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Abstract

We investigate the existence of solutions to second order scalar dif-
ferential equations with asymmetric nonlinearities, subject to antiperi-
odic boundary conditions. Both resonance and nonresonance cases
are examined, with the Landesman–Lazer conditions imposed in the
resonant setting. The proofs rely on topological degree theory.

1 Introduction

We are interested in the T -antiperiodic problem associated with the scalar
second order equation

:x` gpt, xq “ 0 , (1)

where g : r0, T s ˆ R Ñ R is a continuous function satisfying the growth
conditions

µ1 ď lim inf
uÑ`8

gpt, xq

x
ď lim sup

xÑ`8

gpt, xq

x
ď µ2 ,

ν1 ď lim inf
xÑ´8

gpt, xq

x
ď lim sup

xÑ´8

gpt, xq

x
ď ν2 ,

(2)

uniformly in t P r0, T s, for some positive constants µ1, µ2, ν1, and ν2.

The investigation of (1) under T -antiperiodic boundary condition

pxp0q, 9xp0qq “ ´pxpT q, 9xpT qq

shares certain similarities with other classical boundary value problems.
For instance, let us recall some existence results associated with the T -
periodic boundary condition pxp0q, 9xp0qq “ pxpT q, 9xpT qq, the Neumann and
the Dirichlet boundary conditions, 9xp0q “ 0 “ 9xpT q and xp0q “ 0 “ xpT q,
respectively.
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Figure 1: The Fučík spectrum for the periodic problem with T “ 2π, or for
the Neumann problem with T “ π.

In 1969, Lazer and Leach [20] considered (1) with T -periodic boundary
conditions. In that paper, gpt, xq “ λx ` rpt, xq, where r is continuous,
uniformly bounded and T -periodic in t and λ “

`

2πn
T

˘2 for some positive
integer n. They established that a sufficient condition for the existence
of a T -periodic solution is the following: for every non-zero η satisfying
:η ` λη “ 0,

ż

tηă0u

lim sup
xÑ´8

rpt, xqηptqdt`

ż

tηą0u

lim inf
xÑ`8

rpt, xqηptqdt ą 0 . (3)

The following year, Landesman and Lazer [19] introduced a similar condition
for a Dirichlet problem associated with an elliptic operator. Since then, (3)
is referred to as Landesman–Lazer condition. This condition is crucial for
the nonlinearity to be kept sufficiently far from resonance. Their work has
served as a foundation for numerous generalizations, see for example [3, 7,
9, 10, 11, 12, 15, 22, 24].

Some years later, Fučík [14] and Dancer [5, 6] introduced the so-called
Fučík spectrum, defined as the set of points pµ, νq P R2 such that the asym-
metric oscillator

:x` µx` ´ νx´ “ 0 , (4)

where x˘ “ maxt˘x, 0u, has nontrivial T -periodic solutions.
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Figure 2: The Fučík spectrum for the Dirichlet problem.

In [8], it was shown that if the function g satisfies (2) and the rectangle
R “ rµ1, µ2s ˆ rν1, ν2s does not intersect the Fučík spectrum Σ, then the
equation (1) admits at least one T -periodic solution. This represents a typical
nonresonance situation. See also [7, 18] for related results. When the set
R X Σ consists of only one or both the vertices pµ1, ν1q and pµ2, ν2q of the
rectangle, in order to avoid resonance, additional hypotheses are required.
For instance, in [9, 10, 12, 22], the double resonance case was addressed
by imposing Landesman–Lazer-type conditions on both sides, ensuring the
existence of a T -periodic solution.

Concerning the Neumann and the Dirichlet problems associated with (1),
we refer to [15, 21, 22, 24].

If compared with the literature available for periodic, Neumann and
Dirichlet problems, in the study of the antiperiodic problems the number
of references is considerably smaller. For instance, in [4], the existence of an-
tiperiodic solutions for Liénard-type and Duffing-type differential equations
with the p-Laplacian operator was established using degree theory. In [16], a
resonant second order problem of the form :x “ fpt, x, 9xq satisfying antiperi-
odic and periodic boundary conditions was analyzed. In [27], the authors
explored the existence of antiperiodic solutions for a second order ordinary
differential equation by using the interaction of the nonlinearity with the
Fučík spectrum. In [23], antiperiodic oscillations are obtained for a forced
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Duffing equation with negative linear stiffness, demonstrating how they de-
velop multiple peaks under increasing forcing strength. For further related
studies, we refer the reader to [1, 2, 17, 25, 26].

To the best of our knowledge, the antiperiodic problem associated with
asymmetric scalar second order equations under resonance with respect to
the Fučík spectrum has not yet been explored. In particular, Landesman–
Lazer-type conditions have not been employed in such kind of problems. In
the present paper, it is our aim to fill such a gap.

The paper is organized as follows. In Section 2, we analyze the Fučík
spectrum corresponding to an antiperiodic problem and present some key
properties. Then, in Section 3, we state and prove our main results for
the antiperiodic problem under both nonresonance and double resonance
situations.

2 Preliminaries

In this section, we discuss about the Fučík spectrum corresponding to the
antiperiodic problem, and present some preliminary lemmas.

2.1 The Fučík spectrum

Consider the asymmetric oscillator under antiperiodic boundary conditions
$

&

%

:x` µx` ´ νx´ “ 0 ,

xp0q ` xpT q “ 0 , 9xp0q ` 9xpT q “ 0 .
(5)

If µ and ν are positive, the solutions of the differential equation in (5) are
all periodic, with period

Tµ,ν “
π

?
µ

`
π

?
ν
. (6)

One particular solution is given by

φµ,νptq “

$

’

&

’

%

1?
µ sin

`?
µ t

˘

if t P

”

0, π?
µ

ı

,

´ 1?
ν
sin

´?
ν
´

t´ π?
µ

¯¯

if t P

”

π?
µ , Tµ,ν

ı

,
(7)

extended by Tµ,ν-periodicity to the whole R. All the other solutions are of
the form xptq “ ρφµ,νpt´ θq with ρ ě 0 and θ P R.
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We define Σ “ tpµ, νq P R2 : (5) has a nontrivial solutionu, the Fučík
spectrum of the operator ´:x under the antiperiodic boundary conditions.
Easy computations show that

Σ “
ď

kPN
Ck ,

where the set C0 consists of the two lines

C0,1 “

"

pµ, νq P R2 : µ “

´π

T

¯2
*

,

C0,2 “

"

pµ, νq P R2 : ν “

´π

T

¯2
*

,

while, for k ě 1, Ck “ Ck,1 Y Ck,2, with

Ck,1 “

"

pµ, νq P R2 : µ ą 0 , ν ą 0 , pk ` 1q
π

?
µ

` k
π

?
ν

“ T

*

,

and

Ck,2 “

"

pµ, νq P R2 : µ ą 0 , ν ą 0 , k
π

?
µ

` pk ` 1q
π

?
ν

“ T

*

.

Notice that the curves Ck,1 and Ck´1,2, for k ě 1, share the same hori-
zontal asymptote ν “ pkπ{T q

2.
It can be seen that Σ is a subset of the Fučík spectrum of the operator

´:x under the corresponding Dirichlet boundary condition xp0q “ 0 “ xpT q.

We use the notations

mµ,ν “ min

"

π
?
µ
,
π

?
ν

*

, Mµ,ν “ max

"

π
?
µ
,
π

?
ν

*

,

and define the set S Ď R2 as follows:

S “
ď

kPN
Sk , (8)

where, as depicted in Figure 3,

Sk “
␣

pµ, νq P R2 : µ ą 0 , ν ą 0 , pk ´ 1qTµ,ν `Mµ,ν ă T ă kTµ,ν `mµ,ν

(

.

We now examine the nontrivial solutions of problem (5) in three specific
cases.

5



µ

ν

S0

S1

S2 C2,1

C1,2

C1,1

C2,2

C0,2

C0,1

Figure 3: The Fučík spectrum for the antiperiodic problem and the sets Sk.

piq If pµ, νq P Ck,1 with µ ‰ ν, then the nontrivial solutions of problem (5)
are of the type xptq “ ρφµ,νptq with ρ ą 0. In particular, xp0q “ 0 “ xpT q

and 9xp0q ą 0.

piiq If pµ, νq P Ck,2 with µ ‰ ν, then the nontrivial solutions of problem (5)
can be written as xptq “ ρφµ,νpt ` π?

µq with ρ ą 0. In particular, xp0q “

0 “ xpT q and 9xp0q ă 0.

piiiq If Ck,1 X Ck,2 “ tpµ, νqu, i.e., µ “ ν “ pp2k ` 1qπ{T q
2, it follows that

the equation in (5) becomes linear and the nontrivial solutions are given by

xptq “ ρ sinp
?
µpt´ θqq , for any ρ ą 0 and θ P R .

2.2 Auxiliary results

In this section, we consider the problem
$

&

%

:v ` pµptqv` ´ pνptqv´ “ 0 ,

vp0q ` vpT q “ 0 , 9vp0q ` 9vpT q “ 0 ,
(9)

with the following hypothesis.

(H) The functions pµ, pν P L2pRq satisfy

µ1 ď pµptq ď µ2 , ν1 ď pνptq ď ν2 , (10)
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for almost every t P R, all constants being positive.

Let us first recall the definition of “rotation number” of a planar curve
around the origin. Assume that s1 ă s2 and let ϕ : rs1, s2s Ñ R2 be a
continuous curve such that ϕptq ‰ p0, 0q for every t P rs1, s2s. Writing
ϕptq “ pρptq cos θptq, ρptq sin θptqq, where ρ : R Ñ s0,`8r and θ : R Ñ R are
continuous, we define

Rotpϕ; rs1, s2sq “ ´
θps2q ´ θps1q

2π
.

In the following, when dealing with a solution x of (1), by a slight abuse of
notation we will write Rotpx; rs1, s2sq instead of Rotppx, 9xq; rs1, s2sq.

We first need the following result.

Proposition 2.1. Assume (H) and let v be a nontrivial solution of the
differential equation in (9).

1. If Rotpv; ra, bsq “ N for some a ă b and N P N, then

NTµ2,ν2 ď b´ a ď NTµ1,ν1 .

2. If instead Rotpv; ra, bsq “ N ` 1
2 , then

NTµ2,ν2 `mµ2,ν2 ď b´ a ď NTµ1,ν1 `Mµ1,ν1 .

Proof. The first part of the statement is rather standard (see, e.g., [12]),
hence we omit the proof, for briefness. Let us prove the second part. Intro-
ducing the polar coordinates

pv, 9vq “ pρ cos θ, ρ sin θq ,

we see that

´ 9θptq “

$

&

%

pµptq cos2 θptq ` sin2 θptq , if vptq ě 0 ,

pνptq cos2 θptq ` sin2 θptq , if vptq ď 0 .
(11)

Notice that ´ 9θptq ą 0 for every t. For definiteness, we assume θpaq P

r´π
2 ,

π
2 r ; the case θpaq P rπ2 ,

3π
2 r can be treated similarly.

Set θ0 “ θpaq. By assumption we have θpbq “ θ0 ´ p2N ` 1qπ . Then we
select a ď s1 ď s2 ă b such that θps1q “ ´π{2 and θps2q “ ´π{2´ 2Nπ, see
Figure 4. By the first part of the statement, we deduce that

NTµ2,ν2 ď s2 ´ s1 ď NTµ1,ν1 . (12)
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Figure 4: The rotating solution in the phase plane.

From (10) and (11), we get

sin2 θptq ` mintµ1, ν1u cos2 θptq ď ´ 9θptq ď sin2 θptq ` maxtµ2, ν2u cos2 θptq ,

which implies that

´ 9θptq

sin2 θptq ` maxtµ2, ν2u cos2 θptq
ď 1 ď

´ 9θptq

sin2 θptq ` mintµ1, ν1u cos2 θptq
.

Upon integration over ra, s1s, we have
ż θ0

´π{2

dθ

sin2 θ ` maxtµ2, ν2u cos2 θ

ď s1 ´ a ď

ż θ0

´π{2

dθ

sin2 θ ` mintµ1, ν1u cos2 θ
. (13)

Similarly, integrating over rs2, bs,

ż ´π{2´2Nπ

θ0´p2N`1qπ

dθ

sin2 θ ` maxtµ2, ν2u cos2 θ

ď b´ s2 ď

ż ´π{2´2Nπ

θ0´p2N`1qπ

dθ

sin2 θ ` mintµ1, ν1u cos2 θ
,

which is equivalent to write (since the integrand is π-periodic)

ż π{2

θ0

dθ

sin2 θ ` maxtµ2, ν2u cos2 θ

ď b´ s2 ď

ż π{2

θ0

dθ

sin2 θ ` mintµ1, ν1u cos2 θ
. (14)
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Summing in (13) and (14), we get
ż π{2

´π{2

dθ

sin2 θ ` maxtµ2, ν2u cos2 θ

ď ps1 ´ aq ` pb´ s2q ď

ż π{2

´π{2

dθ

sin2 θ ` mintµ1, ν1u cos2 θ
, (15)

and so

mµ2,ν2 “
π

maxt
?
µ2,

?
ν2u

ď ps1 ´ aq ` pb´ s2q ď
π

mint
?
µ1,

?
ν1u

“ Mµ1,ν1 . (16)

Adding the estimates in (12) and (16), we have

NTµ2,ν2 `mµ2,ν2 ď b´ a ď NTµ1,ν1 `Mµ1,ν1 , (17)

which completes the proof.

We recall the notation R “ rµ1, µ2s ˆ rν1, ν2s .

Lemma 2.2. Let assumption (H) hold. If R Ď S, then problem (9) only
has the zero solution.

Proof. By contradiction, assume that there is a nontrivial solution vptq for
problem (9). Then pvptq, 9vptqq ‰ p0, 0q for every t P r0, T s, and there is an
integer K ě 0 such that Rotpv; r0, T sq “ K ` 1

2 .

Recalling the definition of S in (8), we discuss two different cases.

Case 1: R Ď S0.
From Proposition 2.1, we get

T ă mµ2,ν2 ď mµ2,ν2 `KTµ2,ν2 ď T ,

which is impossible.

Case 2: R Ď SN , for N ě 1.
If K ď N ´ 1, then by Proposition 2.1, we have

T ď KTµ1,ν1 `Mµ1,ν1 ď pN ´ 1qTµ1,ν1 `Mµ1,ν1 ă T ,

which is impossible. Similarly, if K ě N , then we have

T ě KTµ2,ν2 `mµ2,ν2 ě NTµ2,ν2 `mµ2,ν2 ą T ,

which is again impossible.
This completes the proof of the lemma.
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We now consider the case when the rectangle R is contained in the closure
of the set S and touches two curves of the Fučík spectrum.

Lemma 2.3. Let µ1, µ2, ν1, and ν2 satisfy

NTµ1,ν1 `Mµ1,ν1 “ T “ pN ` 1qTµ2,ν2 `mµ2,ν2 , (18)

for a certain integer N ě 0. Suppose that problem (9) admits a nontrivial
solution v, with

µ1 ď pµptq ď µ2 , a.e. on I` “ tt P r0, T s : vptq ą 0u ,

ν1 ď pνptq ď ν2 , a.e. on I´ “ tt P r0, T s : vptq ă 0u .
(19)

Then, either

pµptq “ µ1 a.e. on I` and pνptq “ ν1 a.e. on I´ ,

or
pµptq “ µ2 a.e. on I` and pνptq “ ν2 a.e. on I´ .

Proof. Since v is a nontrivial solution, it satisfies v2ptq ` 9v2ptq ‰ 0 for all
t P r0, T s, and Rotpv; r0, T sq “ K ` 1

2 , for some integer K ě 0. We claim
that either K “ N or K “ N ` 1. Indeed, if K ă N , then by using
Proposition 2.1 and (18), we have

T ď KTµ1,ν1 `Mµ1,ν1 ă NTµ1,ν1 `Mµ1,ν1 “ T ,

which is impossible. Similarly, if K ą N ` 1, we have

T ě KTµ2,ν2 `mµ2,ν2 ą pN ` 1qTµ2,ν2 `mµ2,ν2 “ T ,

which is again impossible.
Let us analyze the alternative K “ N , as the other situation follows

similarly. We need to consider the following three cases.

Case 1. µ1 ă ν1, i.e.,

T “ NTµ1,ν1 `
π

?
µ1

ą NTµ1,ν1 `
π

?
ν1
. (20)

Claim. vp0q “ 0 and 9vp0q ą 0.
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Proof of the Claim. Assume by contradiction that vp0q ‰ 0 or vp0q “ 0 with
9vp0q ă 0.

We first discuss the case when vp0q ą 0 or vp0q “ 0 with 9vp0q ă 0. In
this case, there exist 0 ď t0 ă t1 ă ¨ ¨ ¨ ă t2N ă T such that

vptiq “ 0, 9vpt2iq ă 0 , and 9vpt2i`1q ą 0 . (21)

Introducing polar coordinates, recalling that ´ 9θptq ą 0 for every t, we deduce
that Rotpv; rti, ti`1sq “ 1{2 for every i. We set θp0q “ θ0 P r´π{2, π{2r .

From Proposition 2.1, we have

t2N ´ t0 ď NTµ1,ν1 .

Combining this fact with the equality in (20) and recalling (11), we get

π
?
µ1

ď pt0 ´ 0q ` pT ´ t2N q

“

ż t0

0

´ 9θptqdt

pµptq cos2 θptq ` sin2 θptq
`

ż T

t2N

´ 9θptqdt

pνptq cos2 θptq ` sin2 θptq
,

which implies that

ż θ0

θ0´π

dθ

µ1 cos2 θ ` sin2 θ

ď

ż θ0

´π
2

dθ

rµpθq cos2 θ ` sin2 θ
`

ż ´π
2

θ0´π

dθ

rνpθq cos2 θ ` sin2 θ
,

where rµpθptqq “ pµptq, and rνpθptqq “ pνptq. After splitting the left hand side
integral, we thus obtain

ż ´π
2

θ0´π

ˆ

1

µ1 cos2 θ ` sin2 θ
´

1

rνpθq cos2 θ ` sin2 θ

˙

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

ą0, since rν ě ν1 ą µ1 .

dθ

ď

ż θ0

´π
2

ˆ

1

rµpθq cos2 θ ` sin2 θ
´

1

µ1 cos2 θ ` sin2 θ

˙

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

ď0, since rµ ě µ1 .

dθ . (22)

The left hand side integral is positive due to the fact that θ0 ă π
2 , and we

get a contradiction.
The case vp0q ă 0 can be treated similarly, thus completing the proof of

the Claim.
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Since vp0q “ 0 and 9vp0q ą 0, we can select 0 “ t1 ă ¨ ¨ ¨ ă t2N`2 “ T

satisfying (21).

We now introduce the following modified polar coordinates

v “

$

’

’

&

’

’

%

1
?
µ1

r cos θ if v ě 0 ,

1
?
ν1
r cos θ if v ď 0 ,

9v “ r sin θ ,

and observe that

9θ “

$

’

’

&

’

’

%

?
µ1

:vv ´ 9v2

µ1v2 ` 9v2
if v ą 0 ,

?
ν1

:vv ´ 9v2

ν1v2 ` 9v2
if v ă 0 .

Then, for i “ 1, . . . , N ` 1, we have

π
?
µ1

“

ż t2i

t2i´1

pµptqv2 ` 9v2

µ1v2 ` 9v2
dt

“

ż t2i

t2i´1

ppµptq ´ µ1qv2

µ1v2 ` 9v2
dt`

ż t2i

t2i´1

µ1v
2 ` 9v2

µ1v2 ` 9v2
dt

“

ż t2i

t2i´1

ppµptq ´ µ1qv2

µ1v2 ` 9v2
dt` pt2i ´ t2i´1q . (23)

Similarly, for j “ 2, . . . , N ` 1, we have

π
?
ν1

“

ż t2j´1

t2j´2

pνptqv2 ` 9v2

ν1v2 ` 9v2
dt

“

ż t2j´1

t2j´2

ppνptq ´ ν1qv2

ν1v2 ` 9v2
dt`

ż t2j´1

t2j´2

ν1v
2 ` 9v2

ν1v2 ` 9v2
dt

“

ż t2j´1

t2j´2

ppνptq ´ ν1qv2

ν1v2 ` 9v2
dt` pt2j´1 ´ t2j´2q . (24)

Summing (23) for i “ 1, . . . , N ` 1 and (24) for j “ 2, . . . , N ` 1, by (20) we
obtain

T “

ż

I`

ppµptq ´ µ1qv2

µ1v2 ` 9v2
dt`

ż

I´

ppνptq ´ ν1qv2

ν1v2 ` 9v2
dt` T ,

which implies that
ż

I`

ppµptq ´ µ1qv2

µ1v2 ` 9v2
dt`

ż

I´

ppνptq ´ ν1qv2

ν1v2 ` 9v2
dt “ 0 .

Recalling (19), we get

pµptq “ µ1 a.e. on I` and pνptq “ ν1 a.e. on I´ ,

thus completing the proof in Case 1.
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Case 2. µ1 ą ν1, i.e.,

T “ NTµ1,ν1 `
π

?
ν1

ą NTµ1,ν1 `
π

?
µ1

. (25)

A similar computation as in Case 1 shows that vp0q “ 0 and 9vp0q ă 0. Then
one can find 0 “ t0 ă ¨ ¨ ¨ ă t2N`1 “ T satisfying (21) and obtain estimates
as in (23) and (24), so that the conclusion follows similarly.

Case 3. µ1 “ ν1, i.e.,

T “
p2N ` 1qπ

?
µ1

. (26)

In this case,

p2N ` 1qπ
?
µ1

“

ż T

0

pµptqpv`q2 ` pνptqpv´q2 ` 9v2

µ1v2 ` 9v2
dt

“

ż T

0

ppµptq ´ µ1qpv`q2 ` ppνptq ´ µ1qpv´q2

µ1v2 ` 9v2
dt`

ż T

0

µ1v
2 ` 9v2

µ1v2 ` 9v2
dt

“

ż T

0

ppµptq ´ µ1qpv`q2 ` ppνptq ´ µ1qpv´q2

µ1v2 ` 9v2
dt` T ,

which implies that
ż T

0

ppµptq ´ µ1qpv`q2 ` ppνptq ´ µ1qpv´q2

µ1v2 ` 9v2
dt “ 0 ,

leading to the same conclusion as in the previous cases.

3 Main results

We will need the following assumption.

(G) The function g : r0, T s ˆ R Ñ R has the form

gpt, xq “ γ`pt, xqx` ´ γ´pt, xqx´ ` hpt, xq ,

where γ`, γ´ and h are continuous functions such that

µ1 ď γ`pt, xq ď µ2 , ν1 ď γ´pt, xq ď ν2 ,

for every t P r0, T s and x P R, the above constants µ1, µ2, ν1, ν2 all
being positive, and h is uniformly bounded.

As above, we denote the rectangle rµ1, µ2s ˆ rν1, ν2s by R.
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Theorem 3.1 (Nonresonance). If assumption (G) holds with R Ď S , then
problem (1) has a solution.

Proof. Let R Ď Sk, for some k P N, and set

µ “
µ1 ` µ2

2
, ν “

ν1 ` ν2
2

.

Consider the following family of problems
$

&

%

:x` p1 ´ σqrµx` ´ νx´s ` σgpt, xq “ 0 ,

xp0q ` xpT q “ 0 , 9xp0q ` 9xpT q “ 0 ,
(27)

with σ P r0, 1s . We aim to show that there is a r ą 0 such that, for every
solution x of (27), one has }x}8 ď r.

Assume by contradiction that for every positive integer n there exist σn P

r0, 1s and a solution xn of (27), with σ “ σn, such that }xn}8 ą n. Passing
to a subsequence we can assume that pσnqn converges to some σ P r0, 1s. Set
vn “ xn

||xn||8
. Then,

$

&

%

:vn ` pµnptqv`
n ´ pνnptqv´

n ` σn
hpt,||xn||8vnq

||xn||8
“ 0 ,

vnp0q ` vnpT q “ 0 , 9vnp0q ` 9vnpT q “ 0 ,
(28)

where

pµnptq “ p1 ´ σnqµ` σnγ`pt, ||xn||8vnptqq ,

pνnptq “ p1 ´ σnqν ` σnγ´pt, ||xn||8vnptqq .

Notice that µ1 ď pµnptq ď µ2 and ν1 ď pνnptq ď ν2.

From the differential equation in (28) and the properties of pµn, pνn and h,
the sequence pvnqn is bounded in H2p0, T q, therefore there exists a function v
such that, up to a subsequence, vn Ñ v in C1pr0, T sq and weakly in H2p0, T q.
In particular ||v||8 “ 1. Since the sequences ppµnqn and ppνnqn are bounded,
we can suppose that, up to a subsequence, they converge weakly in L2p0, T q

to some functions pµ and pν, respectively, with µ1 ď pµptq ď µ2 and ν1 ď

pνptq ď ν2, almost everywhere on r0, T s. Passing to the weak limit in (28), v
solves

$

&

%

:v ` pµptqv` ´ pνptqv´ “ 0 ,

vp0q ` vpT q “ 0 , 9vp0q ` 9vpT q “ 0 ,
(29)
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for almost every t P r0, T s, which is a contradiction with Lemma 2.2.
To conclude the proof of the theorem, recalling the notation (6), we define

ζ “ Tµ,ν and consider the curve

C “

"

pµ, νq : µ ą 0, ν ą 0,
π

?
µ

`
π

?
ν

“ ζ

*

,

which is contained in Sk for some k. This curve connects the point pµ, νq

with pp2πζ q2, p2πζ q2q. We parametrize this part of the curve by a continuous
map ξ : r0, 1s Ñ R2 as

ξpσq “ pµpσq, νpσqq ,

with ξp0q “ pµ, νq, ξp1q “ pp2πζ q2, p2πζ q2q.

By Lemma 2.2, for every σ P r0, 1s, the problem
$

&

%

:v ` µpσqv` ´ νpσqv´ “ 0 ,

vp0q ` vpT q “ 0 , 9vp0q ` 9vpT q “ 0
(30)

only has the zero solution.

The proof of the theorem can be now completed by a standard application
of the Leray–Schauder topological degree theory.

Remark 3.2. Notice that the growth conditions in (2) imply assumption (G)
after slightly changing the involved constants. Hence, being S an open set,
in the assumption of Theorem 3.1, we can replace assumption (G) with (2).

Next, we examine the case when R̊ Ď SN for some N ě 1, and R X Σ “

tpµ1, ν1q, pµ2, ν2qu. This situation arises when the resonance condition (18)
is satisfied.

Theorem 3.3 (Double Resonance). Assume (G) and the existence of a
positive integer N such that (18) holds. If for every non-zero T -antiperiodic
solution ψ of :ψ ` µ1ψ

` ´ ν1ψ
´ “ 0 one has

ż

tψă0u

lim sup
xÑ´8

`

gpt, xq´ν1x
˘

ψptq dt`

ż

tψą0u

lim inf
xÑ`8

`

gpt, xq´µ1x
˘

ψptq dt ą 0 ,

(31)
and for every non-zero T -antiperiodic solution χ of :χ ` µ2χ

` ´ ν2χ
´ “ 0

one has
ż

tχă0u

lim sup
xÑ´8

`

ν2x´gpt, xq
˘

χptq dt`

ż

tχą0u

lim inf
xÑ`8

`

µ2x´gpt, xq
˘

χptq dt ą 0 ,

(32)
then problem (1) has a solution.

15



In the above, we have used the standard notation

tψ ă 0u “ tt P r0, T s : ψptq ă 0u ,

and similarly for tψ ą 0u.

Proof. Let us set
µ “

µ1 ` µ2
2

, ν “
ν1 ` ν2

2
,

and consider the family of problems (27), with σ P r0, 1s .

Claim. There is a r ą 0 such that, for every solution x of (27) one has
}x}8 ď r.

In order to prove the Claim, assume by contradiction that for every
positive integer n there exist σn P r0, 1s and a solution xn of (27), with
σ “ σn, such that }xn}8 ą n. Notice that σn ‰ 0.

Passing to a subsequence we can assume that pσnqn converges to some
σ P r0, 1s. Set vn “ xn

||xn||8
. Then, vn solves (28), and arguing as in the

proof of Theorem 3.1, the sequence pvnqn converges, up to a subsequence,
to a function v in C1pr0, T sq and weakly in H2p0, T q. This function is such
that ||v||8 “ 1, and it solves (29) for almost every t P r0, T s.

We apply Lemma 2.3 and consider, for definiteness, the first alternative
in (19), i.e.,

pµptq “ µ1 a.e. on I` and pνptq “ ν1 a.e. on I´ ,

the second one being treated similarly. So, v is a solution of
$

&

%

:v ` µ1v
` ´ ν1v

´ “ 0 ,

vp0q ` vpT q “ 0 , 9vp0q ` 9vpT q “ 0 .
(33)

Since we are assuming that (18) holds, from the first equality we deduce
that Rotpv; r0, T sq “ N ` 1

2 . This is also true for pvnptq, 9vnptqq, if n is large
enough, and so also for pxnptq, 9xnptqq.

Let us write pxn, 9xnq in the following modified polar coordinates:

xn “

$

’

’

&

’

’

%

1
?
µ1

rn cos θn , if xn ě 0 ,

1
?
ν1
rn cos θn , if xn ď 0 ,

9xn “ rn sin θn .

16



We compute the derivatives

9θn “

$

’

’

’

&

’

’

’

%

?
µ1

:xnxn ´ 9x2n
µ1x2n ` 9x2n

if xn ą 0 ,

?
ν1

:xnxn ´ 9x2n
ν1x2n ` 9x2n

if xn ă 0 .

Since the couple pxnptq, 9xnptqq performs precisely 2N ` 1 half rotations
around the origin in the interval r0, T s, two distinct cases arise.

Case 1. There exist

0 ă tn0 ă tn1 ă ¨ ¨ ¨ ă tn2N ă T ,

and αn P s0, πr , satisfying

θnp0q “ αn ´
π

2
,

xnptnl q “ 0 , for l “ 0, 1, 2, . . . , 2N ,

9xnptn2jq ă 0 , for j “ 0, 1, 2, . . . , N ,

9xnptn2j´1q ą 0 , for j “ 1, 2, . . . , N .

Case 2. There exist

0 ă tn1 ă ¨ ¨ ¨ ă tn2N ă tn2N`1 ă T ,

and αn P s0, πr , satisfying

θnp0q “ ´αn ´
π

2
,

xnptnl q “ 0 , for l “ 1, 2, . . . , 2N ,

9xnptn2jq ă 0 , for j “ 1, 2, . . . , N ,

9xnptn2j´1q ą 0 , for j “ 1, 2, . . . , N .

We focus our analysis on Case 1, as the second one can be treated anal-
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a)

t “ 0

tn0

tn1

tn2

t “ T
αn

9xn

xn

b)

t “ 0

tn1

tn3

tn2

t “ T

αn

9xn

xn

Figure 5: a) Case 1 for N “ 1. b) Case 2 for N “ 1.

ogously. We have the following time estimate:

αn
?
µ1

“
θnp0q ´ θnptn0 q

?
µ1

“

ż tn0

0

´ 9θn
?
µ1

“

ż tn0

0

rp1 ´ σnqµxn ` σngpt, xnqsxn ` 9x2n
µ1x2n ` 9x2n

ě

ż tn0

0

rp1 ´ σnqµ1xn ` σngpt, xnqsxn ` 9x2n
µ1x2n ` 9x2n

“

ż tn0

0

µ1x
2
n ` 9x2n

µ1x2n ` 9x2n
` σn

ż tn0

0

pgpt, xnq ´ µ1xnqxn
µ1x2n ` 9x2n

“ tn0 ` σn

ż tn0

0

pgpt, xnq ´ µ1xnqxn
µ1x2n ` 9x2n

. (34)

A similar computation gives the following time estimates for j “ 1, . . . , N :

π
?
ν1

ě

ż tn2j´1

tn2j´2

ν1x
2
n ` 9x2n

ν1x2n ` 9x2n
` σn

ż tn2j´1

tn2j´2

pgpt, xnq ´ ν1xnqxn
ν1x2n ` 9x2n

“ ptn2j´1 ´ tn2j´2q ` σn

ż tn2j´1

tn2j´2

pgpt, xnq ´ ν1xnqxn
ν1x2n ` 9x2n

, (35)

π
?
µ1

ě

ż tn2j

tn2j´1

µ1x
2
n ` 9x2n

µ1x2n ` 9x2n
` σn

ż tn2j

tn2j´1

pgpt, xnq ´ µ1xnqxn
µ1x2n ` 9x2n

“ ptn2j ´ tn2j´1q ` σn

ż tn2j

tn2j´1

pgpt, xnq ´ µ1xnqxn
µ1x2n ` 9x2n

, (36)
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and

π ´ αn
?
ν1

ě

ż T

tn2N

ν1x
2
n ` 9x2n

ν1x2n ` 9x2n
` σn

ż T

tn2N

pgpt, xnq ´ ν1xnqxn
ν1x2n ` 9x2n

“ pT ´ tn2N q ` σn

ż T

tn2N

pgpt, xnq ´ ν1xnqxn
ν1x2n ` 9x2n

. (37)

Since the solution completes 2N ` 1 half rotations in time T , addition
in (34), (35), (36) and (37) for j “ 1, . . . , N leads to

σn

”

ż

txnă0u

pgpt, xnq ´ ν1xnqxn
ν1x2n ` 9x2n

`

ż

txną0u

pgpt, xnq ´ µ1xnqxn
µ1x2n ` 9x2n

ı

` T

ď NTµ1,ν1 `
αn

?
µ1

`
π ´ αn

?
ν1

ď NTµ1,ν1 `
αn

mint
?
µ1,

?
ν1u

`
π ´ αn

mint
?
µ1,

?
ν1u

“ NTµ1,ν1 `
π

mint
?
µ1,

?
ν1u

“ NTµ1,ν1 `Mµ1,ν1 “ T ,

where the last step follows from (18). Being σn ‰ 0, we get
ż

txnă0u

pgpt, xnq ´ ν1xnqxn
ν1x2n ` 9x2n

`

ż

txną0u

pgpt, xnq ´ µ1xnqxn
µ1x2n ` 9x2n

ď 0 ,

which can be written as
ż T

0

“

gpt, xnq ´ pµ1x
`
n ´ ν1x

´
n q
‰

xn

µ1px`
n q2 ` ν1px´

n q2 ` 9x2n
ď 0 .

Recalling that vn “ xn
||xn||8

, we have

ż T

0

“

gpt, xnq ´ pµ1x
`
n ´ ν1x

´
n q
‰

vn

µ1pv`
n q2 ` ν1pv´

n q2 ` 9v2n
ď 0 .

Since µ1pv`ptqq2 ` ν1pv´ptqq2 ` 9vptq2 is positive and constant in t, and

lim
nÑ8

`

µ1pv`
n q2 ` ν1pv´

n q2 ` 9v2n
˘

“ µ1pv`q2 ` ν1pv´q2 ` 9v2 ,

uniformly in r0, T s, by Fatou’s Lemma,
ż T

0
lim inf

n

“

gpt, xnq ´ pµ1x
`
n ´ ν1x

´
n q
‰

vn

µ1pv`
n q2 ` ν1pv´

n q2 ` 9v2n
ď 0 .

So, it has to be
ż T

0
lim inf

n

“

gpt, xnptqq ´ pµ1x
`
n ptq ´ ν1x

´
n ptqq

‰

vnptq dt ď 0 . (38)
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Let us now fix t P r0, T s such that vptq ă 0; so vnptq ă 0 for sufficiently large
n, and limn xnptq “ ´8, hence

lim inf
n

rν1xnptq ´ gpt, xnptqqs ě lim inf
xÑ´8

rν1x´ gpt, xqs ,

which implies that, for every t P r0, T s with vptq ă 0, we have

lim inf
n

“

gpt, ||xn||8vnptqq ´ pµ1x
`
n ptq ´ ν1x

´
n ptqq

‰

vnptq

ě lim inf
xÑ´8

rν1x´ gpt, xqs|vptq| “ lim sup
xÑ´8

rgpt, xq ´ ν1xsvptq .

Similarly, if vptq ą 0 for some t, then vnptq ą 0 for sufficiently large n, and
limn xnptq “ `8, hence

lim inf
n

“

gpt, ||xn||8vnptqq ´ pµ1x
`
n ptq ´ ν1x

´
n ptqq

‰

vnptq

ě lim inf
xÑ`8

rgpt, xq ´ µ1xsvptq .

Thus, by (38),
ż

tvă0u

lim sup
xÑ´8

`

gpt, xq ´ν1x
˘

vptq dt`

ż

tvą0u

lim inf
xÑ`8

`

gpt, xq ´µ1x
˘

vptq dt ď 0 ,

(39)
a contradiction with (31), thus proving the Claim. The proof of Theorem 3.3
can now be completed arguing as in the proof of Theorem 3.1.

Remark 3.4. A similar existence result holds for the so-called simple res-
onance, i.e., the case when R̊ Ď S, and R X Σ “ tpµ1, ν1qu or R X Σ “

tpµ2, ν2qu. Clearly enough, in this case, the Landesman–Lazer condition will
be imposed only on one side.

Remark 3.5. Notice that Theorem 3.3 generalizes Theorem 3.1. Indeed, if
we focus our attention on R Ď S, it is possible to find ϵ1, ϵ2 ą 0 such that

NTµ1´ϵ1,ν1´ϵ1 `Mµ1´ϵ1,ν1´ϵ1 “ T “ pN ` 1qTµ2`ϵ2,ν2`ϵ2 `mµ2`ϵ2,ν2`ϵ2 .

Setting µ̃1 “ µ1 ´ ϵ1, µ̃2 “ µ2 ` ϵ2, ν̃1 “ ν1 ´ ϵ1 and ν̃2 “ ν2 ` ϵ2, we have

lim
xÑ´8

`

gpt, xq ´ ν̃1x
˘

“ ´8 , lim
xÑ`8

`

gpt, xq ´ µ̃1x
˘

“ `8 ,

and

lim
xÑ´8

`

ν̃2x´ gpt, xq
˘

“ ´8 , lim
xÑ`8

`

µ̃2x´ gpt, xq
˘

“ `8 ,

uniformly in t, from which we easily verify that the Landesman–Lazer con-
ditions (31) and (32), respectively, hold.

Remark 3.6. The results contained in this paper could be rephrased in a
L2-Carathéodory setting. We avoid the details, for briefness.
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