Corso di studi in Matematica Complementi di algebra - Teoria di Galois

Alessandro Logar Diario lezioni.

- **Lezione 1.** Introduzione al corso. Equazioni di I, II, III, e IV grado. Le formule di Cardano, il metodo usato da Lagrange per ottenere le formule risolutive delle equazioni di grado 2, 3 e 4 con un procedimento unico (il risolvente di Lagrange).
- Lezione 2. Richiami di algebra. Anelli, ideali, ideali massimali, omomorfismi, campi. Estensione di campi. Campo esteso con un insieme di elementi. Elementi algebrici e trascendenti. Polinomio minimo di un elemento algebrico.
- **Lezione 3.** Estensione di un omomorfismo $f:A\longrightarrow B$ ad un omomorfismo $FA[x]\longrightarrow B$ che manda x in elemento di B fissato. Stesso risultato per più variabili. Dati due anelli $A\subseteq B$, e $b_1,\ldots,b_n\in B$, descrizione del più piccolo anello che contiene A e b_1,\ldots,b_n (ed è contenuto in B). Definizione di $A[b_1,\ldots,b_n]$. Analogo problema per i campi. Definizione di $K(a_1,\ldots,a_n)$.
- **Lezione 4.** Definizione di L: K, estensione di campi. Se $a_1, \ldots, a_n \in L$ sono algebrici su K, allora $K[a_1, \ldots, a_k] = K(a_1, \ldots, a_n)$. Estensioni semplici. Estensioni finite di campi. La notazione [L:K]. IL grado di un'estensione. Teorema della torre. Estensioni algebriche. Se un'estensione è finita, allora è algebrica. Il campo dei numeri algebrici.
- **Lezione 5.** Campo di spezzamento di un polinomio: definizione e costruzione. Unicità del campo di spezzamento (a meno di isomorfismi). Definizione di estensione normale di campi. L: K è un'estensione normale e finita se e solo se L è campo di spezzamento di un polinomio di K[x].
- **Lezione 6.** Il derivato di un polinomio e sue proprietà. Definizione di polinomio separabile. In caratteristica 0 ogni polinomio irriducibile è separabile. Così pure nei campi finiti. Estensioni separabili. Ereditarietà della separabilità. Data un'estensione L:K con $L=K(\alpha_1,\ldots,\alpha_n)$ separabili su K. Allora L:K è separabile.
- **Lezione 7.** Definizione di K-monomorfismo tra due campi L ed M, entrambi estensioni di K. Data estenzione L:K finita e normale, M campo intermedio, un K-monomorfismo $\tau:M\longrightarrow L$ si estende a un K-automorfismo di L. Definizione di chiusura normale. Esistenza e unicità (a meno di isomorfismi) della chiusura normale. Caratterizzazioni delle estensioni normali. Se L:K è un estensione finita separabile, di grado n, allora esistono esattamente n K-monomorfismi da L in N (dove N è chiusura normale di L:K).

- **Lezione 8.** Definizione di gruppo di Galois $\Gamma(L:K)$ di un'estensione L:K. La corrispondenza di Galois e sue prime proprietà. Lemma di Dedekind sull'indipendenza lineare dei monomorfismi di campi.
- **Lezione 9.** Sia G un sottogruppo finito del gruppo di automorfismi di un campo K. Se K_0 è il campo fissato da G, allora $[K:K_0] = |G|$. Conseguenze: se $G = \Gamma(L:K)$ e H è sottogruppo di G, allora $[\beta(H):K] = [L:K]/|H|$ (dove $\beta(H)$ è il campo fissato da H). Inoltre: Se L:K è normale e separabile, allora $\Gamma(L:K) = [L:K]$ e se L:K finita e separabile e normale, allora $K = \beta(G)$, dove G è il gruppo di Galois di L:K.
- **Lezione 10.** Il teorema principale: la corrispondenza di Galois. Sia L:K un'estensione finita, sia \mathcal{F} l'insieme dei campi intermedi tra K ed L e sia \mathcal{G} l'insieme dei sottogruppi di Galois di $\Gamma(L:K)$. Siano infine

$$\alpha: \mathcal{F} \longrightarrow \mathcal{G}, \quad \beta: \mathcal{G} \longrightarrow \mathcal{F}$$

date da: $\alpha(M) = \Gamma(L:M)$ e $\beta(H)$ il sottocampo di L fissato da H. Se L:K è estensione finita, normale e separabile, allora α e β sono una l'inversa dell'altra. Le due applicazioni ribaltano le inclusioni. Il gruppo di Galois $\Gamma(L:K)$ ha [L:K] elementi. Se M è un campo intermedio, $[L:M] = |\alpha(M)|$, un campo intermedio $M \in \mathcal{F}$ è normale su K se e solo se $\alpha(M)$ è un sottogruppo normale di $\Gamma(L:K)$, se $M \in \mathcal{F}$ è estensione normale di K, allora $\Gamma(M;K) = \Gamma(L:K)/\alpha(M)$.

- Lezione 11. Estensioni radicali. Definizione di risolubilità per radicali. Lemmi preparatori.
- Lezione 12. Dimostrazione del fatto che se un polinomio è risolubile per radicali, allora il suo gruppo di Galois è un gruppo risolubile.
- **Lezione 13.** Dimostrazione del teorema che se $f \in K[x]$ è un polinomio il cui gruppo di Galois è un gruppo risolubile, allora il polinomio è risolubile per radicali. Esempi. Alcuni cenni alle costruzioni con riga e compasso e ai poligoni regolari.