ALGEBRA 2 Esercizi 6 - 31 ottobre 2025

- 1. Dimostrare che un polinomio $f \in \mathbb{Z}_2[x]$ ha un fattore lineare se e solo se ha termine noto nullo o ha un numero pari di monomi.
- 2. Trovare tutti i polinomi riducibili e irriducibili di grado 2 di $\mathbb{Z}_5[x]$.
- 3. Si consideri il polinomio $f = x^3 + x^2 + 1 \in \mathbb{Z}_2[x]$. Provare che f è irriducibile. Sia poi $\pi : \mathbb{Z} \longrightarrow \mathbb{Z}_2$ la proiezione canonica. Da π si costruisca l'omomorfismo di anelli $\phi : \mathbb{Z}[x] \longrightarrow \mathbb{Z}_2[x]$ ottenuto estendendo π (spiegare come) e si consideri poi il polinomio $g = x^3 7x^2 + 4x 11 \in \mathbb{Z}[x]$. Provare che g è irriducibile in $\mathbb{Z}[x]$ (suggerimento: usare $\phi(g)$...).
- 4. Generalizzando l'esercizio precedente, sia p un numero primo e si consideri l'omomorfismo di anelli $\phi: \mathbb{Z}[x] \longrightarrow \mathbb{Z}_p[x]$ che estende la proiezione canonica $\mathbb{Z} \longrightarrow \mathbb{Z}_p$. Provare che se $g \in \mathbb{Z}[x]$ è un polinomio di grado n tale che $\phi(g)$ è ancora un polinomio di grado n e se $\phi(g)$ è irriducibile, allora q è irriducibile.
- 5. A completamento dell'esercizio precedente, trovare un esempio che mostri che l'ipotesi che il grado di $\phi(g)$ deve essere lo stesso del grado di g è essenziale. In altre parole, trovare un esempio che mostri che ci sono polinomi $g \in \mathbb{Z}[x]$ riducibili tali che $\phi(g) \in \mathbb{Z}_p[x]$ è irriducibile (ϕ definita come nell'esercizio precedente).
- 6. Sia $f \in \mathbb{Z}[x]$ con $\deg(f) \geq 2$ e monico (cioè il coefficiente del monomio di grado massimo vale 1). Provare che se f ha un fattore di grado 1, esso è della forma x-d, dove d è un intero divisore del termine noto di f.
- 7. Provare che il seguente polinomio:

$$x^7 + 3x^3 + 6x^2 + a(a^2 - 1) + 6$$

è irriducibile in $\mathbb{Q}[x]$ per ogni $a \in \mathbb{Z}$.

8. Scrivere la scomposizione in fattori irriducibili del polinomio:

$$f(x) = 200x^2 + 1400x - 1600$$

sia in $\mathbb{Q}[x]$, sia in $\mathbb{Z}[x]$.

- 9. Provare che $x^p+p-1\in\mathbb{Z}[x]$ è irriducibile per ogni numero primo p (cercare di utilizzare il criterio di Eisenstein...)
- 10. Sia K un campo di caratteristica p (con p numero primo) e sia K(x) il campo dei quozienti dell'anello dei polinomi K[x] (quindi gli elementi di K(x) sono frazioni f/g, con $f,g \in K[x], g \neq 0$). Provare che K(x) è un campo di caratteristica p, ma non è perfetto; (esiste la radice p-ima di x in K(x)?).

11. Provare che se A è un anello di caratteristica $c\neq 0$ e se I è un ideale di A, allora l'anello quoziente ha caratteristica d con d divisore di c. Dare un esempio in cui $d\neq c$.