Let K be a field (for instance, $K = \mathbb{Q}$ or $K = \mathbb{R}$ or $K = \mathbb{C}$). Let $V = K^4$ and $t: V \longrightarrow V$ given by t(a, b, c, d) = (-a, d, -c, b). Then (V, t) gives a K[x]module M_V . Consider the element $m = (1, 2, -1, 3) \in M_V$. We want to find its order. Then consider

$$m, t(m), t^2(m), t^3(m), t^4(m)$$

i.e.:

$$(1, 2, -1, 3), (-1, 3, 1, 2), (1, 2, -1, 3), (-1, 3, 1, 2), (1, 2, -1, 3)$$

We see that $t^2(m) - m = 0$, hence the order of m is $x^2 - 1$. In a similar way we can determine the order of any element of M_V , in particular the elements of a system of generators of M_V , which is for instance (1,0,0,0), (0,1,0,0), (0,0,1,0) (the element (0,0,0,1) is not necessary, since it is $x \cdot (0,1,0,0)$). They orders are, respectively: x + 1, $x^2 - 1$, x + 1. Hence $\operatorname{Ann}(M_V) = (x^2 - 1)$. An element of M_V of order $x^2 - 1$ is $c_1 = (0,1,0,0)$, hence we can decompose M_V as $M_V = \langle c_1 \rangle \oplus L$, for a suitable submodule L of M_V . A basis of $C_1 = \langle c_1 \rangle$ as a K-vector space is (0,1,0,0), (0,0,0,1), hence a basis for L as a K-vector space is (1,0,0,0), (0,0,1,0). Take the element $c_2 = (1,0,0,0) \in M_V$ (and in L). Its order is x + 1, hence the cyclic module it generates is $C_2 = \langle c_2 \rangle =$ $\{(u,0,0,0) \mid u \in K\}$. Similarly, the element $c_3 = (0,0,1,0)$ generates a cyclic module $C_3 = \{(0,0,u,0) \mid u \in K\}$. Hence we have the cyclic decomposition of M_V given by:

$$M_V = C_1 \oplus C_2 \oplus C_3$$

where C_1 is cyclic of order $g_1 = x^2 - 1$, C_2 is cyclic of order $g_2 = x + 1$ and C_3 is cyclic of order $g_3 = x + 1$. Note that $g_3|g_2$ and $g_2|g_1$. The polynomials g_1, g_2, g_3 are the invariant factors of M_V . The endomorphism t, with respect to the basis $t^0(c_1), t^1(c_1), t^0(c_2), t^0(c_3)$ has the associated matrix $U_{g_1} \oplus U_{g_2} \oplus U_{g_3}$, i.e.:

$$\left(\begin{array}{rrrrr} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{array}\right)$$