Ecco un elenco di alcuni dei principali teoremi utili in teoria di Galois per provare la corrispondenza di Galois.

Teorema 1 Sia m un polinomio irriducibile in K[x] e siano $K(\alpha)$ e $K(\beta)$ due estensioni algebriche semplici tali che α e β hanno lo stesso polinomio minimo m su K. Allora esiste un isomorfismo di campi tra $K(\alpha)$ e $K(\beta)$ che fissa gli elementi di K e manda α in β .

Teorema 2 Un'estensione L:K finita è normale se e solo se è campo di spezzamento di un polinomio di K[x].

Teorema 3 Sia K campo. G un sottogruppo finito del gruppo di automorfismi di K. Sia K_0 il campo fissato da G, cioè $K_0 = \{a \in L \mid \sigma(a) = a \text{ per ogni } \sigma \in G\}$. Allora:

$$[K:K_0] = |G|$$

Teorema 4 Sia L: K un'estensione finita e normale. Sia M un campo intermedio tra K ed L. Sia $\tau: M \longrightarrow L$ un K-monomorfismo. Allora esiste un K-automorfismo $\sigma: L \longrightarrow L$ tale che estende τ .

Teorema 5 Sia L: K un'estensione finita. Sono equivalenti:

- 1. $L: K \ e \ normale;$
- 2. Esiste un'estensione normale finita N di K che contiene L tale che ogni K-monomorfismo $\tau:L\longrightarrow N$ è un automorfismo di L;
- 3. Per ogni estensione finita M di K che contiene L e ogni K-monomorfismo $\tau:L\longrightarrow M$ è tale che è K-automorfismo.

Teorema 6 Sia L: K un'estensione finita, normale e separabile, allora $|\Gamma(L; K)| = [L:K]$.

Teorema 7 Sia L: K un'estensione finita e sia G il suo gruppo di Galois. Se L: K è normale, allora K è il campo fissato da G.