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Abstract

We show how the Poincaré–Birkhoff theorem for Hamiltonian sys-
tems can be used to find multiple solutions of the antiperiodic prob-
lem. Applications are given to scalar second order differential equations
whose nonlinearities provide a twist in the phase plane, among which
those with a superlinear or sublinear behaviour at infinity.

1 Introduction

In recent years the Poincaré–Birkhoff theorem has found many applications
to the search of periodic solutions of planar Hamiltonian systems. It is the
aim of this short paper to show how the same theorem can be also used for
detecting multiple solutions of the antiperiodic problem.

The so-called Poincaré’s last geometric theorem [24] dates back to 1912
(historical accounts can be found in [10, 12, 22]). Originally stated for area-
preserving homeomorphisms of an annulus

A “
␣

px, yq P R2 : a ď
a

x2 ` y2 ď b
(

,

it can be restated on the strip S “ R ˆ ra, bs by the use of some modified
polar coordinates (see [5, 26]). Different variants have been proposed, and
also higher dimensional versions of it are now available for the Poincaré map
of Hamiltonian flows (see, e.g., [17]).

To our knowledge, all the available applications of the Poincaré–Birkhoff
theorem have been focalized on the periodic problem. Poincaré himself [24]
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stated this theorem in order to locate periodic solutions for the three body
problem in Celestial Mechanics, followed by Birkhoff [1] who had in mind
applications to Dynamics.

Consider now the antiperiodic problem associated with a planar Hamil-
tonian system, i.e.,

$

&

%

J 9u “ ∇uHpt, uq ,

upT q “ ´up0q .
(1)

Here u “ pq, pq P R2 and J “

ˆ

0 ´1

1 0

˙

denotes the standard symplectic

matrix. We will show how to adapt the version of the Poincaré–Birkhoff
theorem on the annulus in order to obtain a multiplicity result for this prob-
lem. Several applications to second order differential equations will then
directly follow in analogy with the corresponding results already known for
the periodic problem.

The paper is organized as follows. In Section 2 we recall the Poincaré–
Birkhoff theorem on a strip with varying boundaries in the version proposed
by the first author jointly with Ureña [17]. This will be the starting point
for our study of a peculiar boundary value problem in Section 3, where we
search for solutions whose endpoint upT q is obtained by rotating the initial
point up0q around the origin by a certain angle ϑ. The particular case ϑ “ π

will provide us the antiperiodic solutions we are looking for. In Section 4
we list a series of applications, mainly focused on second order differential
equations.

2 The Poincaré–Birkhoff theorem on a strip

In this section we recall the version of the classical Poincaré–Birkhoff theorem
proposed in [17]. Consider the problem

$

&

%

J 9u “ ∇uHpt, uq ,

up0q “ upT q ,
(2)

where H : r0, T s ˆ R2 Ñ R is a continuous function with continuous partial
gradient ∇uH : r0, T s ˆ R2 Ñ R2. Writing u “ pq, pq, here is the first
assumption.

A1. The function Hpt, q, pq is 2π-periodic in q.
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Let a, b : R Ñ R be two continuous and 2π-periodic functions such that
apqq ă bpqq for every q, we define the sets

Γ´ “
␣

pq, pq P R2 : p “ apqq
(

, Γ` “
␣

pq, pq P R2 : p “ bpqq
(

, (3)

and
S “

␣

pq, pq P R2 : apqq ď p ď bpqq
(

. (4)

Here is the second assumption.

A2. All the solutions u “ pq, pq of the Hamiltonian system in (2) starting
with up0q P S are defined on r0, T s and

$

&

%

up0q P Γ´ ñ qpT q ´ qp0q ă 0 ,

up0q P Γ` ñ qpT q ´ qp0q ą 0 .
(5)

The following result was proved in [17, Theorem 6.2].

Theorem 2.1. Assume that A1 and A2 hold true. Then, problem (2) has
at least two geometrically distinct solutions u such that up0q P S̊ . The same
is true if both the inequalities in (5) are reversed.

3 Our main problem

We are interested in the problem
$

&

%

J 9z “ ∇zHpt, zq ,

zpT q “ eiϑzp0q ,
(6)

where ϑ P R is fixed, and we have used the complex notation to denote a
clockwise rotation of angle ϑ in the plane. Here H : r0, T s ˆ R2 Ñ R is a
continuous function with continuous partial gradient ∇zH : r0, T sˆR2 Ñ R2.
Notice that the antiperiodic problem (1) corresponds to the case ϑ “ π.

Let us first recall the definition of angular rotation around the origin
of a given curve in the time interval rt1, t2s. Let ϕ : rt1, t2s Ñ R2 be a
continuous curve such that ϕptq ‰ 0 for every t P rt1, t2s. Writing ϕptq “

pρptq cos θptq, ρptq sin θptqq, where ρ : R Ñ s0,`8r and θ : R Ñ R are contin-
uous functions, we define

Angpϕ; rt1, t2sq “ θpt2q ´ θpt1q .

For a Jordan curve Γ, we use the notation IpΓq to denote the bounded
open planar region surrounded by Γ. Our main result is given below.
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Theorem 3.1. Let there exist two star-shaped Jordan curves Γ1 and Γ2 such
that 0 P IpΓ1q and IpΓ1q Ď IpΓ2q, with the following property: every solution
zptq of the Hamiltonian system in (6) starting with zp0q P IpΓ2q z IpΓ1q is
defined on r0, T s, satisfies zptq ‰ 0 for all t P r0, T s, and

$

&

%

zp0q P Γ1 ñ Angpz; r0, T sq ą ϑ ,

zp0q P Γ2 ñ Angpz; r0, T sq ă ϑ .
(7)

Then, problem (6) has at least two solutions with starting point zp0q in
IpΓ2q z IpΓ1q. The same is true if both the inequalities in (7) are reversed.

Let us recall that assumption (7) is usually referred to as a twist condition.

Proof. Since the solutions zptq of the Hamiltonian system in (6) starting
between Γ1 and Γ2 are defined on r0, T s and do not pass through the origin,
we can find a constant η ą 0 such that, for all those solutions, one has
|zptq| ą 2η, for every t P r0, T s. We now modify the Hamiltonian function
near the origin, using a smooth cutoff function. Let ζ : R Ñ R be a C8-
smooth function such that

ζprq “

$

&

%

0 , if r ď η ,

1 , if r ě 2η ,

and consider the new Hamiltonian system

J 9z “ ∇z
pHpt, zq , (8)

with
pHpt, zq “ ζp|z|qHpt, zq .

Define the map Ψ : Rˆ s0,`8r Ñ R2 by

Ψpq, pq “

´

a

2p cos q ,´
a

2p sin q
¯

.

Notice that q measures the angles in clockwise direction.

Writing u “ pq, pq, we define the function H : r0, T s ˆ R2 Ñ R by

Hpt, uq “

$

’

&

’

%

pH
´

t,Ψ
´

q ´
ϑt

T
, p

¯¯

`
ϑp

T
, if p ě 0 ,

ϑp

T
, if p ă 0 ,

and consider the system
J 9u “ ∇uHpt, uq . (9)

The function H satisfies Assumption A1.
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By construction, u “ pq, pq is a solution of (9) with pptq ą 2η2 for every
t P r0, T s if and only if

zptq “ Ψ
´

qptq ´
ϑt

T
, pptq

¯

(10)

is a solution of (8) with |zptq| ą 2η for every t P r0, T s. In this case, z is also
a solution of J 9z “ ∇zHpt, zq.

We now assume that the inequalities in (7) hold. The case when they
are reversed can be treated similarly. Let us introduce the curves Γ´ and
Γ` such that Γ1 “ ΨpΓ´q, and Γ2 “ ΨpΓ`q. We parametrize them as in (3)
so to introduce the set S as in (4).

Let u be a solution of system (9) starting with up0q P S and consider z

as in (10). Then, z is a solution of (8) and zp0q P IpΓ2q z IpΓ1q. Moreover,
since

Angpz; r0, T sq “ θpT q ´ θp0q “ ´pqpT q ´ ϑq ` qp0q “ qp0q ´ qpT q ` ϑ ,

by (7) we have

up0q P Γ´ ñ zp0q P Γ1 ñ qpT q ´ qp0q ă 0 ,

and
up0q P Γ` ñ zp0q P Γ2 ñ qpT q ´ qp0q ą 0 .

Having verified A2, we can thus apply Theorem 2.1 to the modified sys-
tem (9) and find two geometrically distinct solutions uj “ pqj , pjq of (9)
such that ujpT q “ ujp0q and ujp0q P S̊, with j “ 1, 2.

Setting

zjptq “ Ψ
´

qjptq ´
ϑt

T
, pjptq

¯

,

one obtains two solutions of (8) such that zjpT q “ eiϑzjp0q and zjp0q belongs
to IpΓ2q z IpΓ1q. By construction, such solutions satisfy |zjptq| ą 2η for every
t P r0, T s, hence they are solutions of (6). The proof is thus completed.

Remark 3.2. Let u : r0, T s Ñ R2 be a solution of problem (1), and assume
H to be defined on R ˆ R2 and to satisfy

Hpt ` T,´uq “ Hpt, uq , for every pt, uq P R ˆ R2 .
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Then, extending u to the whole real line by requiring that

upt ` T q “ ´uptq , for every t P R ,

it is easily verified that u solves J 9uptq “ ∇uHpt, uptqq for every t P R. This
solution u : R Ñ R2 is what is usually called a T -antiperiodic solution.

4 Examples of applications

In this section we provide some applications of Theorem 3.1 to the search
of antiperiodic solutions for some scalar second order differential equations.
We thus focus our attention on the problem

$

&

%

:x ` fpt, xq “ 0 ,

xpT q “ ´xp0q , 9xpT q “ ´ 9xp0q ,
(11)

where f : r0, T s ˆ R Ñ R is a continuous function. Similar applications
could be stated for equations involving a p-Laplacian, a relativistic, or a
mean curvature differential operator, but for the sake of simplicity we prefer
not to deal with these problems.

Notice that, in view of Remark 3.2, if f is defined on RˆR and satisfies

fpt ` T,´xq “ ´fpt, xq , for every pt, xq P R ˆ R , (12)

then any solution x : r0, T s Ñ R of (11) can be extended on the whole real
line by setting

xpt ` T q “ ´xptq , for every t P R ,

so to get an antiperiodic solution of the equation :x ` fpt, xq “ 0.

We now propose some examples, which are based on different behaviours
of the nonlinearity fpt, xq, providing the twist condition needed in order to
apply Theorem 3.1 to problem (6) with ϑ “ π, when choosing the Hamilto-
nian function

Hpt, x, yq “
y2

2
`

ż x

0
fpt, sq ds .

We will not enter into the details of the proofs, since they directly follow
from the corresponding results for the periodic problem.
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4.1 Linear growth at infinity

In the following theorem the origin is an equilibrium point in the phase plane.
We refer to [2, 4, 7, 19, 23, 25, 27] for the corresponding periodic problem.

Theorem 4.1. Assume that there are positive constants λ0, λ8 such that

lim
xÑ0

fpt, xq

x
“ λ0 , lim

|x|Ñ8

fpt, xq

x
“ λ8 ,

uniformly in t P r0, T s. If

either
π

?
λ0

ă T ă
π

?
λ8

, or
π

?
λ8

ă T ă
π

?
λ0

, (13)

then problem (11) has at least two nontrivial solutions.

Under the above assumptions, in the phase plane, the solutions “near the
origin” make a complete rotation in a time approximately equal to 2π{

?
λ0,

while for those “near infinity” the approximate time needed for a rotation is
2π{

?
λ8. Due to the symmetries of the associated linear equations :x`λ0x “

0 and :x`λ8x “ 0, assumption (13) provides the needed twist condition (7),
possibly with reversed inequalities. Theorem 4.1 can be generalized in several
ways, following the ideas in the above cited papers on the periodic problem.

4.2 Superlinear growth

We now analyze the possible situation when fpt, xq has a superlinear growth
at infinity. For the corresponding periodic problem we refer to [14, 20, 21].

Theorem 4.2. Assume the existence of c0 ą 0 and δ ą 0 such that

|x| ď δ ñ |fpt, xq| ď c0|x| .

If moreover

lim
|x|Ñ8

fpt, xq

x
“ `8 ,

uniformly in t P r0, T s, then problem (11) has infinitely many solutions. More
precisely, there exists a positive integer k0 such that, for any k ě k0, there
are at least two solutions of problem (11) performing exactly 2k`1 clockwise
half-rotations around the origin in the time interval r0, T s.
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In the above theorem, the origin is an equilibrium point in the phase
plane. The solutions near the origin rotate with a bounded angular speed,
while those far from the origin rotate with an angular speed which becomes
larger and larger. This difference gives the twist condition required by The-
orem 3.1.

We now consider the special case fpt, xq “ gpxq ´ eptq and the corre-
sponding problem

$

&

%

:x ` gpxq “ eptq ,

xpT q “ ´xp0q , 9xpT q “ ´ 9xp0q .
(14)

Unlike the above, we assume g to be defined on an open interval sA,Br ,
where

´8 ď A ă 0 ă B ď `8 .

Notice that there could be one or two singularities at the endpoints of the
interval. Let Gpxq “

şx
0 gpsq ds be a primitive of g. Here is a variant of

Theorem 4.2 (see [8, 11, 15] for the periodic problem).

Theorem 4.3. If

lim
xÑA`

gpxq

x
“ lim

xÑB´

gpxq

x
“ `8 ,

and
lim

xÑA`
Gpxq “ lim

xÑB´
Gpxq “ `8 ,

then the same conclusion of Theorem 4.2 holds for problem (14).

Notice that in the above statement the origin is not assumed to be an
equilibrium in the phase plane. The main difference with Theorem 4.2 is
that now the solutions of initial value problems are globally defined on r0, T s

(see [11]). This fact also permits us to extend after truncation the function g

to the whole real line, so to be able to apply the Poincaré–Birkhoff theorem.

4.3 Sublinear growth

A substantially different situation arises when the nonlinearity fpt, xq in
problem (11) has a sublinear growth at infinity. Our theorem stated below
can be proved following the lines of [9, 13, 16], where the existence of sub-
harmonic solutions for the periodic problem was treated. We assume fpt, xq

to be defined for every pt, xq P R ˆ R, i.e., f : R ˆ R Ñ R.

8



Theorem 4.4. Assume the existence of c ą 0 and d ą 0 such that

|x| ě d ñ xfpt, xq ě c|x| .

If moreover

lim
|x|Ñ8

fpt, xq

x
“ 0 ,

uniformly in t P R, then there exists a τ0 ą 0 such that, for every τ ě τ0,
there are at least two solutions of

$

&

%

:x ` fpt, xq “ 0 ,

xpτq “ ´xp0q , 9xpτq “ ´ 9xp0q ,

performing exactly one clockwise half-rotation around the origin in the time
interval r0, τ s.

The situation here is more involved due to the fact that large ampli-
tude solutions in the phase plane rotate with a very small angular speed.
This is why we have to assume τ sufficiently large in order to get the twist
assumption so to be able to apply Theorem 3.1.

Notice that, when the function f : R ˆ R Ñ R satisfies the symmetry
property (12) for a given T ą 0, the above theorem can be applied taking
τ “ nT , for a sufficiently large integer n. As a consequence, we can find a
positive integer n0 such that, for any odd integer n ě n0, there are at least
two nT -antiperiodic solutions of the equation :x` fpt, xq “ 0. These are the
analogs of the subharmonic solutions in the periodic case.

4.4 Small perturbations

Let us first consider the antiperiodic problem for the pendulum equation,
i.e.,

$

&

%

:x ` α sinx “ eptq ,

xpT q “ ´xp0q , 9xpT q “ ´ 9xp0q ,
(15)

where α ą 0 is a given constant, and e : r0, T s Ñ R is any continuous func-
tion. The following statement finds its counterpart for the periodic problem
in [6, 12, 18].

Theorem 4.5. If T ą π{
?
α, then there exists ε ą 0 such that problem (15)

has at least two solutions, provided that }e}8 ď ε.
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Notice that, when e “ 0, the pendulum equation has a center at the
origin in the phase plane, and the period of the solutions near the origin
can be approximated by 2π{

?
α, after linearization, while the period of the

solutions approaching the two heteroclinic orbits become larger and larger.
This difference creates the twist condition needed in order to apply Theo-
rem 3.1 since, by symmetry, the time needed to perform a complete rotation
is exactly twice the time needed to perform half a rotation. The result then
follows using the fact that the twist persists under small perturbations.

The above situation can be generalized in many different ways. The non-
linearity α sinx can be replaced by any function gpxq for which the equation
:x ` gpxq “ 0 has a non-isochronous center at the origin in the phase plane,
and there exist two periodic solutions x1ptq, x2ptq such that, writing

pxjptq, 9xjptqq “ pρjptq cospθjptqq, ρjptq sinpθjptqqq , j “ 1, 2 ,

the angular speeds satisfy

9θ2ptq ă
π

T
ă 9θ1ptq , for every t P R .

A simpler situation is encountered if g is assumed to be an odd function.
In this case, taking two periodic solutions x1ptq, x2ptq of the equation :x `

gpxq “ 0 with minimal periods τ1, τ2, respectively, the twist condition will
be satisfied if there exists a natural number k such that

either
`

k ` 1
2

˘

τ1 ă T ă
`

k ` 1
2

˘

τ2 , or
`

k ` 1
2

˘

τ2 ă T ă
`

k ` 1
2

˘

τ1 .
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