ALGEBRA 2 Esercizi 2 - 4 ottobre 2025

- 1. Nell'anello \mathbb{Z} degli interi, si consideri l'ideale generato da due numeri a e b, cioè l'ideale I=(a,b). Provare che I è generato dal massimo comun divisore tra a e b.
- 2. Provare che in \mathbb{Z}_m un elemento [a] è divisore dello zero se e solo se a ed m non sono primi tra loro.
- 3. Calcolare $\phi(2^n)$ (dove ϕ è la funzione totiente di Eulero).
- 4. Siano p e q due numeri primi. Calcolare $\phi(pq)$ (anche qui ϕ indica la funzione totiente).
- 5. Siano $a, b \in \mathbb{Z}$ primi tra loro (quindi mcd(a, b) = 1). Sia $c \in \mathbb{Z}$. Provare che se a divide bc, allora a divide c. (Trovare una soluzione al problema usando l'identità di Bezout).
- 6. Usare il risultato dell'esercizio precedente per provare che se a e b sono due interi primi tra loro (anche detti coprimi) e se entrambi dividono un numero intero m, allora il loro prodotto divide m. Fornire un esempio per mostrare che il risultato non è vero se a e b non sono coprimi.
- 7. Calcolare il mcd (20, 32) usando le divisioni successive. Detto d tale massimo comun divisore, trovare $\alpha, \beta \in \mathbb{Z}$ in modo che valga $d = 20\alpha + 32\beta$. Trovare poi tutte le soluzioni (a,b) dell'equazione 20a + 32b = d (con $a,b \in \mathbb{Z}$).
- 8. Sia $G = \{a \in \mathbb{Q} \mid a > 0\}$. Provare che G è un sottogruppo di $(\mathbb{Q} \setminus \{0\}, \cdot)$. Descrivere le classi laterali di G in $\mathbb{Q} \setminus \{0\}$. Che gruppo è il gruppo quoziente $(\mathbb{Q} \setminus \{0\})/G$?