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Abstract

We investigate the existence of solutions to second order scalar dif-
ferential equations with asymmetric nonlinearities, subject to antiperi-
odic boundary conditions. Both resonance and nonresonance cases
are examined, with the Landesman—Lazer conditions imposed in the

resonant setting. The proofs rely on topological degree theory.

1 Introduction

We are interested in the T-antiperiodic problem associated with the scalar

second order equation

.C.lf‘—i—g(t,.%'):(), (1)
where g : [0,T] x R — R is a continuous function satisfying the growth
conditions ; .

H1 < liminfm < limsupM < pa,
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T—>—00 X Tr——00 T

uniformly in ¢ € [0, T], for some positive constants p1, uo, v1, and vs.

The investigation of (1) under T-antiperiodic boundary condition

shares certain similarities with other classical boundary value problems.
For instance, let us recall some existence results associated with the T-
periodic boundary condition (z(0),%(0)) = (x(T),#(T")), the Neumann and
the Dirichlet boundary conditions, #(0) = 0 = #(7") and z(0) = 0 = =(T),

respectively.
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Figure 1: The Fucik spectrum for the periodic problem with T' = 27, or for

the Neumann problem with T = .

In 1969, Lazer and Leach [20] considered (1) with T-periodic boundary
conditions. In that paper, g(t,x) = Ax + r(t,z), where r is continuous,
uniformly bounded and T-periodic in ¢t and A = (2“?”)2 for some positive
integer n. They established that a sufficient condition for the existence
of a T-periodic solution is the following: for every non-zero 7 satisfying

7+ An =0,

f lim sup (¢, z)n(t)dt + f liminf r(¢, z)n(t)dt > 0. (3)
{n<0} z—>—00 {n>0} ¥H®

The following year, Landesman and Lazer [19] introduced a similar condition
for a Dirichlet problem associated with an elliptic operator. Since then, (3)
is referred to as Landesman—Lazer condition. This condition is crucial for
the nonlinearity to be kept sufficiently far from resonance. Their work has
served as a foundation for numerous generalizations, see for example [3, 7,
9, 10, 11, 12, 15, 22, 24].

Some years later, Fu¢ik [14] and Dancer [5, 6] introduced the so-called
Fuéik spectrum, defined as the set of points (u,v) € R? such that the asym-
metric oscillator

Z4+pzt —vzT =0, (4)

where ¥ = max{+x, 0}, has nontrivial T-periodic solutions.
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Figure 2: The Fucik spectrum for the Dirichlet problem.

In [8], it was shown that if the function g satisfies (2) and the rectangle
R = [p1, p2] x [v1,v2] does not intersect the Fucik spectrum ¥, then the
equation (1) admits at least one T-periodic solution. This represents a typical
nonresonance situation. See also [7, 18] for related results. When the set
R N X consists of only one or both the vertices (u1,v1) and (u2,v2) of the
rectangle, in order to avoid resonance, additional hypotheses are required.
For instance, in [9, 10, 12, 22|, the double resonance case was addressed
by imposing Landesman—Lazer-type conditions on both sides, ensuring the

existence of a T-periodic solution.

Concerning the Neumann and the Dirichlet problems associated with (1),
we refer to [15, 21, 22, 24].

If compared with the literature available for periodic, Neumann and
Dirichlet problems, in the study of the antiperiodic problems the number
of references is considerably smaller. For instance, in [4], the existence of an-
tiperiodic solutions for Liénard-type and Duffing-type differential equations
with the p-Laplacian operator was established using degree theory. In [16], a
resonant second order problem of the form & = f(¢, z, &) satisfying antiperi-
odic and periodic boundary conditions was analyzed. In [27|, the authors
explored the existence of antiperiodic solutions for a second order ordinary
differential equation by using the interaction of the nonlinearity with the

Fucik spectrum. In [23|, antiperiodic oscillations are obtained for a forced



Duffing equation with negative linear stiffness, demonstrating how they de-
velop multiple peaks under increasing forcing strength. For further related
studies, we refer the reader to [1, 2, 17, 25, 26].

To the best of our knowledge, the antiperiodic problem associated with
asymmetric scalar second order equations under resonance with respect to
the Fucik spectrum has not yet been explored. In particular, Landesman—
Lazer-type conditions have not been employed in such kind of problems. In

the present paper, it is our aim to fill such a gap.

The paper is organized as follows. In Section 2, we analyze the Fucik
spectrum corresponding to an antiperiodic problem and present some key
properties. Then, in Section 3, we state and prove our main results for
the antiperiodic problem under both nonresonance and double resonance

situations.

2 Preliminaries

In this section, we discuss about the Fucik spectrum corresponding to the

antiperiodic problem, and present some preliminary lemmas.

2.1 The Fucik spectrum

Consider the asymmetric oscillator under antiperiodic boundary conditions

Z+pxt —veT =0,

z(0)+z(T) =0, x(0)+x(T)=0.

()
If 41 and v are positive, the solutions of the differential equation in (5) are
all periodic, with period

T =

)

+

(6)

3
el

One particular solution is given by

L sin (jit) if te [0, 2]

\/ﬁ Y \/ﬁ 9y
—dpsin (Vo (1= 25)) ifte | 5T

extended by 7, ,-periodicity to the whole R. All the other solutions are of
the form x(t) = pp,.(t — 0) with p > 0 and 0 € R.

Puw(t) = (7)



We define ¥ = {(u,v) € R? : (5) has a nontrivial solution}, the Fu¢ik
spectrum of the operator — under the antiperiodic boundary conditions.

Easy computations show that

2=U%,

keN

where the set % consists of the two lines

~
—
N
——

%J=&MW€R%M=(W

Co2 = {(u,v)eR2 sy = (7

Nl

N—
N
——

while, for £ > 1, 6}, = 61,1 U 62, with

_ 2 o T
%k71—{(u,u)e]R .u>0,1/>0,(k:+1)\/ﬁ+k‘ﬁ T},

and

Gy = R2: >0 0. k—— 4 (k+1)— =T},
k,2 {(M?l/)e nw>0,v>40, \/ﬁ+( + )\/; }

Notice that the curves €} 1 and 6;_1 2, for k > 1, share the same hori-
zontal asymptote v = (kr/T)%.
It can be seen that X is a subset of the Fudik spectrum of the operator

—Z under the corresponding Dirichlet boundary condition x(0) = 0 = z(T).

We use the notations

m =mm-+{—, —— , w=maxy —, — ¢,
NN o NN

and define the set S < R? as follows:

S=1]JS, (8)
where, as depicted in Figure 3,
Sk = {(w,v) eR*: u>0,v>0,(k—1)T, +M,, <T < kT +myu}

We now examine the nontrivial solutions of problem (5) in three specific

cases.
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Figure 3: The Fucik spectrum for the antiperiodic problem and the sets Sy.
(2) If (p,v) € €, with p # v, then the nontrivial solutions of problem (5)

are of the type x(t) = pp,,,(t) with p > 0. In particular, x(0) = 0 = z(T)
and #(0) > 0.

(1) If (u,v) € €2 with p # v, then the nontrivial solutions of problem (5)
can be written as z(t) = pp,,(t + ﬁ) with p > 0. In particular, z(0) =
0 = z(T) and %(0) < 0.

(i11) If Gy O Cro = {(u,v)}, ie, p = v = ((2k + 1)7/T)?, it follows that

the equation in (5) becomes linear and the nontrivial solutions are given by
x(t) = psin(y/u(t —0)), forany p>0andfeR.

2.2 Auxiliary results

In this section, we consider the problem

B+ At — ot =0,

v(0) +v(T) =0, v(0)+o(T)=0, )
with the following hypothesis.
(H) The functions /i, 7 € L?(R) satisfy
p1 < A(t) < pa, v <D(t) <y, (10)



for almost every ¢t € R, all constants being positive.

Let us first recall the definition of “rotation number” of a planar curve
around the origin. Assume that s; < sp and let ¢ : [s1,s2] — R? be a
continuous curve such that ¢(t) # (0,0) for every ¢t € [s1,s2]. Writing
o(t) = (p(t) cosb(t), p(t)sinB(t)), where p : R —]0,4+00[ and 6 : R — R are
continuous, we define
0(s2) — 6(s1)

27
In the following, when dealing with a solution z of (1), by a slight abuse of

Rot(¢; [s1, 82]) = —

notation we will write Rot(x; [s1, s2]) instead of Rot((z, £);[s1, s2])-
We first need the following result.

Proposition 2.1. Assume (H) and let v be a nontrivial solution of the
differential equation in (9).

1. If Rot(v;[a,b]) = N for some a <b and N € N, then

N%2V2<b_a<N7;A1,V1'

2. If instead Rot(v; [a,b]) = N + 3, then
NTpows + My <b—a < NTpy 0 + My, ;-

Proof. The first part of the statement is rather standard (see, e.g., [12]),
hence we omit the proof, for briefness. Let us prove the second part. Intro-

ducing the polar coordinates
(v,0) = (pcosb, psinb),

we see that

—0(t) =

fi(t) cos? O(t) +sin?0(t), ifv(t) =0, (11)
<0

D(t)cos? O(t) +sin?20(t), if v(t) .

Notice that —@(t) > 0 for every t. For definiteness, we assume 6(a) €
[—Z,Z[; the case 6(a) € [5, 27| can be treated similarly.

Set 0y = 6(a). By assumption we have 6(b) = 6y — (2N + 1)m. Then we
select a < s1 < s3 < b such that 0(s;) = —7/2 and 0(s2) = —7/2 — 2N, see

Figure 4. By the first part of the statement, we deduce that

N%mw < 52— 81 S N%h”l : (12)

7



Figure 4: The rotating solution in the phase plane.

From (10) and (11), we get
sin 0(t) + min{uy, v1} cos? 0(t) < —0(t) < sin® 0(t) + max{juo, vo} cos? O(t) ,

which implies that

~i(e) . ~i(e)
sin? 0(t) + max{uo, vo} cos20(t)  sin®@(t) + min{uy, v1} cos? O(t)

Upon integration over [a, s1], we have

f’o do
/2 sin? 0 + max{yz, vo} cos? 0

% do
<S8 —a< . (13
sLa fﬂ/g sin? @ + min{yuy, v} cos? § (13)

Similarly, integrating over [sa,b],

J~7r/22N7r do
fo—(2N+1)x SIn? 0 + max{po, vo} cos? 0
771'/272N7T d9
<b- S < f — - 57
00— (2N+1)x Sin” 0 + min{juy, v1} cos? 6

which is equivalent to write (since the integrand is 7-periodic)

J~7r/2 do
9, sin?0 + max{ug,ve}cos?f

/2 do
<b—s59 < J — - . (14)
9, sin” 6 + min{u, 11} cos? 6




Summing in (13) and (14), we get

J~7r/2 do
/2 sin® 0 + max{yua, v} cos? 0

, /2 do
< (s1—a)+(b—s2) < ’
(31 a) ( 82) J—W/Q sin2 @ + min{ul, 1/1} cos? 6

and so

T
My 1y =
P maxd{ /2, /2

<(s1—a)+ (b—s9)

< T - M
= min{ /—Ml’ /71} - H1,v1

Adding the estimates in (12) and (16), we have
NTpz s + Mpn iy b —=a < NTpjoy + My
which completes the proof.

We recall the notation R = [u1, po] X [v1,v2] .

(16)

(17)

Lemma 2.2. Let assumption (H) hold. If R < S, then problem (9) only

has the zero solution.

Proof. By contradiction, assume that there is a nontrivial solution v(t) for
problem (9). Then (v(t),0(t)) # (0,0) for every ¢t € [0,T], and there is an

integer K > 0 such that Rot(v;[0,T]) = K + 3.
Recalling the definition of S in (8), we discuss two different cases.

Case 1: R < Sy.

From Proposition 2.1, we get
T < ml‘%”? g mﬂ27”2 + K%27V2 < T7

which is impossible.

Case 2: R < Sy, for N > 1.
If K < N — 1, then by Proposition 2.1, we have

T<KTuyum +My o <(N=1)Tu 0 + My, <T,
which is impossible. Similarly, if K > N, then we have
T2 KTuyws + Mg Z NTpgwe + Mpp e > T,

which is again impossible.

This completes the proof of the lemma.



We now consider the case when the rectangle R is contained in the closure

of the set § and touches two curves of the Fucik spectrum.
Lemma 2.3. Let 1, pa,v1, and v satisfy
NTwwn + My, =T = (N + 1) Tpg e + My 0, (18)

for a certain integer N = 0. Suppose that problem (9) admits a nontrivial

solution v, with

pr < a(t) < pz, ae only={tel0,T]:v(t)>0}, (19)
v <U(t)<vy, ae onl_={te|0,T]:v(t) <0}.

Then, either
a(t) = w1 a.e. on Iy and D(t) =vy a.e. onI_,

or

a(t) = p2 a.e. on Iy and U(t) =vy a.e. on I_.

Proof. Since v is a nontrivial solution, it satisfies v2(t) + ©%(t) # 0 for all
t € [0,T], and Rot(v; [0,T]) = K + §, for some integer K > 0. We claim
that either K = N or K = N + 1. Indeed, if K < N, then by using
Proposition 2.1 and (18), we have

T < KTuun + My < NTpwn + My, =T,
which is impossible. Similarly, if K > N + 1, we have
T > KT + Moy > (N + DT, + Mpgpy =T,

which is again impossible.

Let us analyze the alternative K = N, as the other situation follows
similarly. We need to consider the following three cases.
Case 1. pu1 < vy, i.e.,

s s

T=NTuu + I >N7:L1,V1+\/T>1'

Claim. v(0) = 0 and 0(0) > 0.

10



Proof of the Claim. Assume by contradiction that v(0) # 0 or v(0) = 0 with
0(0) < 0.

We first discuss the case when v(0) > 0 or v(0) = 0 with ©(0) < 0. In
this case, there exist 0 < tg <t) < --- < g9y < T such that

U(ti) = 0, 1')(7521') < O, and @(t2i+1) > 0. (21)

Introducing polar coordinates, recalling that —0(t) > 0 for every ¢, we deduce
that Rot(v;[t;, ti+1]) = 1/2 for every i. We set 6(0) = 0y € [—7/2,7/2].

From Proposition 2.1, we have
tan —to < NTpy -
Combining this fact with the equality in (20) and recalling (11), we get
< (to—0) + (T — tan)

B Jto —6(¢t)dt jT —0(t)dt

~ Jo Bi(t) cos?0(t) + sin” O(t) D(t) cos? O(t) + sin? 4(t) ’

T
VH1

2N

which implies that

f’o do
9o—n 11082 0 + sin” 0

J"o dg J_g df
< + )
—z Ji(f) cos? 0 + sin?0 = Jg,_n 7(0) cos? 6 + sin” 6

where [1(0(t)) = 1(t), and D(0(t)) = D(t). After splitting the left hand side

integral, we thus obtain

N 1 1
2 - 2,9 0~ 2 ) o
0o—r \ 1 cos?f +sin“f  D(0)cos? O + sin”

. >

>0, since U = vy > pq .

) 1 1
S - do. (22
fg (ﬁ(@) cos20 4+ sin?0  pycos?6 + sin29) (22)

J

~
<0, since fi = py .

The left hand side integral is positive due to the fact that 6y < 7, and we
get a contradiction.
The case v(0) < 0 can be treated similarly, thus completing the proof of

the Claim.

11



Since v(0) = 0 and ©(0) > 0, we can select 0 = t; < -+ < taoyo =T
satisfying (21).

We now introduce the following modified polar coordinates

rcosf ifv=0,
1 . :
v = U =rsinf,
——rcosf ifv <0,
%1

and observe that

v — 02

. \/Mlm if’U>0,
0:
v — 02

N{ZY PR ifv<0.
Then, forz=1,..., N + 1, we have
. i [(t)0? + 02
ﬁ - toi—1 MlUQ + 02
Jtzi (ﬁ(t) _'ul),Uth+ Jvtzi MIUZ +,('}2dt
t t

dt

3it uwQ +0? iy H10% £ 02
to;
— v
L /L11)2 2 ~—r = dt+ (tgi — tQi_l) . (23)
2i—1

Similarly, for j =2,..., N + 1, we have

tQJll? v —H}dt

2 2
to;_n VIV + v

t /\ 2 t._ 2 .2
2j—1 —1/1) " 27— pivt 4+ v .

UU2+02 102 + 92
toj—2 1 t 1

[ e

2 + 02

2j—2

dt + (tQj_l — tgj_g) . (24)

2j—2

Summing (23) fori =1,...,N+1and (24) for j =2,..., N + 1, by (20) we

obtain ) )
a(t) — v(t) —
T—f (@(®) — v dt+j 00— g
I, MV +0v . nvt+wv

which implies that

[ GOm0 R,
Iy I_

12 + 02 viv? + 02
Recalling (19), we get
a(t) = pp ae. on Iy and 7(t) =1p ae. on I_,

thus completing the proof in Case 1.

12



Case 2. u1 > vy, i.e.,

™ ™
\/TT > an,lfl + 7@ : (25)

A similar computation as in Case 1 shows that v(0) = 0 and v(0) < 0. Then

T =NTuu +

one can find 0 = tg < --- < toy4+1 = T satisfying (21) and obtain estimates
as in (23) and (24), so that the conclusion follows similarly.

Case 8. u1 = vy, i.e.,

o GN+Dm (26)

N

In this case,

<ﬂV+Dﬂ:mewwﬂ2+mw@>2+wﬁ
Vi 0 p1v? + 2
ZJT@@%WMWZV;f%ﬂ—Mﬁ@)aﬁ+JTfﬁiviﬁ
0 1v v 0 v 0
zﬁme—mxiiLg@—umUvﬁ+T’

which implies that

fT (@) = p) ()" + (0(1) — )7 ),
0 p1v? + 02

leading to the same conclusion as in the previous cases. O

3 Main results
We will need the following assumption.
(G) The function g : [0,T] x R — R has the form
9(t,) = 74 (1, 2)3" — (2} + h(t,2),
where 4, 7— and h are continuous functions such that
w < v (t,x) <pg, v <y-(t,x) <ve,

for every ¢t € [0,T] and = € R, the above constants pi, po, v1,ve all

being positive, and A is uniformly bounded.

As above, we denote the rectangle [u1, ua] x [v1, 2] by R.

13



Theorem 3.1 (Nonresonance). If assumption (G) holds with R < S, then

problem (1) has a solution.

Proof. Let R € S, for some k € N, and set

I
N
I

i
Consider the following family of problems

Z+ (1—o)|azt —vx~ ]| +og(t,z) =0,

(27)
2(0) + 2(T) =0, #(0) +a(T) =0,

with o € [0,1]. We aim to show that there is a 7 > 0 such that, for every

solution z of (27), one has x|, < 7.

Assume by contradiction that for every positive integer n there exist oy, €
[0,1] and a solution x,, of (27), with o = o, such that ||z,| . > n. Passing
to a subsequence we can assume that (o), converges to some @ € [0,1]. Set

X

— _Zn_ Then
Un = Mzl 0

B+ Bn(t)o — (D)0 + 0 Mzl g o
0n(0) + va(T) =0,  ©p(0) + 0n(T) =0,

where

~

fin(t) = (1 = o) + onv4 (L, [|2n] lova(t))
Un(t) = (1= 0n)¥ + ony—(t, [|2n]|covn () -

Notice that u1 < fin(t) < po and v1 < Up(t) < vo.

From the differential equation in (28) and the properties of iy, Vp, and h,
the sequence (v, ), is bounded in H?(0,T'), therefore there exists a function v
such that, up to a subsequence, v, — v in C*([0, T']) and weakly in H?(0,T).
In particular ||v||, = 1. Since the sequences (fin)n and (), are bounded,
we can suppose that, up to a subsequence, they converge weakly in L2(0,7)
to some functions i and 7, respectively, with p; < fi(t) < p2 and 1y <
U(t) < 1o, almost everywhere on [0,7T]. Passing to the weak limit in (28), v
solves

U+ a(t)vt — o)™ =0, (20)
v(0) +v(T) =0, o0(0)+o(T)=0,

14



for almost every t € [0,T], which is a contradiction with Lemma 2.2.
To conclude the proof of the theorem, recalling the notation (6), we define

¢ = Tz and consider the curve
(g:{(#ﬂ/)i,u>0,y>0,7r+7r: }’
1%

which is contained in Sy for some k. This curve connects the point (i, 7)
with ((2%)2, (2%)2) We parametrize this part of the curve by a continuous
map & : [0,1] — R? as

§(0) = (p(0),7(0)),
with £(0) = (7,7), £(1) = ((25)2, (25)?).

)
By Lemma 2.2, for every o € [0, 1], the problem
U+ p(o)vt —v(o)v” =0, (30)
v(0)+v(T) =0, v(0)+0(T)=0
only has the zero solution.
The proof of the theorem can be now completed by a standard application

of the Leray—Schauder topological degree theory. O

Remark 3.2. Notice that the growth conditions in (2) imply assumption (G)
after slightly changing the involved constants. Hence, being S an open set,

in the assumption of Theorem 3.1, we can replace assumption (G) with (2).

Next, we examine the case when R C Sy for some N > 1,and Rn X =
{(p1,11), (12, 2)}. This situation arises when the resonance condition (18)

is satisfied.

Theorem 3.3 (Double Resonance). Assume (G) and the existence of a
positive integer N such that (18) holds. If for every non-zero T-antiperiodic
solution ofd; + 1t — ™ =0 one has

J limsup (g(t, z)—112)(t) dt+J liminf (g(t, ) —piz)w(t)dt >0,
{y<0} a—-o0 {y>0} T7FE
(31)

and for every non-zero T-antiperiodic solution X of X + paXt — sX~™ = 0

one has

J lim sup (vez—g(t, )X (t) dt+J liminf (pox—g(t,z))X(t)dt >0,
{X<0} z—>—00 {x>0} T—+00
(32)

then problem (1) has a solution.

15



In the above, we have used the standard notation
{ <0} ={te[0,T] : ¥(t) <0},
and similarly for {¢) > 0}.

Proof. Let us set

p1 + p2 ﬁ:V1+V2
2 ’ 2 ’

and consider the family of problems (27), with o € [0, 1] .

=

Claim. There is a r > 0 such that, for every solution x of (27) one has

[#foo < 7.

In order to prove the Claim, assume by contradiction that for every
positive integer n there exist o, € [0,1] and a solution z, of (27), with
0 = op, such that |z, |, > n. Notice that o, # 0.

Passing to a subsequence we can assume that (o), converges to some
o € [0,1]. Set v, = Macty- Then, v, solves (28), and arguing as in the
proof of Theorem 3.1, the sequence (v,), converges, up to a subsequence,
to a function v in C1([0,7]) and weakly in H?(0,T). This function is such

that ||[v||e = 1, and it solves (29) for almost every ¢ € [0, T].

We apply Lemma 2.3 and consider, for definiteness, the first alternative
in (19), i.e.,

a(t) =y ae. on Iy and  D(t) =v; ae. on I,
the second one being treated similarly. So, v is a solution of

U+ pvt —vvT =0,

(33)
v(0) +o(T) =0, (0)+0(T)=0.

Since we are assuming that (18) holds, from the first equality we deduce
that Rot(v; [0,7]) = N + 3. This is also true for (v, (t),on(t)), if n is large
enough, and so also for (z,(t), ,(t)).

Let us write (z,, &) in the following modified polar coordinates:

1 .
——rpco8f,, ifx, =0,

N

Ty = Ty = TpSing,, .

1 .
——rpcosf,, ifx, <0,
V1

16



We compute the derivatives

.. '2
Iny — T _
o7 Infn — Tn if 2, > 0
\ 2 | 52 ’
. nixs + s
o = iy — 02
Nz % if z, <0.
Ty, + Ty

Since the couple (zy,(t), o (t)) performs precisely 2N + 1 half rotations
around the origin in the interval [0, T], two distinct cases arise.

Case 1. There exist

O0<thy <ty <---<toyy <T,

and oy, €]0,7[, satisfying

T

0 (0) =an—§,

(1) =0, forl=0,1,2,...,2N,
T (ty;) <0 for j =0,1,2,...,N,
Ty (ty;—1) > 0, forj=1,2,...,N.

Case 2. There exist

and ay, €0, 7[, satisfying

7r
0,(0) = —ay, — 5
an(ty') =0 for | =1,2,...,2N,
Ty (ty;) <0, for j=1,2,...,N,
G (thj_1) > 0 for j=1,2,...,N.

We focus our analysis on Case 1, as the second one can be treated anal-
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n . n

Tn, a,& /

\yn
to b)

Figure 5: a) Case 1 for N = 1. b) Case 2 for N = 1.

ogously. We have the following time estimate:

On 0,(0) — Qn(tg) _ th _én
Vi vm b oym
_ th [(1 — op)fixn + ong(t, zn)]zn + 22
0 iy + &3
- th [(1 - op) 1wy + ong(t, )]z, + 2
~ D pay + a7
_ fg man + fg (9(t, 2n) — p1n)n
o mzi+az "y g + &3
=15+ on th (9(t, xn) — p1an)Tn
0 may + &3

A similar computation gives the following time estimates for j =1, ...

n . n
T 2j-1 vw2 + 32 2j-1 (g(t, mp) — viap)Tp
N nat + a2 " v + 12
1 i o 14n n 5o 144y n
n
_ ( n n ) . t2j-1 (g(taxn) - Vlwn)xn
= 1 — Tty n -
25—1 25—-2 g]._Q lergl + JL‘% )
t0 2 -2 0
™ > 2 Ty, + Ln +o f 2 (g(t7 xn) B /f‘ll‘n)mn
= 2 .2 n 2 .2
VH1 1 H1Ty, + T 5ic1 H1Ty, + T

n
t2j

(g(t7 xn) - #1xn)xn
pixl + a2

=<z—zn+%j ,

n
1551
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(34)



and

T — Op > T le% + .’L’% JT (g(t, wn) — Vll'n)wn
N t, V1Th + 37 " . vz + 12
T
g(t7 xn) - len)xn
=(T—thy)+o f . . 37
( 2N) n th le% + ZC% ( )

Since the solution completes 2N + 1 half rotations in time 7T, addition

in (34), (35), (36) and (37) for j =1,..., N leads to

t — t _
Wf[ v (Gt —nnin) g
{zn<0} nry + Iy {xn>0} Ty +xh

(07 i T — Qp
VH1 V42!
(6779 i T — Op
min{/fi1, /v1}  min{y/fir, /71 }
™

min{\/ﬂlv\/ﬁ}
= N77117V1 + M,ul,lﬂ =T,

S NTpym +

< N%lv”l +

= Nﬁlﬂ’l +

where the last step follows from (18). Being o, # 0, we get

f (g(tyxn) - len)xn +J (g(taxn) — ﬂlxn)‘rn <0
(2n<0} vzl + @2 (250} prl + @2 ’

which can be written as

JT [g(t,xn) - (lert - le;)]xn <0
+3\2 —)\2 .2
o p1(wn)? +vi(wn)? + 23

Recalling that v, = me%’ we have

fT [g(t,$n) — (s — Vlffg)]vn <0.

o m(vn)?+vi(ve)? + 0}
Since 1 (v (¢))% + v (v (t))? + ©(¢)? is positive and constant in ¢, and

Hm (1 (o))? + (o) +92) = pa(vh)2 + 1 (v7) + 02,

n—0o0

uniformly in [0, 7], by Fatou’s Lemma,

JT [9(t 20) — (mary —viwy)]on _

lim inf
g n p1(vn)2 + vi(vp )2 + 02

So, it has to be

T
[ tmint ot (0) = ot (0 =z )]y e <0, (38)
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Let us now fix t € [0, 7] such that v(t) < 0; so vy, (t) < 0 for sufficiently large
n, and lim,, z,(t) = —o0, hence
lirr%inf[ylxn(t) —g(t,zn(t))] = lirilirg[ylx —g(t,z)],
which implies that, for every ¢ € [0, T] with v(¢) < 0, we have
lim inf [g(t, ||znleovn () = (may (£) — 21z, (1)) Jon (1)

> liminf[v12 — g(t, 2)]lo(t)| = lim sup[g(t, z) — malo(t)

T—>—0
Similarly, if v(t) > 0 for some ¢, then v,(t) > 0 for sufficiently large n, and
lim,, x,(t) = 400, hence
limnf [g(, l2c0a (6) = (1 (8) = vray () ]on®)
> lim inflg(t, ) — puz]o(t).

Thus, by (38),

f limsup (g(t, z) — viz)v(t) dt + J liminf (g(t,z) —mz)v(t)dt <0,
{v<0} z—>—00 {v>0} T+
(39)

a contradiction with (31), thus proving the Claim. The proof of Theorem 3.3

can now be completed arguing as in the proof of Theorem 3.1. O

Remark 3.4. A similar existence result holds for the so-called simple res-
onance, i.e., the case when R = S, and R 02 = {(u1,11)} or RAY =
{(p2,12)}. Clearly enough, in this case, the Landesman—Lazer condition will

be imposed only on one side.

Remark 3.5. Notice that Theorem 3.3 generalizes Theorem 3.1. Indeed, if

we focus our attention on R € S, it is possible to find €1, €2 > 0 such that
N%1—61,V1—61 + MM1—61,V1—€1 =T = (N + 1)%2-&-6271/24-62 T Mustea,vates -

Setting i1 = 1 — €1, flo = fo + €2, 1 = v| — €1 and U = vy + €3, we have

Jim (g(t,2) —inw) = =0, lim (g(t @) — juz) = +0,
and
Jm (e —g(te)) = —0,  lim iz = g(t,2)) = +oo,

uniformly in t, from which we easily verify that the Landesman—Lazer con-
ditions (31) and (32), respectively, hold.

Remark 3.6. The results contained in this paper could be rephrased in a

L?-Carathéodory setting. We avoid the details, for briefness.
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