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Abstract. We consider planar Hamiltonian systems with Hamilto-
nian function of the type H(x, y) = F (y) +G(x) having the origin as
a global center, and generalize to this setting some known results on
the period map. We are thus led to a characterization of isochronism
for scalar second order equations involving the p-Laplacian operator.

1 Introduction

Let us start considering the scalar second order equation

x′′ + g(x) = 0 ,

which is equivalent to a Hamiltonian system with Hamiltonian function
H(x, y) = 1

2y
2 +G(x), where

G(x) =

∫ x

0
g(s) ds .

Assuming that the origin is a global center, the period map associating to
any E > 0 the minimal period τ(E) of a solution with constant energy
H(x, y) = E is well defined. As a particular case, when the period map τ

is constant, we have an isochronous equation and, correspondingly, an as-
sociated isochronous system: every nonconstant solution is periodic and all
solutions share the same period.

A classical problem is the following.

Period map problem. Given a positive function τ , recover g for which the
period map of the corresponding system is precisely τ .
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The isochronism problem, i.e., such a problem for a constant period
map τ , has been widely studied in literature, see e.g. [4, 8, 17, 20, 21, 23].
Urabe [26] proved that g(x) = ax is the unique odd analytic function pro-
viding isochrononicity. Later on, it has been proved that, up to possible
shifts, it is the unique isochronous function among polynomials [2, 9]. See
also [1, 7, 10, 11, 13, 14, 15, 17, 19, 24, 27, 28] for other results. There are
several other examples of isochronous functions g as, for instance,

g(x) = x− (x+ 1)−3 + 1 , on ]− 1,+∞[ ,

see [21, 23], or

g(x) = 1− (1 + 2x)−1/2 , on ]− 1/2,+∞[ ,

see [26]. As proved in [5] (see also [3, 6, 11]), a potential G is isochronous if
and only if its graph arises by horizontally shearing the graph of a parabola.

The period map problem stated above can be formulated for the more
general Hamiltonian system

x′ = f(y) , y′ = −g(x) , (1)

with Hamiltonian function H(x, y) = F (y) + G(x), where G(x) has been
defined above and

F (y) =

∫ y

0
f(σ) dσ .

These are what we call systems with separated variables. We will recall some
known properties of the period map for these general systems in Section 2.

As a particular case, we have the system generated by a scalar equation
of the type (

|x′|p−2x′
)′
+ g(x) = 0 , (2)

ruled by a p-Laplacian differential operator, with p > 1. In Section 3 we
tackle the period map problem in this framework, extending the classical
results. Our approach follows and completes the arguments in [16], where
the case p = 2 was treated.

In Section 4 we concentrate our attention on the isochronism problem
for planar systems of the type (1), and extend to a more general setting the
results in [25].

Finally, in Section 5 we reconsider our main result from a different per-
spective, which could deserve further investigation.
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2 Preliminaries

We will be interested in system (1) under suitable assumptions on f and g.

Definition 1. The function f : R → R is said to be admissible if it is
continuous and satisfies

f(y)y > 0 , for every y ̸= 0 ,

and
lim

|y|→∞
F (y) = +∞ .

Assuming both f and g to be admissible, the origin is the only equilibrium
point for system (1), and all the other solutions surround it and are periodic.
More precisely, for every E > 0 the set

Ω(E) = {(x, y) ∈ R2 : F (y) +G(x) ≤ E} ,

depicted in Figure 1, is bounded and its boundary corresponds to a periodic
solution of system (1), whose minimal period will be denoted by τ(E). The
function τ : ]0,+∞[→ ]0,+∞[ defined in this way will be called the period
map of the system.

We will now provide some useful formulas for the computation of the
period map (see also, e.g., [10, 25]). Consider the restrictions

F−, G− : ]−∞, 0] → [0,+∞[ , F+, G+ : [0,+∞[→ [0,+∞[ ,

for which F±(y) = F (y) and G±(x) = G(x). Since f and g are admissible,
all these functions are invertible. We then define, for E ≥ 0,

ℓf (E) = F−1
+ (E)− F−1

− (E) , ℓg(E) = G−1
+ (E)−G−1

− (E) .

For every solution of system (1) with energy E, we select some instants
t0 < t1 such that y(t) ≥ 0 for t ∈ [t0, t1], and y(t) ≤ 0 for t ∈ [t1, t0 + τ(E)].
We focus our attention on the former interval, so that

y(t) = F−1
+ (E −G(x(t))) ,

and so

−g(x(t)) = y′(t) = −g(x(t))x′(t) (F−1
+ )′(E −G(x(t))) .
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Ω(E)

x

y

(G−1
+ (E), 0)(G−1

− (E), 0)

(0, F−1
+ (E))

(0, F−1
− (E))

Figure 1: The set Ω(E) delimited by the level curve of energy E.

Since there exists a unique instant in ]t0, t1[ at which x(t) vanishes, an inte-
gration on [t0, t1] gives

t1 − t0 =

∫ G−1
+ (E)

G−1
− (E)

(F−1
+ )′(E −G(s)) ds .

Applying a similar reasoning in the interval [t1, t0 + τ(E)] and summing the
two contributions, we get

τ(E) =

∫ G−1
+ (E)

G−1
− (E)

ℓ′f (E −G(s)) ds . (3)

Similarly, one can obtain the analogous formula

τ(E) =

∫ F−1
+ (E)

F−1
− (E)

ℓ′g(E − F (σ)) dσ .

Further, by (3) we compute

τ(E) =

∫ 0

G−1
− (E)

ℓ′f (E −G(s)) ds+

∫ G−1
+ (E)

0
ℓ′f (E −G(s)) ds

=

∫ E

0
ℓ′f (E − u)(G−1

+ )′(u) du−
∫ E

0
ℓ′f (E − u)(G−1

− )′(u) du

=

∫ E

0
ℓ′f (E − u)(G−1

+ (u)−G−1
− (u))′ du ,

and so

τ(E) =

∫ E

0
ℓ′f (E − u)ℓ′g(u) du . (4)
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This last formula could also be obtained as τ(E) = a′(E), where a(E) is the
area of the set Ω(E), see for instance [12, Lemma 2.1]. We avoid the details,
for briefness.

We will use the above formulas in the sequel.

3 The p-Laplacian equation

We consider the scalar differential equation (2), with p > 1. This equation
can be written in the form of system (1) with f(y) = |y|q−2y, i.e.,

x′ = |y|q−2y , y′ = −g(x) , (5)

where q > 1 is such that 1
p + 1

q = 1. Hence, the associated Hamiltonian
function is

H(x, y) =
1

q
|y|q +G(x) .

Here is our main result in this framework.

Theorem 2. Let τ : ]0,+∞[→ ]0,+∞[ be a continuously differentiable func-
tion, and set ρ(E) = E1/pτ(E). Assume that the function ρ is strictly in-
creasing and satisfies

lim
E→0+

ρ(E) = 0 , lim
E→0+

ρ′(E) = +∞ , (6)

and
lim inf
E→+∞

Eρ′(E) > 0 . (7)

Then, there exists a unique admissible odd function g for which τ is precisely
the period map of system (5). Any other admissible function g̃ has the same
property if and only if ℓg̃(E) = ℓg(E), for every E ≥ 0.

Proof. By (4), if g is the function we are looking for, then necessarily

τ(E) =
∫ E

0
ℓ′f (E − u)ℓ′g(u) du =

2

q1/p

∫ E

0

ℓ′g(u)

(E − u)1/p
du ,

for every E > 0. So, we start seeking a function η such that η(0) = 0 and

τ(E) = 2

q1/p

∫ E

0

η′(u)

(E − u)1/p
du , for every E > 0 .
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Assuming its existence, we must have∫ E

0

τ(E)
(E − E)1/q

dE =
2

q1/p

∫ E

0

(∫ E

0

η′(u)

(E − E)1/q(E − u)1/p
du

)
dE

=
2

q1/p

∫ E

0

(∫ E

u

1

(E − E)1/q(E − u)1/p
dE
)
η′(u) du .

Now, by the change of variable v = (E − E)/(E − u),∫ E

u

dE
(E − E)1/q(E − u)1/p

=

∫ 1

0

dv

v1/q(1− v)1/p
= B

(
1
p ,

1
q

)
= B

(
1
p , 1−

1
p

)
=

π

sin(π/p)
,

where we have used the Beta function

B(a, b) =

∫ 1

0
ta−1(1− t)b−1 dt .

Notice that the above integral is independent of both u and E, and hence∫ E

0

τ(E)
(E − E)1/q

dE =
2

q1/p

∫ E

0

π

sin(π/p)
η′(u) du =

2π

q1/p sin(π/p)
η(E) .

So, the continuous function η : ]0,+∞[→ ]0,+∞[ can be defined as

η(E) =
q1/p sin(π/p)

2π

∫ E

0

τ(E)
(E − E)1/q

dE . (8)

Setting

cp =
q1/p sin(π/p)

2π
,

one has

η(E) = cp

∫ 1

0

E1/p τ(Es)

(1− s)1/q
ds = cp

∫ 1

0

ρ(Es)

s1/p(1− s)1/q
ds ,

so we deduce from the first assumption in (6) that limE→0+ η(E) = 0. More-
over, since ρ(E) is strictly increasing, the function η(E) is strictly increasing,
as well.

Some elementary careful estimates guarantee that we are allowed to apply
the Leibniz Integral Rule, providing us

η′(E) = cp

∫ 1

0

s1/qρ′(Es)

(1− s)1/q
ds .
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Then, assumption (7) gives us, by Fatou’s Lemma,

lim inf
E→+∞

E η′(E) ≥ cp lim inf
E→+∞

∫ 1

0

Esρ′(Es)

s1/p(1− s)1/q
ds

≥ cp

∫ 1

0
lim inf
E→+∞

Esρ′(Es)

s1/p(1− s)1/q
ds > 0 ,

implying that limE→+∞ η(E) = +∞ . In conclusion, we have proved that
the function η : ]0,+∞[→ ]0,+∞[ is invertible.

By the second assumption in (6) and Fatou’s Lemma again we have that

lim inf
E→0+

η′(E) ≥ cp lim inf
E→0+

∫ 1

0

s1/qρ′(Es)

(1− s)1/q
ds

≥ cp

∫ 1

0
lim inf
E→0+

s1/qρ′(Es)

(1− s)1/q
ds = +∞ .

This implies that the function η−1 : ]0,+∞[→ ]0,+∞[ can be extended by
setting η−1(0) = 0 so to obtain a continuously differentiable function, for
which we maintain the same notation. We can now define G : R → R as the
even function

G(s) =

η−1(2s) if s ≥ 0 ,

η−1(−2s) if s < 0 .
(9)

In such a way, G is continuously differentiable, and so we obtain the function
we are looking for, by setting g = G′.

Since formula (8) prescribes the value of ℓg being equal to η, the conclu-
sion of the proof easily follows.

Remark 3. The procedure followed in the first part of the above proof is
inspired by [16], where the case p = 2 has been treated. However, the authors
did not comment therein on the invertibility of the function η(E). Indeed,
in this respect, our result seems to be new in the literature even in the case
p = 2.

The assumptions of Theorem 2 surely hold true if τ(E) is a nondecreasing
function. In particular, we immediately deduce the following.

Corollary 4. For any positive constant τ , the unique admissible odd func-
tion g for which the p-Laplacian equation (2) is isochronous with associated
period τ is

g(x) =

(
2πp
τ

)2

|x|p−2x ,
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where

πp =
2(p− 1)1/p

p sin(π/p)
π .

Any other admissible function g̃ has the same property if and only if

ℓg̃(E) =
τ

πp
(pE)1/p , for every E ≥ 0 .

Proof. It is well known that system (5) with g(x) = a|x|p−2x is isochronous
with period 2πp/

√
a (see, e.g., [18]). Hence, choosing a = (2πp/τ)

2, we have
isochronism with period τ . Theorem 2 guarantees the uniqueness claimed
in the first part of the statement, and any other admissible function g̃ has
this isochronism property if and only if ℓg̃(E) = ℓg(E), for every E ≥ 0.
From (8), we can compute

ℓg(E) =
q1/p sin(π/p)

2π

∫ E

0

τ

(E − E)1/q
dE =

τ

πp
(pE)1/p ,

yielding the conclusion.

Remark 5. If p = 2, we obtain ℓg(E) = τ
π

√
2E. As already mentioned in the

Introduction, this fact was emphasized in [3, 5, 6, 11], where the authors said
that a potential G is isochronous if and only if its graph arises by horizontally
shearing the graph of a parabola y = c x2. For a general p > 1 we have proved
that the same property holds replacing the parabola by the curve y = c |x|p.

Remark 6. The function τ(E) = Eα satisfies the assumptions of Theorem 2
provided that −1/p < α < 1/q. Notice that this period function is precisely
the outcome for the p-Laplacian equation (2) when g(x) = c |x|r−2x, for a
suitable constant c = c(α) > 0 and

r = r(α) =
p

1 + αp
.

Indeed, for such an equation we compute, using (4),

τ(E) = 4 q−1/p r−1+1/r c−1/r B
(
1
r ,

1
q

)
E

1
r
− 1

p ,

providing us with the value of the constant

c(α) =
[
4 q−1/pB

(
α+ 1

p ,
1
q

)] p
αp+1

(
p

αp+ 1

)1− p
αp+1

.

Notice that, taking α = −1/p, recalling (8) we see that the function η(E)

is constant, hence not invertible. On the other hand, taking α = 1/q, we
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find η(E) = pcpE, so that in (9) one has G(s) = 2|s|/(pcp), which is not
differentiable at 0. These facts show that the assumptions of Theorem 2 are
in some sense optimal.

Remark 7. If we do not assume (7), then it could be that limE→+∞ η(E) =

ℓ ∈ ]0,+∞[ . In this case the function G would be defined only on ]− ℓ
2 ,

ℓ
2 [ ,

with
lim

s→− ℓ
2

+
G(s) = lim

s→ ℓ
2

−
G(s) = +∞ ,

hence we would have a singular potential.

4 Isochronism in systems with separated variables

As usual, let p, q > 1 be such that 1
p + 1

q = 1, and consider two admissible
functions f and g. Our aim in this section is to show that the isochronism
of the two systems

y′ = |x|p−2x , x′ = −f(y) (10)

and
x′ = |y|q−2y , y′ = −g(x) (11)

guarantees the isochronism of system

x′ = f(y) , y′ = −g(x) . (12)

The following theorem generalizes [25, Theorem 2.5], where the case p = q =

2 has been treated.

Theorem 8. Let system (10) be isochronous of period Tf . Then, system (11)
is isochronous of period Tg if and only if system (12) is isochronous of period

τ =
TfTg
2πp

.

Proof. Since system (10) is isochronous, by Corollary 4 we have that

ℓf (E) =
Tf
πq

(qE)1/q ,

and so
ℓ′f (E) =

Tf
πq(qE)1/p

.
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From (3), the period map of system (12) is then given by

τ(E) =

∫ G−1
+ (E)

G−1
− (E)

ℓ′f (E −G(s)) ds =
Tf

πpq1/p

∫ G−1
+ (E)

G−1
− (E)

ds

[E −G(s)]1/p
,

where we have used the fact that πq = πp.

Let us denote by Tg(E) the period map of system (11). Again, using (3)
with f(y) = |y|q−2y, we get

Tg(E) =
2

q1/p

∫ G−1
+ (E)

G−1
− (E)

ds

[E −G(s)]1/p
=

2πpτ(E)

Tf
.

The conclusion easily follows.

5 Final remarks

In the proof of Theorem 2, a crucial step in order to obtain formula (8) was
the observation that there exists a function h for which the integral∫ E

u
ℓ′f (E − u)h(E − E) dE

is independent of both u and E. Precisely, h(x) = x−1/q. When dealing with
the isochronous problem, an alternative approach could be the following:
after writing (4) as

τ =

∫ E

0
ℓ′f (E − u)ℓ′g(u) du = ℓ′f ∗ η′,

we perform a unilateral Laplace transform so to obtain

L(τ) = L(ℓ′f )L(η′) ,

i.e.,
τ

s
= sL(ℓf )(s) sL(η)(s),

whence
L(η)(s) = τ

s3L(ℓf )(s)
.

We claim that the right-hand side in the above equality is well defined
for any s ∈ C having positive real part. Indeed, for any M > 0 the function
ℓfχ[0,M ] is positive and increasing in [0,M ]. As a consequence of a result
by Pólya [22], this fact implies that L(ℓfχ[0,M ]) can vanish only in the left
half-plane {z ∈ C | Re z ≤ 0}. Since L(ℓfχ[0,M ])(s) → L(ℓf )(s) for every
s ∈ {z ∈ C | Re z > 0} as a consequence of the Dominated Convergence
Theorem, the claim follows.
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We then find the formula

η = L−1

(
τ

s3L(ℓf )(s)

)
.

As an example, when f(y) = |y|q−2y, we have that ℓf (E) = 2(qE)1/q, hence

L(ℓf )(s) =
2Γ(1/q)

q1/ps1+1/q
,

where Γ is the Euler Gamma function. It follows that

η = L−1

(
τq1/ps1+1/q

2s3Γ(1/q)

)
=

τq1/p

2Γ(1/q)
L−1

(
1

s1+1/p

)
.

Since

L−1

(
1

s1+1/p

)
(x) =

x1/p

Γ(1 + 1/p)
,

we obtain

η(E) =
τpq1/pE1/p

2Γ(1/q)Γ(1/p)
.

Recalling the well-known property of the Gamma function

Γ(1/p)Γ(1/q) = B(1/p, 1/q) =
π

sin(π/p)
,

we finally obtain
η(E) =

τ

πp
(pE)1/p,

corresponding to the formula in the statement of Corollary 4.

Acknowledgement. This paper has been partly supported by the Italian
PRIN Project 2022ZXZTN2 Nonlinear differential problems with applica-
tions to real phenomena. The authors also acknowledge INdAM, the Istituto
Nazionale di Alta Matematica. The research contained in this paper was
carried out within the framework of DEG1 – Differential Equations Group
Of North-East.

Data availability. No data was used for the research described in the
article.

11



References

[1] A. Algaba, E. Freire and E. Gamero, Isochronicity via normal form,
Qual. Theory Dyn. Syst. 1 (2000), 133–156.

[2] V.V. Amelkin, Isochronism of a center for two-dimensional analytic dif-
ferential systems, Differ. Equ. 13 (1977), 667–674.

[3] C. Antón and J.L. Brun, Isochronous oscillations: potentials derived
from a parabola by shearing, Am. J. Phys. 76 (2008), 537–540.

[4] P. Appell, Traité de mécanique rationelle, vol. 1, Gauthiers-Villars,
Paris, 1902.

[5] S. Bolotin and R.S. MacKay, Isochronous potentials, in: Proceedings of
the Third Conference: Localization and Energy Transfer in Nonlinear
Systems, World Scientific, London, 2003, pp. 217–224.

[6] D. Bonheure, C. Fabry and D. Smets, Periodic solutions of forced
isochronous oscillators at resonance, Discrete Contin. Dyn. Syst. 8
(2002), 907–930.

[7] O.A. Chalykh and A.P. Veselov, A remark on rational isochronous po-
tentials, J. Nonlinear Math. Phys. 12 (2005), 179–183.

[8] J. Chavarriga and M. Sabatini, A survey of isochronous centers, Qual.
Theory Dyn. Syst. 1 (1999), 1–70.

[9] C. Chicone and M. Jacobs, Bifurcation of critical periods for plane vec-
tor fields, Trans. Amer. Math. Soc. 312 (1989), 433–486.

[10] A. Cima, A. Gasull and F. Mañosas, Period function for a class of
Hamiltonian systems, J. Differential Equations 168 (2000), 180–199.

[11] A. Cima, F. Mañosas and J. Villadelprat, Isochronicity for several
classes of Hamiltonian systems, J. Differential Equations 157 (1999),
373–413.

[12] C. Fabry and A. Fonda, A systematic approach to nonresonance con-
ditions for periodically forced planar Hamiltonian systems, Ann. Mat.
Pura Appl. 201 (2022), 1033–1074.

12



[13] E. Freire, A. Gasull and A. Guillamon, A characterization of isochronous
centers in terms of symmetries, Rev. Mat. Iberoam. 20 (2004), 205–222.

[14] E. Freire, A. Gasull and A. Guillamon, First derivative of the period
function with application, J. Differential Equations 204 (2004), 139–
162.

[15] G. Gorni and G. Zampieri, Global isochronous potentials, Qual. Theory
Dyn. Syst. 12 (2013), 407–416.

[16] L.D. Landau and E.M. Lifshits, Mechanics. Course of Theoretical
Physics. Vol. 1, Pergamon Press, Oxford, 1960.

[17] J.J. Levin and S.S. Shatz, Nonlinear oscillations of fixed period, J. Math.
Anal. Appl. 7 (1963), 284–288.

[18] P. Lindqvist, Some remarkable sine and cosine functions. Ricerche Mat.
44 (1995), 269–290.

[19] F. Mañosas and P.J. Torres, Isochronicity of a class of piecewise contin-
uous oscillators, Proc. Amer. Math. Soc. 133 (2005), 3027–3035.

[20] Z. Opial, Sur le périodes des solutions de l’équation différentielle x′′ +

g(x) = 0, Ann. Polon. Math. 10 (1961), 49–72.

[21] E. Pinney, The nonlinear differential equation y′′ + p(x)y + cy−3 = 0,
Proc. Amer. Math. Soc. 1 (1950), 681.

[22] G. Pólya, Über die Nullstellen gewisser ganzer Funktionen, Math. Z. 2
(1918), 352–383.

[23] R. Redheffer, Steen’s equation and its generalizations, Aequationes
Math. 58 (1999), 60–72.

[24] R. Schaaf, A class of Hamiltonian systems with increasing periods, J.
Reine Angew. Math. 135 (1985), 129–138.

[25] A. Sfecci, From isochronous potentials to isochronous systems, J. Dif-
ferential Equations 258 (2015), 1791–1800.

[26] M. Urabe, Potential forces which yield periodic motions of a fixed pe-
riod, J. Math. Mech. 10 (1961), 569–578.

13



[27] M. Urabe, The potential force yielding a periodic motion whose period
is an arbitrary continuously differentiable function of the amplitude, J.
Sci. Hiroshima Univ. 26 (1962), 93–109.

[28] L. Yang, Isochronous centers and isochronous functions, Acta Math.
Appl. Sin. Engl. Ser. 18 (2002), 315–324.

Authors’ addresses:

A. Fonda and A. Sfecci
Dipartimento di Matematica, Informatica e Geoscienze
Università degli Studi di Trieste
P.le Europa 1, 34127 Trieste, Italy
e-mail: a.fonda@units.it, asfecci@units.it

M. Garrione
Dipartimento di Matematica
Politecnico di Milano
Piazza Leonardo da Vinci 32, 20133 Milano, Italy
e-mail: maurizio.garrione@polimi.it

Mathematics Subject Classification: 34C25.

Keywords: Period map, Planar system, Isochronous, p-Laplacian.

14


