ALGEBRA 2 Esercizi 5 - 24 ottobre 2025

- 1. Sia A un anello commutativo unitario. Usando il teorema di estensione, provare che A[x]/(x) è isomorfo ad A. Analogamente, provare che anche A[x]/(x-1) è isomorfo ad A (con (x) e (x-1) si indica ovviamente l'ideale di A[x] generato, rispettivamente, da x e da x-1).
- 2. Sia A un anello commutativo unitario e siano I, J ideali di A, con $I \subseteq J$. Si definisca la legge f tale che f associa ad un elemento $[a]_I \in A/I$ l'elemento $[a]_J \in A/J$. Provare che f è ben definita come applicazione, provare che è un omomorfismo di anelli e provare che è suriettiva.
- 3. (Legge del doppio quoziente). Siano A,I,J,f come nell'esercizio precedente, quindi:

$$f: A/I \longrightarrow A/J$$
.

Trovare il nucleo dell'omomordismo f. Dedurre la legge del doppio quoziente:

$$A/I/J/I$$
 è isomorfo a A/J

- 4. Siano $f,g \in \mathbb{Q}[x]$ primitivi e associati. Provare che allora $f=\pm g$.
- 5. Siano, f, g, h tre polinomi di $\mathbb{Z}[x]$ tali che f = gh e si supponga che f sia primitivo. Provare che allora g e h sono primitivi.
- 6. Sia $a \in \mathbb{Z}$ $a \neq 0$ e a non unitario. Provare che a è irriducibile in \mathbb{Z} se e solo se a è irriducibile come polinomio di $\mathbb{Z}[x]$.
- 7. Provare che in $\mathbb{Z}[x]$ i seguenti due ideali sono uguali:

$$(x+2,6), (x^3-4x+6,x+2)$$

e provare che il primo (e quindi anche il secondo) non è un ideale principale di $\mathbb{Z}[x]$.

- 8. Provare che $\mathbb{Z}[x]/(3)$ è isomorfo a $\mathbb{Z}_3[x]$.
- 9. Provare che l'ideale (3,x) di $\mathbb{Z}[x]$ è un ideale massimale in due modi diversi. Il modo più facile: Si supponga che esista un ideale J che lo contiene propriamente, provare che J=(1). Il modo più laborioso: usando la legge del doppio quoziente e l'esercizio precedente, provare che $\mathbb{Z}[x]/(3,x)$ è isomorfo al campo \mathbb{Z}_3 .