime factor p of f and let {β1, . . . , βk} ⊆ {α1, . . . , αn} be the roots of p. Since
p is irreducible, we can use the first part of the proof to find a K-morphism

τi : K(β1, . . . , βk) −→ C

such that τi(β1) = βi (i = 1, . . . , k). Using 2.2 we can extend τi to a K-morphism
ψi : L −→ L. This shows that {β1, . . . , βk} are all in the same orbit, since ψi ∈ G and
ψi(β1) = βi.
Conversely, if α is an element of the orbit of β1, then α = ψ(β1) for some ψ ∈ G. Therefore
0 = ψ(0) = ψ(p(β1)) = p(ψ(β1)) = p(α), hence α is a root of p. So {β1, . . . , βk} is an orbit.
Finally, if α is a root of f , we can find an irreducible factor p of f such that p(α) = 0 and
the roots of p give the orbit of α.
Hence we see that there is a bijection between the prime factors of f and the orbits of the
action. �

Example 3.8.1. Let’s consider again the extension Q ⊆ Q[
√
2,
√
3]. In example 2.3.2 we

found that there are exactly four morphisms ψi : Q[
√
2,
√
3] −→ C, i = 1, . . . , 4, and their

image is always Q[
√
2,
√
3], hence the extension Q ⊆ Q[

√
2,
√
3] is normal. Observe that

Q[
√
2,
√
3] is the splitting field of the polynomial f(x) = (x2 − 2)(x2 − 3), so it turns out

to be a normal extension also from i) of 3.7. The Galois group of Q[
√
2,
√
3] over Q is then

the set G := {ψ1, ψ2, ψ3, ψ4}. We can embed G in S4 as follows (see the proof of 3.8): let’s
label with 1, 2, 3, 4 the elements

√
2,−

√
2,
√
3,−

√
3 respectively, which are the four roots

of f(x). Then

ψ1 7→
(

1 2 3 4
1 2 3 4

)

, ψ2 7→
(

1 2 3 4
1 2 4 3

)

,

ψ3 7→
(

1 2 3 4
2 1 3 4

)

, ψ4 7→
(

1 2 3 4
2 1 4 3

)

,

It is easy to verify that the group G is isomorphic to Z2×Z2. The action of G on {1, 2, 3, 4}
(i.e. on the set {

√
2,−

√
2,
√
3,−

√
3}), has the following two orbits: {1, 2} = {ψ ·1 | ψ ∈ G}

and {3, 4} = {ψ · 3 | ψ ∈ G}, according to the fact that f(x) = (x2 − 2)(x2 − 3) is the
product of two irreducible polynomials over Q[x].

Proposition 3.9. Let K ⊆ L be a normal extension of degree n. Then there exists an
irreducible polynomial f(x) ∈ K[x] with roots α1, . . . , αn such that L = K(α1, . . . , αn),
i.e. any normal extension is the splitting field of a suitable irreducible polynomial.

Proof. From 2.8, there exists α ∈ L such that L = K(α). Let f(x) be the minimum
polynomial of α over K. Then deg(f) = n (see 1.14). Set α1 := α, α2, . . . , αn the roots
of f . Then, from 3.3, since L is a normal extension of K and f is irreducible, αi ∈ L for
every i; therefore L ⊇ K(α1, . . . , αn).
Conversely, L = K(α1) ⊆ K(α1, . . . , αn); so we get the requested equality. �

Remark 3.10. From 3.7. and 3.9, we have that K ⊆ L is a normal extension iff L is a
splitting field of an irreducible polynomial in K[x].
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We saw in the example 3.8.1, that Q[
√
2,
√
3] is a normal extension of Q. Hence it

should be the splitting field of an irreducible polynomial. From example 1.6.1, we have that
Q[

√
2,
√
3] = Q[

√
2 +

√
3]. It is easy to verify that p(x) := x4 − 10x2 + 1 is the minimum

polynomial of
√
2 +

√
3 over Q and its splitting field is Q[

√
2 +

√
3].

Definition 3.11. Let K ⊆ L be an algebraic extension. A normal closure of L over K is
an extension M of L such that
1) K ⊆M is normal;
2) if L ⊆ H ⊆M , and K ⊆ H is normal, then H =M

(i.e. M is the smallest extension of L which is normal over K).

Theorem 3.12. Let K ⊆ L be a finite extension. Then we can find a field N which is a
finite extension of K and is a normal closure of K.

Proof. We know from 2.8 that L = K(α). Let f be the minimum polynomial of α over
K and let N be the splitting field of f over K. Then N ⊇ L, and K ⊆ N is a normal
extension (by 3.7). If L ⊆ H ⊆ N and K ⊆ H is normal, since α ∈ L it follows α ∈ H,
hence H contains a zero of f . Since K ⊆ H is normal, it contains all the zeros of f (see
3.3) so H ⊇ N . �

Example 3.12.1. The extension Q ⊆ Q( 3
√
2) is not normal (in fact Q( 3

√
2) contains only

one of the three roots of x3 − 2). As in the above proof, we get that the normal closure of
the considered extension is

Q
(

3
√
2,−1/2 + i

√
3/2,−1/2− i

√
3/2

)

.

Lemma 3.13. Let K ⊆ H ⊆ L and assume that K ⊆ L is a normal extension. Then the
following facts hold:
i) H ⊆ L is a normal extension.
Equivalently, if I(L,K) = G(L,K), then I(L,H) = G(L,H). In this case, the map
considered in 2.6 becomes

G(L, ·) : H −→ M
defined by H 7→ G(L,H) = I(L,H), where

H := {H | K ⊆ H ⊆ L} and M := {M |M ≤ G(L,K)};

ii) K ⊆ H is normal iff φ(H) = H for every φ ∈ G(L,K).

Proof. i) If φ : L −→ C is any H-morphism, then it is a K-morphism, so φ(L) = L; this
means that φ is a H-automorphism of L.
Note also that the map G(L, ·) is well-defined, since G(L,H) is not only a subset, but a
subgroup of G(L,K).
ii) Assume that K ⊆ H is normal and let φ ∈ G(L,K). Clearly φ|H is a K-morphism of
H; but K ⊆ H is normal, hence φ|H is a K-automorphism, i.e. φ(H) = H.
Conversely, let ψ be aK-morphism ofH; by 2.2 we can extend ψ to φ ∈ I(L,K) = G(L,K).
Then ψ(H) = φ(H) = H, hence ψ is a K-automorphism of H; so K ⊆ H is normal. �

The following theorem gives an answer to the question considered at the very beginning
of this section (for the case of normal extensions).
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Theorem 3.14. (Fundamental theorem of Galois) Let K ⊆ L be a normal extension.
Then:
i) the map G(L, ·) : H −→ M is a bijection, whose inverse is given by the map

M 7→ LM = {a ∈ L | t(a) = a for all t ∈M};
ii) if H1, H2 ∈ H, it holds: H1 ⊆ H2 iff G(L,H1) ⊇ G(L,H2);
iii) let H ∈ H; H is a normal extension of K iff G(L,H) is a normal subgroup of G(L,K);
iv) if K ⊆ H is normal, then any K-automorphism of L is a K-automorphism of H; in

this way we get an epimorphism of groups:

G(L,K) −→ G(H,K)

whose kernel is G(L,H). Therefore G(H,K) ∼= G(L,K)/G(L,H).

Proof. i) If M ∈ M and H ∈ H, we already know that M ⊆ G(L, LM ) and that H =
LG(L,H) (see 2.5). So we have only to see that M ⊇ G(L, LM). Let m be the order of the
group M . If we can prove that ♯(G(L, LM)) ≤ m, we are done.
Since ♯(G(L, LM)) = [L : LM ] (see 2.2), it is enough to see that [L : LM ] ≤ m. Let α ∈ L
be such that L = K(α) (see 2.8). Since K ⊆ LM ⊆ L, so L = LM (α) holds. Denote by
σ1 = 1, . . . , σm the elements of M . The following polynomial:

f(x) := (x− σ1(α))(x− σ2(α)) · · · (x− σm(α))

is a polynomial of degree m, and since σ1(α) = α, then f(α) = 0. If we can prove that its
coefficients are in LM , then i) is proved; in fact [L : LM ] = deg(p), where p is the minimum
polynomial of α over LM (see 1.14) and p divides f (see 1.9). So deg(p) ≤ deg(f), i.e.
[L : LM ] ≤ m.
Let τ ∈M , then the polynomial (x−τσ1(α)) · · · (x−τσm(α)) is again f(x), since {τσi | i =
1, . . . , m} = M . From this, we have that the coefficients of f are fixed by any τ ∈ M , so
they are in LM .
ii) It is immediate to verify.
iii) Let H be such that K ⊆ H ⊆ L. We want to see that K ⊆ H is normal if and only if

φG(L,H)φ−1 = G(L,H) for every φ ∈ G(L,K).

Step 1. If φ ∈ G(L,K), then G(L, φ(H)) = φG(L,H)φ−1. In fact: ψ ∈ G(L, φ(H)) ⇔
ψφ(h) = φ(h) for every h ∈ H ⇔ φ−1ψφ(h) = h for every h ∈ H ⇔ φ−1ψφ ∈ G(L,H) ⇔
ψ ∈ φG(L,H)φ−1.
Step 2. K ⊆ H is normal iff φ(H) = H for every φ ∈ G(L,K) (from 3.13 ii)).
Step 3. From i) the bijection G(L, ·) : H −→ M gives that

φ(H) = H ⇔ G(L, φ(H)) = G(L,H).

Step 4. We can conclude that K ⊆ H is normal ⇔ G(L, φ(H)) = G(L,H) for every φ
⇔ φG(L,H)φ−1 = G(L,H) for every φ ⇔ G(L,H) is normal in G(L,K); this gives iii).
iv) If φ ∈ G(L,K), then φ(H) = H since K ⊆ H is normal (see 3.13), so φ|H ∈ G(H,K).
In this way we get a map G(L,K) −→ G(H,K), defined by φ 7→ φ|H , which is surjective
(by 2.2). This map is clearly a group homomorphism. Its kernel is the group

{φ ∈ G(L,K) | φ(h) = h for every h ∈ H} = G(L,H).

�
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4. Solvability by Radicals

Now we want to show how to use the above results in order to see when a polynomial
equation is solvable by radicals. First of all we should explain the meaning of “solvable
by radicals”. By this we mean that the solutions are given by some expressions like:
√
7

4
√

2− 5
√
3− 3

√
17 or

3

√

5
√

1−
√
7 +

7
√

3−
√
8 . . ..

For instance, the solutions of x2 + 2x − 4 = 0 are: x1 = 1 +
√
5 and x2 = 1 −

√
5. The

solutions of x6+2x3−5 = 0 are:
3
√

1 +
√
6 and

3
√

1−
√
6 (where 3

√· can have three values).
Take this last example. The solutions lie in Q(a)(b) = Q(a, b), where a2 = 6 and b is such
that b3 = 1 + a ∈ Q(a), hence we can generalize this situation as follows:

Definition 4.1. An extension K ⊆ L is radical if L = K(α1, . . . , αr), where for each
i = 1, . . . , r there exists an n(i) ∈ N such that

α
n(i)
i ∈ K(α1, . . . , αi−1).

In this case the chain of subfields we get:

K ⊆ K(α1) ⊆ K(α1, α2) ⊆ · · · ⊆ K(α1, . . . , αr)

is called a tower of subfields.

Clearly a radical extension is a finite algebraic extension.

Definition 4.2. Let f ∈ K[x] be a polynomial, and let N be the splitting field of f over
K. Then f is solvable by radicals if there exists a field L such that N ⊆ L and L is a
radical extension of K.

The aim of this section is to prove the following theorem:

Theorem 4.3. A polynomial f is solvable by radicals if and only if its Galois group is a
solvable group.

The complete proof of this theorem will be given in this section. Unfortunately it
requires some technical lemmas that we are going to present here.

Lemma 4.4. If K ⊆ L is a radical extension and M is a normal closure of L over K, then
K ⊆M is radical.

Proof. Let L = K(α1, . . . , αr), where α
n(i)
i ∈ K(α1, . . . , αi−1) and let fi be the minimum

polynomial of αi over K. If f :=
∏

fi, then all the zeros of f must lie in M (see 3.3). If
N is the splitting field of f over K, then N ⊆ M and N is a normal extension of K (see
3.7), hence N = M , so M is the splitting field of f over K, i.e. M = K(∪βij), where βij
(j = 1, . . . , deg(fi)) are all the zeros of fi (clearly ∪βij denotes the set of all βij ’s). Fix
any βij and define

φ : K(α1, . . . , αi−1)(αi) −→ C

by: φ(u) := u for all u ∈ K(α1, . . . , αi−1), φ(αi) := βij . We can extend φ to ψ : N −→ C

(see 2.2). Since N is a normal extension ofK and ψ(k) = k for every k ∈ K, ψ(N) ⊆ N , so
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ψ is an automorphism of N such that ψ(u) = u for every u ∈ K(α1, . . . , αi−1), i.e. ψ is not
only a K-automorphism, but also a K(α1, . . . , αi−1)-automorphism of N . By hypothesis,

there exists an ai ∈ K(α1, . . . , αi−1) such that α
n(i)
i − ai = 0. Hence ψ(α

n(i)
i − ai) =

β
n(i)
ij − ai = 0. So βij is radical over K(α1, . . . , αi−1). Therefore the following extensions

of fields show that N is a radical extension of K:

K ⊆ K(α1, . . . , αr) ⊆ K(α1, . . . , αr)(β11) ⊆ K(α1, . . . , αr, β11)(β12) ⊆ · · ·
· · · ⊆ K(α1, . . . , αr)(∪βij) = N.

�

Let us recall (see Ch.I, 1.26.1) that Cn denotes the (cyclic) group of the nth roots of
unity. Let us set Cn := {ε1 = 1, . . . , εn}.
Lemma 4.5. Let K(⊆ C) be a field, and let L be the splitting field of the polynomial
xn − 1 over K (n ∈ N). Then G(L,K) is abelian.

Proof. Let us consider the group monomorphism

Ψ : G(L,K) −→ Sn

defined in the proof of 3.7, i.e.

Ψ : φ 7→
(

ε1 ε2 · · · εn
φ(ε1) φ(ε2) · · · φ(εn)

)

(see also 3.6). Note that Aut (Cn), the group of automorphisms of Cn, is a subgroup of

Sn and the permutation

(

ε1 ε2 · · · εn
φ(ε1) φ(ε2) · · · φ(εn)

)

is an automorphism of Cn, since φ

preserves products. Therefore Im(Ψ) ⊆ Aut (Cn). But Aut (Cn) ∼= Aut (Zn) and this is
isomorphic to the group of units of Zn (see Ch.I, 1.17.1); then Aut (Cn) is abelian and this
concludes the proof. �

Lemma 4.6. Let K(⊆ C) be a field where xn−1 splits. Let a ∈ K and let L be a splitting
field for xn − a over K. Then G(L,K) is abelian.

Proof. Let α be a zero of xn − a. All the zeros of xn − a are εα, where ε ∈ Cn ⊂ K. In
particular, L = K(α). If φ : L −→ L is a K-automorphism of L, since L is a splitting
field of xn − a over K, then by 3.6 φ(α) = εα for a suitable ε ∈ Cn. Analogously, if ψ
is another K-automorphism of L, ψ(α) = ηα, for a suitable η ∈ Cn. Hence φ(ψ(α)) =
φ(ηα) = ηφ(α) = ηεα = ψ(φ(α)). Therefore G(L,K) is abelian. �

Lemma 4.7. Let p be a prime number and assume that the field K contains all the pth

roots of unity. Let K ⊆ L be a normal extension of degree p. Then there exists an element
d ∈ L such that dp ∈ K and L = K(d).

Proof. Let c ∈ L \K. Then L = K(c); in fact K ⊆ K(c) ⊆ L and

p = [L : K] = [L : K(c)][K(c) : K]

53



so necessarily [L : K(c)] = 1. Moreover [L : K] = ♯I(L,K), by 2.2; on the other hand
K ⊆ L is normal, then I(L,K) = G(L,K); hence G(L,K) is cyclic of order p. Let φ ∈
G(L,K) be a generator. Put ci := φi−1(c), (i = 1, . . . , p). Then c1 = c, and φ(ci) = ci+1

(i = 1, . . . , p − 1), φ(cp) = φp(c) = c1. Let Cp = {ε1, . . . , εp} ⊆ K be the set of the pth

roots of 1 and set

di := c1 + c2εi + c3ε
2
i + · · ·+ cpε

p−1
i , i = 1, . . . , p (1)

(the elements di’s so defined are called the Lagrange resolvents). Since εi ∈ K, φ(εi) = εi,
then it is easy to see that φ(di) = ε−1

i di and so φ(dpi ) = dpi . From this it follows that dpi is
fixed by every element of G(L,K), hence dpi ∈ LG(L,K) = K (by 3.14). Consider now (1)
as a linear system in the variables c1, . . . , cp. It is a p× p linear system whose determinant
is the Vandermonde determinant. Its value is known to be

∏

i>j(εi − εj), hence it is in K
and is not zero. Therefore (1) is a system with exactly one solution. We can find it using
for instance the Cramer’s rule, and we see that every ci is a polynomial in d1, . . . , dp with
coefficients in K. In particular c ∈ K(d1, . . . , dp), so L = K(c) = K(d1, . . . , dp). Hence
there exists an index i such that di 6∈ K, and therefore L = K(di). Since dpi ∈ K, the
lemma is proved. �

Lemma 4.8. Let f(x) ∈ K[x] and let K ⊆ K ′ be an extension. Call N the splitting field
of f over K and N ′ the splitting field of f over K ′. Then the Galois group G(N ′, K ′) of f
over K ′ is (isomorphic to) a subgroup of the Galois group G(N,K) of f over K.

Proof. Let α1, . . . , αn be the roots of f in C, hence N = K(α1, . . . , αn) and N ′ =
K ′(α1, . . . , αn). Let φ ∈ G(N ′, K ′), then φ(αi) ∈ {α1, . . . , αn} and φ(k′) = k′ for ev-
ery k′ ∈ K ′. Therefore φ(k) = k for every k ∈ K and φ(N) ⊆ N , so φ|N ∈ G(N,K). This
defines a map

G(N ′, K ′) −→ G(N,K)

given by φ 7→ φ|N . Moreover, if ψ ∈ G(N ′, K ′) and ψ|N = φ|N , then ψ(αi) = φ(αi), so
ψ = φ by 3.6. Therefore the previous map is injective. It is clear that is also a group
homomorphism. �

Now we have all the necessary lemmas to give the proof of 4.3.

Proof (of theorem 4.3). Suppose first that f(x) = 0 is solvable by radicals over K. Let
N be the splitting field of f over K. We want to show that G(N,K) is solvable. Let us
divide the proof in some steps.
I) N is contained in a normal radical extension M of K.
In fact N is contained in a radical extension L of K by assumption (see 4.2). Let M be
the normal closure of K ⊆ L. Then, by 4.4, K ⊆M is a radical extension, and K ⊆M is
normal; clearly N ⊆M .
II) Since K ⊆M is radical, there exists a chain of subfields

K ⊆ K(α1) ⊆ K(α1, α2) ⊆ · · · ⊆ K(α1, . . . , αr) =M

where α
n(i)
i ∈ K(α1, . . . , αi−1).

Let n be the l.c.m. of the n(i)’s and let ε be a primitive nth-root of the unity.
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III) We want to show that K ⊆M(ε) is a normal radical extension.
In fact, K ⊆M is normal, then M is the splitting field of a polynomial g ∈ K[x] (see 3.9);
therefore M(ε) is the splitting field of g(x)(xn − 1), since it contains all its roots, being ε
primitive. Hence K ⊆M(ε) is normal. Moreover the tower of subfields

K = K1 ⊆ K2 = K1(ε) ⊆ K3 = K2(α1) ⊆ · · · ⊆ Kr+2 = Kr+1(αr) =M(ε) (2)

gives M(ε) as a radical extension of K, since Ki ⊆ Ki+1 is clearly radical and εn = 1 ∈ K,
so K ⊆ K(ε) is radical.
IV) The extensions Ki ⊆ Ki+1 appearing in the tower (2) are splitting fields for equations
of the kind xn(i−1) − ai−1 = 0.
In fact, since ε is a primitive nth-root of unity, then K1(ε) is the splitting field over K

of xn − 1. Let now i > 1; then Ki+1 = Ki(αi−1) where α
n(i−1)
i−1 = ai−1, for a suitable

ai−1 ∈ Ki. Hence Ki+1 is the splitting field of xn(i−1) − ai−1 over Ki. In fact, if β is a
root of xn(i−1) − ai−1, then β

n(i−1) = ai−1, so (β/αi−1)
n(i−1) = 1, and since n(i − 1) |n,

also (β/αi−1)
n = 1, so β/αi−1 ∈ K1(ε), hence β ∈ K1(ε, αi−1) ⊂ Ki(αi−1).

V) The extensions Ki ⊆ Ki+1 in (2) are normal and the Galois groups G(Ki+1, Ki) are
abelian.
The above extensions are clearly normal, since splitting fields, by IV). From 4.5, we get
that G(K1(ε), K) is abelian. Since, for i > 1, Ki+1 is the splitting field of xn(i−1) − ai−1

over Ki, we can apply 4.6 and we get that G(Ki+1, Ki) is abelian.
VI) Final step.
Let H := G(M(ε), K). From (2) and 3.14 ii) we get the chain of subgroups

H = G(M(ε), K1) ≥ G(M(ε), K2) ≥ · · · ≥ G(M(ε),M(ε)).

Set Hi := G(M(ε), Ki). Since Ki+1 is a normal extension of Ki, then Hi+1 is a normal
subgroup of Hi (see 3.14, iii)) and Hi/Hi+1

∼= G(Ki+1, Ki) (by 3.14, iv)), so Hi/Hi+1 is
abelian. This shows that G(M(ε), K) is a solvable group.
Since K ⊆ N ⊆ M(ε) are both normal extensions of K, then G(N,K) is a quotient of
G(M(ε), K) (see 3.14 iv)), hence it is solvable (see Ch.I, 5.3).

Conversely, assume that the Galois group G = G(N,K) of f over K is solvable, where
N is the splitting field of f over K. Let n := |G| = [N : K]. Let K ′ = K(ε), where ε
is a primitive nth-root of unity, and let N ′ be the splitting field of f over K ′. By 4.8,
G(N ′, K ′) is isomorphic to a subgroup H of G. Hence H is solvable (Ch.I, 5.3) and has a
composition series:

1 = Hr+1 ⊳ · · · ⊳ H2 ⊳ H1 = H

whose composition factors Hi/Hi+1 are cyclic of prime order pi (1 ≤ i ≤ r) (see Ch.I,
5.8).
Setting Ki := (N ′)Hi we have the corresponding increasing chain of subfields

K(ε) = K ′ = K1 ⊆ K2 ⊆ · · · ⊆ Kr+1 = N ′. (3)

Since Hi = G(N ′, Ki) for all i (see the bijection in 3.14), then G(N ′, Ki+1) ⊳ G(N ′, Ki).
So, by the Galois correspondence (see 3.14, iii) and iv)), Ki ⊆ Ki+1 is a normal extension
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and G(Ki+1, Ki) ∼= G(N ′, Ki)/G(N ′, Ki+1) = Hi/Hi+1, which is cyclic of order pi. Since
Hi+1 ≤ Hi ≤ H ≤ G and |Hi| = pi|Hi+1|, then by Lagrange theorem, pi |n (= |G|);
then Cpi ≤ Cn; moreover Ki ⊇ K(ε), then it contains a primitive nth-root of unity; so Ki

contains Cn and hence it contains also the pi
th roots of 1.

We can now apply 4.7 and we get that Ki+1 = Ki(αi), where α
pi
i ∈ Ki. From this and

from the fact that K ⊆ K(ε) is a radical extension (εn = 1 ∈ K), we get that N ′ contains
a tower of radical extensions of K

K ⊆ K(ε) = K1 ⊆ K2 ⊆ · · · ⊆ Kr+1 = N ′

which extends (3), i.e. N ′ is a radical extension of K, and since N ′ contains the splitting
field N , then f(x) = 0 is solvable by radicals over K. �

These theorems allow us to show that there are equations which are not solvable by
radicals. It is enough in fact to give a polynomial whose Galois group is not solvable (for
instance Sm with a suitable m ≥ 5: see Ch.I, 5.7).

Theorem 4.9. Let p be a prime number, f ∈ Q[x] irreducible over Q of degree p. Suppose
that f has exactly two non-real zeros in C. Then the Galois group of f over Q is the whole
symmetric group Sp.

Proof. First note that f is, up to a constant, a minimum polynomial of α over Q, where
α is any root of f in C; hence p = [Q(α) : Q] by 1.14.
Let L be the splitting field of f , then the Galois group of f over Q is G := G(L,Q).
Using the identification considered in theorem 3.7, we can assume that G ≤ Sp. We have:
Q ⊆ Q(α) ⊆ L, hence p = [Q(α) : Q] divides [L : Q] = |G(L,Q)| (see 1.13 and 2.2).
By Sylow theorem (Ch.I, 2.8 d)), G has an element of order p. The only elements of Sp of
order p are the p-cycles, soG contains a p-cycle. Complex conjugation is aQ-automorphism
of C which induces a Q-automorphism of L, since L is normal. This fixes the p − 2 real
roots of f and exchanges the two non-real roots. Hence G, as subgroup of Sp, contains a
2-cycle. But if a subgroup of Sp contains a 2-cycle and a p-cycle, it is necessarily Sp (see
Ch.I, 4.5). Therefore G = Sp. �

It is easy to construct polynomials with the characteristics considered in the above
theorem. For instance the polynomial x5 − 6x+ 3 ∈ Q[x] is not solvable by radicals, since
it has exactly 2 non real roots and we can apply 4.9 and 4.3 (see also Ch.I, 5.7).

As an example of applications of the previous results, we want to sketch how to find
a formula for the solution of cubic equations. First of all note:

Remark 4.10. If f(x) = x3 − s1x
2 + s2x − s3 ∈ K[x], then the Galois group of f is a

(not necessarily proper) subgroup of S3 (see 3.7). Since S3, and hence any subgroup of it,
is solvable (see Ch.I, 5.1.2 and 5.3), any cubic equation is solvable by radicals.

For technical reasons (which will be clear later) we assume that the field K contains
the cubic roots of 1, i.e. 1,−1/2 +

√
3/2 i,−1/2−

√
3/2 i. For instance

K = Q(−1/2 +
√
3/2 i,−1/2−

√
3/2 i).
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Suppose further that f is irreducible and the Galois group of f is S3; for instance, f could
be a polynomial with exactly one real root (see 4.9).
If α, β, γ ∈ C are the roots of f(x) = 0, then L := K(α, β, γ) = K[α, β, γ] is the splitting
field of f . The Galois group G of f is assumed, as said, to be the whole S3. The elements
of G are then:

σ1 · · ·







α 7→ α
β 7→ β
γ 7→ γ

↔
(

1 2 3
1 2 3

)

, σ2 · · ·







α 7→ α
β 7→ γ
γ 7→ β

↔
(

1 2 3
1 3 2

)

,

σ3 · · ·







α 7→ β
β 7→ α
γ 7→ γ

↔
(

1 2 3
2 1 3

)

, σ4 · · ·







α 7→ β
β 7→ γ
γ 7→ α

↔
(

1 2 3
2 3 1

)

,

σ5 · · ·







α 7→ γ
β 7→ β
γ 7→ α

↔
(

1 2 3
3 1 2

)

, σ6 · · ·







α 7→ γ
β 7→ α
γ 7→ β

↔
(

1 2 3
3 2 1

)

.

The composition series of S3 is:

{σ1} ⊳ A3 ⊳ S3, (4)

where

A3 :=

{(

1 2 3
1 2 3

)

,

(

1 2 3
2 3 1

)

,

(

1 2 3
3 1 2

)}

is abelian since cyclic of order 3. So

S3/A3 =

{[(

1 2 3
1 2 3

)]

,

[(

1 2 3
1 3 2

)]}

is abelian, since cyclic of order 2 (see Ch.I, 4.7, 4.12, 5.1.2). From the Galois correspondence
(theorem 3.14), it is clear that L{σ1} = L and LS3 = K; so we have the tower

LS3 = K ⊆ LA3 ⊆ L = L{σ1}.

It remains to compute H := LA3 . It is useful in the next computations, to use the following
relations:











α + β + γ = s1

αβ + αγ + βγ = s2

αβγ = s3

(5)

coming from the equality f(x) = (x− α)(x− β)(x− γ).

We want now to sketch the proof of the fact that H = K[φ, ψ], where

φ := α2β + β2γ + γ2α and ψ := αβ2 + βγ2 + γα2.
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In order to see this, consider first of all the elements of the form

F (u, v) := αuβv + βuγv + γuαv.

They are clearly in H since they are invariant under A3 = {σ1, σ4, σ5}. It is easy to see
that

F (u+ 1, v) = s1F (u, v)− F (u, v + 1)− s3F (u− 1, v − 1)

F (u, v + 1) = s1F (u, v)− F (u+ 1, v)− s3F (u− 1, v − 1)

F (u+ 1, v + 1) = s2F (u, v)− s3F (u, v − 1)− s3F (u− 1, v)

(6)

Recall now that any symmetric polynomial in α, β, γ can be given as a polynomial expres-
sion in s1, s2, s3, hence in particular, it is in K (see [S], Ch.2, Thm. 2.9).
Therefore the symmetric polynomials F (u, 0), F (0, v) and F (u, u) are in K ⊂ K[φ, ψ], for
every u and v.
Moreover we also have F (2, 1) = φ ∈ K[φ, ψ] and F (1, 2) = ψ ∈ K[φ, ψ]. Therefore,
applying (6), we get for instance:

F (3, 1) = s1F (2, 1)− F (2, 2)− s3F (1, 0) ∈ K[φ, ψ].

In general we get that F (u, v) ∈ K[φ, ψ] for every u and v, using a sort of induction, based
on the following schemes (obtained from (6)):

(u, v + 1)
|

(u, v) −→ (u+ 1, v)
�

(u− 1, v − 1)

(u, v + 1)
↑

(u, v) — (u+ 1, v)
�

(u− 1, v − 1)

(u+ 1, v + 1)
ր

(u− 1, v) — (u, v)
|

(u, v − 1)

Let now f(α, β, γ) be any polynomial in H. Taking into account that f must be in-
variant under A3, if cα

iβjγh is a monomial in f , then also σ4(cα
iβjγh) = cαjβhγi and

σ5(cα
iβjγh) = cαhβiγj must be monomials in f , hence

f = cαiβjγh + cαjβhγi + cαhβiγj + other monomials.

Let us assume that i = min{i, j, h}. Hence cαiβjγh+cαjβhγi+cαhβiγj = csi3F (j−i, h−i)
and in this way we see that f ∈ K[φ, ψ], therefore H ⊆ K[φ, ψ]; the other inclusion follows
from the fact that φ, ψ ∈ H.

We know from 3.14 that K ⊆ H has S3/A3 as the Galois group and H ⊆ L has A3 as
Galois group. Note that [H : K] =| S3/A3 |= 2 and [L : H] = |A3| = 3.
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To better understand the following considerations, we suggest to keep in mind lemma
4.7 and its proof (which will be applied here to the two extensions K ⊆ H and H ⊆ L).
Observe that φ+ψ = s1s2−3s3 ∈ K, so ψ ∈ K[φ]; therefore, if φ 6∈ K, thenK[φ, ψ] = K[φ].
Setting

η :=

[(

1 2 3
1 3 2

)]

the generator of S3/A3, then η(φ) = ψ. Following 4.7 we see that the two Lagrange
resolvents are: φ − ψ and φ + ψ. Necessarily φ − ψ 6∈ K, since φ + ψ ∈ K, as remarked
above. Moreover (φ − ψ)2 must be in K, accordingly to 4.7. In fact, using the relations
(5) one verifies that

(φ− ψ)2 = s21s
2
2 + 18s1s2s3 − 27s23 − 4s31s3 − 4s32 ∈ K.

Hence H = K[d], where d = φ− ψ and

d2 = s21s
2
2 + 18s1s2s3 − 27s23 − 4s31s3 − 4s32. (7)

To know the value of φ and ψ w.r.t. d, one has to solve the linear system:

{

φ+ ψ = s1s2 − 3s3

φ− ψ = d
(8)

Now we consider the extension H ⊆ L. Its Galois group is A3. It is clear that at least one
of the three roots α, β, γ is not in H. Assume α 6∈ H. Then, following again the proof of

4.7, L = H(α). A generator of A3 is θ :=

(

1 2 3
2 3 1

)

. Note that θ(α) = β, θ(β) = γ and

θ(γ) = α. Let, as usual, C3 = {1, ε, ε2} (ε = −1/2 +
√
3/2i) be the set of cubic roots of 1.

We assume, as said, they are in K (hence in H). The Lagrange resolvents are:

d1 = α+ β + γ

d2 = α+ βε+ γε2

d3 = α+ βε2 + γε

. (9)

At least one of the di’s is not in H. Since d1 = s3 ∈ K, then at least one of d2, d3, say δ,
is not in H. Then δ3 ∈ H = K[φ, ψ] = K[d]. In fact it is easy to verify that

d32 = s31 − 6s3 − 3(s1s2 − 3s3) + 3εφ+ 3ε2ψ + 6s1 ∈ H (10)

and, analogously

d33 = s31 − 6s3 − 3(s1s2 − 3s3) + 3εψ + 3ε2φ+ 6s1 ∈ H. (11)

Hence
K ⊆ K[d] ⊆ K[d][δ].
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so any element of L = K[d][δ] (in particular α, β, γ) can be expressed as a polynomial
expression in d and δ. To find the value of α, β and γ we can consider (9) as a linear system
in the variables α, β, γ. To simplify the notations, we shall assume that α + β + γ = 0
(i.e. s1 = d1 = 0). This is not restrictive, since we can always have this condition setting
y = x − s1/3 in the polynomial f(x). Solving the system (9) and using all the relations
(7), (8), (10), (11) defining φ, ψ, d2, d3 found so far, we find:

α =
3

√

−q
2
+

√

q2

4
+
p3

27
+

3

√

−q
2
−
√

q2

4
+
p3

27

where p := s2 and q := s3.
This is the well known formula for the solution of cubic equations. Of course it could also
be find without an explicit use of Galois theory. Let us conclude this section by recalling
that there exists a similar formula also for the equations of degree four, according to the
fact that S4 is solvable.
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