Esempio relativo alla dimostrazione del teorema delle sizigie di Hilbert

Sia $P = \mathbb{Q}[x, y, z]$, e sia N = P/I, dove I è l'ideale generato da:

$$x^3y - 1, \quad xy^3 - z$$

N è un P-modulo finitamente generato (il suo generatore è $n_1 = [1]$). Pertanto abbiamo la mappa $\phi_0: P \longrightarrow N$ data da $\phi_0(f) = [f \cdot 1]$ e quindi la seguente sequenza esatta corta:

$$0 \longrightarrow \ker(\phi_0) \longrightarrow P \longrightarrow N \longrightarrow 0$$

dove $\ker(\phi_0) = I$. La base di Gröbner ridotta rispetto all'ordinamento σ dato da DegRevLex di $\ker(\phi_0)$ è la seguente:

$$xy^3 - z$$
, $x^3y - 1$, $x^2z - y^2$, $y^5 - xz^2$

Seguendo la dimostrazione del teorema delle sizigie di Hilbert, ordiniamo questi elementi in modo che i LT_σ siano in ordine crescente rispetto al term order PosLex di $P=\mathbb{Q}[x,y,z]$, quindi la precedente σ -base di Gröbner viene riscritta così:

$$g_1 = x^3y - 1$$
, $g_2 = x^2z - y^2$, $g_3 = xy^3 - z$, $g_4 = y^5 - xz^2$

Sia $\mathcal{G} = (g_1, \dots, g_4)$ e sia δ il t.o. di P^4 indotto da (σ, \mathcal{G}) (pertanto $t_1 \varepsilon_h < t_2 \varepsilon_k$ se e solo se $LT_{\sigma}(t_1 g_h) <_{\sigma} LT_{\sigma}(t_2 g_k)$ o, se $LT_{\sigma}(t_1 g_h) = LT_{\sigma}(t_2 g_k)$, allora h > k). Costruiamo la δ -base di Gröbner di Siz (\mathcal{G}) (solite notazioni). Si ottiene:

$$\begin{array}{lll} h_3 &=& \tau_{12} &=& (z,-xy,-1,0), \\ h_2 &=& \tau_{13} &=& (y^2,-1,-x^2,0), \\ h_1 &=& \tau_{14} &=& (y^4,-x^2z-y^2,0,-x^3), \\ h_5 &=& \tau_{23} &=& (0,y^3,-xz,1), \\ h_4 &=& \tau_{24} &=& (0,-xz^2+y^5,0,-x^2z+y^2), \\ h_6 &=& \tau_{34} &=& (0,-z,y^2,-x). \end{array}$$

I termini direttivi rispetto al term order δ indotto da (σ, \mathcal{G}) dei vettori scritti sopra sono:

$$LT_{\delta}(h_1) = y^4 \varepsilon_1;
LT_{\delta}(h_2) = y^2 \varepsilon_1;
LT_{\delta}(h_3) = z \varepsilon_1;
LT_{\delta}(h_4) = y^5 \varepsilon_2;
LT_{\delta}(h_5) = y^3 \varepsilon_2;
LT_{\delta}(h_6) = y^2 \varepsilon_3.$$

(si noti che i nomi h_1, \ldots, h_6 sono stati dati in modo da avere i $LT_{\delta}(h_1), \ldots, LT_{\delta}(h_6)$ ordinati nell'ordinamento PosLex di P^4). Si noti ancora che, come previsto dalla dimostrazione data nel corso del teorema delle sizigie di Hilbert, i termini direttivi degli h_i sono costituiti da monomi nelle sole variabili $y \in z$.

Fino a questo momento abbiamo quindi costruito la seguente sequenza esatta:

$$0 \longrightarrow \ker(\phi_1) \longrightarrow P^4 \xrightarrow{\phi_1} P \xrightarrow{\phi_0} N \longrightarrow 0$$

In particolare abbiamo costruito una presentazione del modulo N data da: $P^4 \xrightarrow{\phi_1} P \xrightarrow{\phi_0} N \longrightarrow 0$.

Il modulo $\ker(\phi_1)$ è generato da 6 elementi, quindi consideriamo:

$$P^6 \xrightarrow{\phi_2} \ker(\phi_1) \longrightarrow 0$$

Abbiamo che h_1, \ldots, h_6 è una base di Gröbner per il modulo $\ker(\phi_1)$ e da essa quindi possiamo ottenere una base di Gröbner per $\ker(\phi_2)$. L'insieme delle coppie degli h_i per cui si deve calcolare l'S-vettore è il seguente:

$$\mathbb{B} = \{(1,2), (1,3), (2,3), (4,5)\}$$

Le sizigie che si ottengono sono le seguenti sestuple:

$$\begin{array}{llll} m_2 & = & (1,-y^2,0,0,0,-x^2) & \text{nasce da} & h_1-y^2h_2; \\ m_1 & = & (z,0,-y^4,-x,0,-y^2) & \text{nasce da} & zh_1-y^4h_3; \\ m_3 & = & (0,z,-y^2,0,-x,-1) & \text{nasce da} & zh_2-y^2h_3; \\ m_4 & = & (0,0,0,1,-y^2,-xz) & \text{nasce da} & h_4-y^2h_5. \end{array}$$

Anche qui gli m sono ordinati in modo da avere i termini direttivi ordinati nell'ordinamento PosLex di P^6 . I termini direttivi per l'opportuno ordinamento indotto sono:

$$LT(m_1) = (z, 0, 0, 0, 0, 0);$$

$$LT(m_2) = (1, 0, 0, 0, 0, 0);$$

$$LT(m_3) = (0, z, 0, 0, 0, 0);$$

$$LT(m_4) = (0, 0, 0, 1, 0, 0).$$

Come si vede, e come ci si deve aspettare, i termini direttivi sono fatti con termini che sono solo nella variabile z (o costanti).

I vettori m_1, \ldots, m_4 sono una base di Gröbner (per un opportuno term order su P^6 indotto dal term order precedente) del modulo $\ker(\phi_2)$. Quindi abbiamo costruito la seguente sequenza esatta:

$$0 \longrightarrow \ker(\phi_2) \longrightarrow P^6 \xrightarrow{\phi_2} P^4 \xrightarrow{\phi_1} P \xrightarrow{\phi_0} N \longrightarrow 0$$

Il modulo $\ker(\phi_2)$ è generato da 4 elementi, quindi consideriamo:

$$P^4 \xrightarrow{\phi_3} \ker(\phi_2) \longrightarrow 0$$

e cerchiamo il $\ker(\phi_3)$.

Dalla base di Gröbner m_1, \ldots, m_4 di $\ker(\phi_2)$ possiamo ottenere una base di Gröbner di $\ker(\phi_3)$. Vale:

$$\mathbb{B} = \{(1,2)\}$$

La sizigia che si ottiene è la seguente:

$$p = (-1, z, y^2, -x)$$
 nasce da $zm_2 - m_1$

Vale:

$$LT(p) = (1, 0, 0, 0)$$

e, come si vede, è un elemento di \mathbb{Q}^4 (quindi non contiene variabili). Come previsto dalla dimostrazione del teorema delle sizigie di Hilbert, sappiamo allora che $\ker(\phi_2)$ è un modulo libero e la sizigia p di m_1, \ldots, m_4 dà la relazione:

$$(-1) \cdot m_1 + (z) \cdot m_2 + (y^2) \cdot m_3 + (-x) \cdot m_4 = 0$$

da cui si ricava che m_1 è combinazione lineare di m_2, m_3 e m_4 e tra m_2, m_3 e m_4 non ci sono relazioni (se ve ne fossero, dovrebbero comparire tra le sizigie). Quindi m_2, m_3, m_4 è una base di $\ker(\phi_2)$ e allora possiamo definire la mappa $\phi_3: P^3 \longrightarrow P^6$ data da $\phi_3(f_1, f_2, f_3) = f_1 m_2 + f_2 m_3 + f_3 m_4$ la cui immagine è $\ker(\phi_2)$ e quindi otteniamo la seguente sequanza esatta (risoluzione libera di N):

$$0 \longrightarrow P^3 \xrightarrow{\phi_3} P^6 \xrightarrow{\phi_2} P^4 \xrightarrow{\phi_1} P \xrightarrow{\phi_0} N \longrightarrow 0$$

Si noti che la lunghezza di questa risoluzione libera di N è 3, così come 3 è il numero di variabili dell'anello P.