ALGEBRA 2 Esercizi 3 - 10 ottobre 2025

- 1. Siano G_1 e G_2 due gruppi e sia $g_1 \in G_1$ di ordine m e $g_2 \in G_2$ di ordine n. Qual è l'ordine dell'elemento $(g_1, g_2) \in G_1 \times G_2$?
- 2. Provare che $\mathbb{Z}_6 \times \mathbb{Z}_{10}$ e \mathbb{Z}_{60} non sono isomorfi. Più in generale, siano $a, b \in \mathbb{N}$ e sia $d = \operatorname{mcd}(a, b)$ con d > 1. Provare che \mathbb{Z}_{ab} non è isomorfo a $\mathbb{Z}_a \times \mathbb{Z}_b$.
- 3. Siano $a, b, c \in \mathbb{Z}$ e sia $m \in \mathbb{N}$, m > 1. Provare che se $a \equiv b \mod m$, allora $ac \equiv bc \mod m$. Vale anche il viceversa? (cioè se $ac \equiv bc \mod m$, allora $a \equiv b \mod m$?).
- 4. Usando il piccolo teorema di Fermat, provare che 253 non è un numero primo (può essere d'aiuto sapere che $2^8 \equiv 3 \mod 253$ e $3^{31} \equiv 179 \mod 253$).
- 5. Provare che per ogni $n \in \mathbb{Z}$ il numero

$$A(n) = 4n^{18} + n^{15} + 2n^7 + 3n^6 - n^3 + 5n + 21$$

è divisibile per 7. Per quali valori di n, A(n) risulta divisibile per 3?

6. Sia $A=\{f:\mathbb{N}\longrightarrow\mathbb{Q}\}$ l'insieme di tutte le applicazioni da \mathbb{N} in \mathbb{Q} . Sull'insieme A si può definire una struttura di anello nel seguente modo:

$$(f+g)(n) = f(n) + g(n)$$
 per ogni $n \in \mathbb{N}$
 $(f \cdot g)(n) = f(n) \cdot g(n)$ per ogni $n \in \mathbb{N}$

Provare che in questo modo A risulta effettivamente un anello commutativo unitario. Siano poi $f_1: \mathbb{N} \longrightarrow \mathbb{Q}$ and $f_2: \mathbb{N} \longrightarrow \mathbb{Q}$ date da, rispettivamente: $f_1(n) = 0$ se $n \neq 1$ e $f_1(1) = 1$, mentre $f_2(n) = 0$ se $n \neq 2$ e $f_2(2) = 1$. Provare che l'ideale generato da f_1 ed f_2 è principale.