
On the existence of periodic solutions

for damped asymmetric oscillators

Alessandro Fonda, Giuliano Klun, and Andrea Sfecci

Abstract

We propose some new sufficient conditions for the existence of pe-

riodic solutions of an asymmetric oscillator with a positive damping

term. Our results are complemented by an example where, in some

situations, no periodic solutions may exist. This fact is well known

in the undamped case, when the resonance phenomenon may appear.

However, the damped case presents some unintuitive features which

have not been so thoroughly studied in the literature, and the overall

picture still has several aspects which need to be better understood.

1 Introduction

In this paper we want to study the periodic problem
{
x′′ + cx′ + f(t, x) = e(t) ,

x(0) = x(T ) , x′(0) = x′(T ) ,
(1)

where c is a nonnegative real constant. We assume that the function f
satisfies the Carathéodory conditions, and that e ∈ L1(0, T ).

Looking back at the literature, the first studies in this field started in the
sixties (see [14, 15, 17, 18]). These pioneering papers were the starting point
of a vast literature, involving also Liénard and Rayleigh equations. One can
mention for example the papers [16, 20, 21, 27] and the references therein.
Most of these papers provide some sufficient conditions on the asymptotic
behaviour of the quotient f(t, x)/x, with respect to the spectrum of the
differential operator Lx = −x′′ with T -periodic boundary conditions, in
order to guarantee the existence of a solution to problem (1).

Let us first focus our attention on the linear problem
{
x′′ + cx′ + λ(t)x = e(t) ,

x(0) = x(T ) , x′(0) = x′(T ) ,
(2)

with λ(t) a positive function. Not only the cases c = 0 or c > 0 must be
distinguished, but also the different situations arising when λ(t) is constant
or not.
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Indeed, if c = 0, the phenomenon of resonance can occur. If λ(t) is

constant and coincides with
(
2πN
T

)2
, for some integer N , then there exist

functions e(t) for which problem (2) has no solutions. Hence, in order to find
sufficient conditions guaranteeing the existence of solutions of problem (2),
one will have to worry about the interaction of λ(t) with the spectrum

σ(L) =
{(

2πN

T

)2

: N ∈ N

}
.

A huge literature has been devoted to finding nonresonance conditions in or-
der to guarantee the existence of solutions of (1) when the quotient f(t, x)/x
asymptotically behaves like some λ(t).

On the contrary, if c > 0, much less is known. Surely enough, if λ(t)
is constant, problem (2) always has a (unique) solution. But if λ(t) is not
constant, the situation can become very subtle. For example, we will show
that there exist piecewise constant positive functions λ(t) such that, for some
function e(t), problem (2) has no solution. The main issue will then be to find
sufficient conditions guaranteeing the existence of solutions to problem (2),
when c > 0.

The case when λ(t) is constant enters in the wider class of problems of
the type {

x′′ + cx′ + g(x) = e(t) ,

x(0) = x(T ) , x′(0) = x′(T ) ,
(3)

where the situation seems to be much simpler to be studied, due to the fact
that some energy estimates on the solutions can be exploited. For example,
the following statement can be obtained from [7]. See also [1, 9, 23, 25].

Theorem 1.1. If c > 0 and

lim sup
x→−∞

g(x) <
1

T

∫ T

0
e(t) dt < lim inf

x→+∞
g(x) ,

then problem (3) has a solution.

A generalization of problem (2) was proposed by Fučík [8] and Dancer [2]
by introducing an asymmetric nonlinearity, like in

{
x′′ + cx′ + µ(t)x+ − ν(t)x− = e(t) ,

x(0) = x(T ) , x′(0) = x′(T ) .
(4)

Here, as usual, we adopt the notation x+ = max{x, 0} and x− = max{−x, 0}.
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In the case c = 0, a crucial role for the existence of solutions of (4) is
played by the so-called Fučík spectrum, namely the set

Σ =

∞⋃

N=0

CN ,

where
C0 = {(µ, ν) ∈ R× R : µν = 0} ,

and, for N ≥ 1,

CN =

{
(µ, ν) ∈ ]0,+∞[× ]0,+∞[ :

π√
µ
+

π√
ν
=

T

N

}
.

This happens to be the set of those (µ, ν) for which there exists a nontrivial
solution to the problem

{
x′′ + µx+ − νx− = 0 ,

x(0) = x(T ) , x′(0) = x′(T ) .

Let µ1, µ2, ν1, ν2 be some constants such that

µ1 ≤ µ(t) ≤ µ2 , ν1 ≤ ν(t) ≤ ν2 , for a.e. t ∈ [0, T ] , (5)

and define the rectangle

R0 = [µ1, µ2]× [ν1, ν2] .

It has been proved that if R0 is entirely contained in either the first or the
third quadrant of the plane, and it has empty intersection with Σ, then
problem (4) always has a solution (see, e.g., [4, 10]).

If c > 0, the problem has been first studied by Drabek and Invernizzi
in [4]. They introduced the constants

µc
j = µj − c2/4 , νcj = νj − c2/4 , j = 1, 2 , (6)

and the rectangle
Rc = [µc

1, µ
c
2]× [νc1, ν

c
2] .

Denoting by Qi the i-th quadrant of the plane, with i = 1, 2, 3, 4, they proved
that, if

Rc ∪R0 ⊆ (Q1 ∪Q3) \ Σ ,

then problem (4) always has a solution. The proof of this result was carried
out through a study of the dynamics of the solutions in the phase plane,
focusing the attention on the behaviour of their angular speed. We will
be able to extend such a result in different directions, providing estimates
involving both the radial and the angular speed of the solutions.
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Variants and extensions of the result in [4] have been provided by several
authors, see [5, 11, 16, 19, 20, 21, 22, 24, 26, 27] and the references therein.

In this paper we mainly focus our attention on the case c > 0, with the
aim of providing further sufficient conditions in order to prove the existence
of a solution to problem (1). We extend the previously known results in
several directions, by the use of phase plane analysis. Nevertheless, as we
will better explain later on, several aspects of the overall picture still remain
unexplored.

In Section 2 we consider the general asymmetric case when the nonlin-
earity f(t, x) has an at most linear growth in x. We will recall here a variant
of the so-called Property P introduced by Habets and Metzen [10], which
will be the guideline for the proof of our main theorem which generalizes
in a single statement all the results in [10]. In order not to interrupt the
exposition of our results, this proof will be postponed to Section 7.

In Sections 3 and 4 we concentrate on the symmetric case and compare
our results with those obtained by a classical functional approach. In par-
ticular, in Corollary 4.4 we highlight a sufficient condition for the existence
problem, new in the literature, which can be easily verified in practice. Then,
in Section 5 we give an example showing that our assumptions are optimal,
provided that the constant c is not too large.

In Section 6 we propose a generalization of Theorem 1.1 in the case when
the function f(t, x) in problem (1) is controlled by two multiples of the same
function g(x). The proof relies on phase plane analysis, combined with the
application of the Brouwer fixed point theorem.

2 Linear growth - the asymmetric case

Let us assume that the function f(t, x) has a linear growth in x, by intro-
ducing the following hypothesis.

Assumption (A). There exist constants µ1, µ2, ν1, ν2 for which

f(t, x) = γ+(t, x)x
+ − γ−(t, x)x

− + r(t, x) ,

where
µ1 ≤ γ+(t, x) ≤ µ2 , ν1 ≤ γ−(t, x) ≤ ν2 ,

and r(t, x) is uniformly bounded.

The following definition is a variant of the one introduced by Habets and
Metzen in [10].
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Definition 2.1. We say that the five-number row (c, µ1, µ2, ν1, ν2) satisfies
the Property (P ) if for every pair of functions µ, ν ∈ L∞(0, T ) satisfying (5)
the problem {

v′′ + cv′ + µ(t)v+ − ν(t)v− = 0

v(0) = v(T ) , v′(0) = v′(T )
(7)

only has the trivial solution.

Such a property already appears, more or less implicitly, in [12, 13]. The
following result is due to Habets and Metzen (see [10, Theorem 2] and the
subsequent remark), cf. also [3, 6].

Theorem 2.2 (Habets–Metzen). Let Assumption (A) hold true with R0 ⊆
Q̊1 ∪ Q̊3, assume c ≥ 0 and that (c, µ1, µ2, ν1, ν2) satisfies the Property (P ).
Then problem (1) has a solution, for every e(t).

In what follows we will always assume that both µj > c2/4 and νj > c2/4,
so that the constants µc

j and νcj introduced in (6) are positive. We define

τ c1 =
π√
µc
1

+
π√
νc1

, τ c2 =
π√
µc
2

+
π√
νc2

.

For every γ ∈ R, we set
cγ = c− 2γ ,

and, recalling (6), define the constants

θ̄j,γ = arctan
cγ

2
√
µc
j

, θ̂j,γ = arctan
cγ

2
√
νcj

, j = 1, 2 ,

and the functions

F+(γ) =

√
4µc

2 + c2γ
4µc

1 + c2γ
exp

(
− cγ

2
√
µc
1

(π
2
− θ̄1,γ

)
− cγ

2
√
µc
2

(π
2
+ θ̄2,γ

))
,

F−(γ) =
√

4νc2 + c2γ
4νc1 + c2γ

exp

(
− cγ

2
√
νc1

(π
2
− θ̂1,γ

)
− cγ

2
√
νc2

(π
2
+ θ̂2,γ

))
.

Here is our main result, in this setting.

Theorem 2.3. Assume c, µc
1, νc1 to be positive. If there exist a positive

integer N and γ > 0 such that

T ≤ (N + 1)τ c2 , (8)

and
F+(γ)F−(γ) < eγT/N , (9)

then (c, µ1, µ2, ν1, ν2) satisfies the Property (P ).
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The proof is postponed to Section 7. Since condition (9) in the above the-
orem is a bit intricate, we now propose a more readable corollary, which also
has the advantage of easily providing a whole series of possible applications.

Corollary 2.4. Assume c, µc
1, νc1 to be positive. If there exist a positive

integer N and γ > 0 such that (8) holds and

4µc
2 + c2γ

4µc
1 + c2γ

·
4νc2 + c2γ
4νc1 + c2γ

≤ exp

(
2γT

N
+min{cγτ c1 , cγτ c2}

)
, (10)

then (c, µ1, µ2, ν1, ν2) satisfies the Property (P ).

Proof. We first notice that the function f(x) = x
(
π
2 − arctanx

)
is strictly

increasing. Hence, if γ ≤ c/2 and so cγ ≥ 0, we get

F+(γ) =

√
4µc

2 + c2γ
4µc

1 + c2γ
exp

(
−cγ

π

2
√
µc
2

)
exp

(
f

(
cγ

2
√

µc
2

)
− f

(
cγ

2
√
µc
1

))

≤
√

4µc
2 + c2γ

4µc
1 + c2γ

exp

(
−cγ

π

2
√
µc
2

)
.

Similarly,

F−(γ) ≤
√

4νc2 + c2γ
4νc1 + c2γ

exp

(
−cγ

π

2
√

νc2

)
,

so that

F+(γ)F−(γ) ≤
√

4µc
2 + c2γ

4µc
1 + c2γ

·
4νc2 + c2γ
4νc1 + c2γ

exp

(
−cγ

τ c2
2

)
.

Using (10), since cγτ
c
2 ≤ cγτ

c
1 , we recover (9).

On the other hand, if γ > c/2 and so cγ < 0, using now the strictly
increasing function g(x) = x

(
π
2 + arctanx

)
, we get

F+(γ) =

√
4µc

2 + c2γ
4µc

1 + c2γ
exp

(
−cγ

π

2
√

µc
1

)
exp

(
g

(
cγ

2
√

µc
1

)
− g

(
cγ

2
√
µc
2

))

≤
√

4µc
2 + c2γ

4µc
1 + c2γ

exp

(
−cγ

π

2
√

µc
1

)
.

Similarly,

F−(γ) ≤
√

4νc2 + c2γ
4νc1 + c2γ

exp

(
−cγ

π

2
√

νc1

)
,

so that

F+(γ)F−(γ) ≤
√

4µc
2 + c2γ

4µc
1 + c2γ

·
4νc2 + c2γ
4νc1 + c2γ

exp

(
−cγ

τ c1
2

)
.

Using (10), since now cγτ
c
1 ≤ cγτ

c
2 < 0, we recover (9) also in this case.
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As previously announced, we now state four possible consequences.

Corollary 2.5. Assume c, µc
1, ν

c
1 to be positive and that

µ2

µ1

ν2
ν1

< exp(cτ c2) .

Then (c, µ1, µ2, ν1, ν2) satisfies the Property (P ).

Proof. Fix a positive integer N satisfying (8). The result then follows from
Corollary 2.4 choosing γ > 0 small enough.

Corollary 2.6. Assume c, µc
1, ν

c
1 to be positive and that there exists a pos-

itive integer N satisfying (8) and

µc
2

µc
1

νc2
νc1

< exp

(
c
T

N

)
.

Then (c, µ1, µ2, ν1, ν2) satisfies the Property (P ).

Proof. It follows directly from Corollary 2.4 choosing γ = c/2.

Corollary 2.7. Assume c, µc
1, ν

c
1 to be positive and that there exists a pos-

itive integer N satisfying (8) and

µ2

µ1

ν2
ν1

< exp

(
c

[
2T

N
− τ c1

])
.

Then (c, µ1, µ2, ν1, ν2) satisfies the Property (P ).

Proof. It follows from Corollary 2.4 taking γ = c.

Corollary 2.8. Assume c, µc
1, ν

c
1 to be positive and that there exists a pos-

itive integer N for which

T

N + 1
≤ π√

µc
2

+
π√
νc2
≤ π√

µc
1

+
π√
νc1
≤ T

N
.

Then (c, µ1, µ2, ν1, ν2) satisfies the Property (P ).

Proof. Taking the limit in (10) as γ → +∞, so that cγ → −∞, the left hand
side tends to 1, while

exp

(
2γT

N
+min{cγτ c1 , cγτ c2}

)
= exp

(
2γT

N
+ cγτ

c
1

)

= exp

(
2γ

[
T

N
− π√

µc
1

− π√
νc1

]
+ c

[
π√
µc
1

+
π√
νc1

])
≥ exp(cτ c1) > 1 .

Then, for γ > 0 large enough we can apply Corollary 2.4.
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Notice that Corollaries 2.5, 2.6 correspond to [10, Theorem 11], [10, The-
orem 10], respectively, and Corollary 2.8 to [10, Theorem 8]. Let us now
show how our main result extends the one in [4].

Corollary 2.9. Let Assumption (A) hold true, with both µc
1 and νc1 positive.

Assume c to be positive and

Rc \
{
(µc

1, ν
c
1), (µ

c
2, ν

c
2)
}
⊆ Q1 \ Σ .

Then problem (1) has a solution.

Proof. We will prove that the Property (P ) holds. The case Rc = {(µc
1, ν

c
1)}

is easily settled by multiplying by v′ the equation in (7) and integrating on
the interval [0, T ]. Otherwise, we have two possible cases. In the first one,

T ≤ π√
µc
2

+
π√
νc2

,

and the conclusion follows by a standard argument, cf. Lemma 7.1.

In the second case, there exists a positive integer N such that

T

N + 1
≤ π√

µc
2

+
π√
νc2
≤ π√

µc
1

+
π√
νc1
≤ T

N
.

Hence, by Corollary 2.8 and Theorem 2.2 we easily conclude.

Now, in order to state a dual version of Theorem 2.3, we introduce the
functions

F̃+(γ) =

√
4µc

1 + c2γ
4µc

2 + c2γ
exp

(
− cγ

2
√
µc
2

(π
2
− θ̄2,γ

)
− cγ

2
√
µc
1

(π
2
+ θ̄1,γ

))
,

F̃−(γ) =
√

4νc1 + c2γ
4νc2 + c2γ

exp

(
− cγ

2
√
νc2

(π
2
− θ̂2,γ

)
− cγ

2
√
νc1

(π
2
+ θ̂1,γ

))
.

Here is the corresponding result.

Theorem 2.10. Assume c, µc
1, ν

c
1 to be positive. If there exist a positive

integer N and γ > 0 such that

T ≥ Nτ c1 , (11)

and
F̃+(γ)F̃−(γ) > eγT/(N+1),

then (c, µ1, µ2, ν1, ν2) satisfies the Property (P ).

The proof, being rather similar to the one of Theorem 2.3, will just be
sketched at the end of Section 7, for the sake of briefness. We now state the
dual version of Corollary 2.4.
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Corollary 2.11. Assume c, µc
1, ν

c
1 to be positive. If there exist a positive

integer N and γ > 0 such that (11) holds and

4µc
1 + c2γ

4µc
2 + c2γ

·
4νc1 + c2γ
4νc2 + c2γ

≥ exp

(
2γT

N + 1
+max{cγτ c1 , cγτ c2}

)
,

then (c, µ1, µ2, ν1, ν2) satisfies the Property (P ).

As an immediate consequence, similarly as above, we have a whole series
of corollaries. After noticing that the dual version of Corollary 2.8 remains
the same, we collect the dual versions of Corollaries 2.5, 2.6, and 2.7 in a
single statement.

Corollary 2.12. Assume c, µc
1, νc1 to be positive and that there exists a

positive integer N satisfying (11) and, either

µc
2

µc
1

νc2
νc1

> exp

(
c

T

N + 1

)
,

or
µ2

µ1

ν2
ν1

> exp

(
c ·min

{
τ c2 ,

2T

N + 1
− τ c1

})
.

Then (c, µ1, µ2, ν1, ν2) satisfies the Property (P ).

3 Linear growth - the symmetric case

In the symmetric case, Assumption (A) can be rephrased as follows.

Assumption (Asym). There exist positive constants µ1, µ2, for which

f(t, x) = γ(t, x)x+ r(t, x) ,

where µ1 ≤ γ(t, x) ≤ µ2, and r(t, x) is uniformly bounded.

In this case we modify the definition of Property (P ) as follows.

Definition 3.1. We say that the three-number row (c, µ1, µ2) satisfies the
Property (Psym) if, for every function µ ∈ L∞(0, T ) such that

µ1 ≤ µ(t) ≤ µ2 , for a.e. t ∈ [0, T ] ,

the problem {
v′′ + cv′ + µ(t)v = 0

v(0) = v(T ) , v′(0) = v′(T )
(12)

only has the trivial solution.

Notice that if the row (c, µ1, µ2, µ1, µ2) satisfies the Property (P ) then
the row (c, µ1, µ2) satisfies the Property (Psym), but the contrary is not
guaranteed. Nevertheless, the following theorem still holds.
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Theorem 3.2 (Habets–Metzen). Let Assumption (Asym) hold true with ei-
ther µ1 > 0 or µ2 < 0. Assume c ≥ 0 and that (c, µ1, µ2) satisfies the
Property (Psym). Then problem (1) has a solution, for every e(t).

We will now provide some sufficient conditions in order to have the Prop-
erty (Psym) satisfied. The analogue of Theorem 2.3, our main result above,
can be stated in the following way.

Theorem 3.3. Assume c and µc
1 to be positive. If there exist a positive

integer N and γ > 0 such that

µc
2 ≤

(
2π(N + 1)

T

)2

, (13)

and
F+(γ) < eγT/2N ,

then (c, µ1, µ2) satisfies the Property (Psym).

Corollary 2.4, in this case, reads as follows.

Corollary 3.4. Assume c and µc
1 to be positive. If there exist a positive

integer N and γ > 0 such that (13) holds and

4µc
2 + c2γ

4µc
1 + c2γ

≤ exp

(
γT

N
+min

{
cγ

π√
µc
1

, cγ
π√
µc
2

})
,

then (c, µ1, µ2) satisfies the Property (Psym).

Similarly, Corollaries 2.5–2.8 can be reformulated as follows (see Figure 1
for a visual comparison between them).

Corollary 3.5. If c and µc
1 are positive and

µ2

µ1
< exp

(
c

π√
µc
2

)
,

then (c, µ1, µ2) satisfies the Property (Psym).

Corollary 3.6. If c and µc
1 are positive and there exists a positive integer

N for which

µc
2 ≤

(
2π(N + 1)

T

)2

,
µc
2

µc
1

< exp

(
c

T

2N

)
, (14)

then (c, µ1, µ2) satisfies the Property (Psym).
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Figure 1: The regions coloured in green, red, violet and light blue represent
the couples (µ2, µ1) for which Corollaries 3.5, 3.6, 3.7 and 3.8 apply, respec-
tively, when T = 2π, c = 1

3 , and N = 1. We have emphasized the fact that
there is also a tiny zone where only Corollary 3.7 applies.

Corollary 3.7. If c and µc
1 are positive and there exists a positive integer

N for which

µc
2 ≤

(
2π(N + 1)

T

)2

,
µ2

µ1
< exp

(
c

[
T

N
− π√

µc
1

])
,

then (c, µ1, µ2) satisfies the Property (Psym).

Corollary 3.8. If c and µc
1 are positive and there exists a positive integer

N for which (
2πN

T

)2

≤ µc
1 ≤ µc

2 ≤
(
2π(N + 1)

T

)2

, (15)

then (c, µ1, µ2) satisfies the Property (Psym).

The application of Theorem 2.3 is visualized (in light blue) in Figure 2,
where one can appreciate the improvement obtained with respect to the
classical result by Drabek and Invernizzi (visualized in green).

We now provide the statements of the dual Theorem 2.10 and Corollar-
ies 2.11, 2.12 in the symmetric case.

Theorem 3.9. Assume c and µc
1 to be positive. If there exist a positive

integer N and γ > 0 such that

µc
1 ≥

(
2πN

T

)2

, (16)
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Figure 2: The two figures represent the region where Theorem 3.3 applies.
The figure on the left illustrates the case N = 1, while the one on the right
includes the three choices N = 1, 2, 3. Notice that we have highlighted in
green the regions where Corollary 3.8 applies.

and
F̃+(γ) > eγT/2(N+1),

then (c, µ1, µ2) satisfies the Property (Psym).

Corollary 3.10. Assume c and µc
1 to be positive. If there exist a positive

integer N and γ > 0 such that (16) holds and

4µc
1 + c2γ

4µc
2 + c2γ

≥ exp

(
γT

N + 1
+max

{
cγ

π√
µc
1

, cγ
π√
µc
2

})
,

then (c, µ1, µ2) satisfies the Property (Psym).

Corollary 3.11. Assume c and µc
1 to be positive and that there exists a

positive integer N satisfying (16) and, either

µc
2

µc
1

> exp

(
c

T

2(N + 1)

)
,

or
µ2

µ1
> exp

(
c ·min

{
π√
µc
2

,
T

N + 1
− π√

µc
1

})
.

then (c, µ1, µ2) satisfies the Property (Psym).

4 A functional analytic approach

We will now follow a different approach involving some norm estimates for
normal operators in Hilbert spaces.
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Let H = L2(0, T ). We define the unbounded linear operator L : D(L) ⊆
H → H as follows:

D(L) =
{
x ∈W 2,2(0, T ) : x(0) = x(T ), x′(0) = x′(T )

}
,

and
Lx = −x′′ − cx′ .

The operator L is normal (see, e.g., [10, Lemma 5]), and its spectrum is
made of isolated eigenvalues, precisely

σ(L) =
{(

2πn

T

)2

± ic
2πn

T
: n ∈ N

}
.

The following statement is well known; nevertheless we provide its proof,
for the reader’s convenience.

Theorem 4.1. If 0 < µ1 ≤ µ2 are such that

µ2 − µ1

2
< dist

(
µ1 + µ2

2
, σ(L)

)
, (17)

then (c, µ1, µ2) satisfies the Property (Psym).

Proof. If λ ∈ R \ σ(L) we can consider the operator (L − λI)−1 : H → H,
which is normal, as well. Hence,

‖(L − λI)−1‖ = 1

dist(λ, σ(L)) .

Let N : H → H be defined as

(Nx)(t) = µ(t)x(t) .

Then for every λ ∈ R \ σ(L) problem (12) can be rewritten as a fixed point
problem, i.e.,

Lx = Nx ⇔ x = Tλx ,
where Tλ : H → H is defined by

Tλ = (L − λI)−1(N − λI) .

Then,

‖Tλ‖ ≤ ‖(L − λI)−1‖ ‖N − λI‖ = 1

dist(λ, σ(L)) ‖N − λI‖ .

Since
[(N − λI)x](t) = (µ(t)− λ)x(t) ,

13



we see that N − λI is selfadjoint and

‖N − λI‖ = sup
‖x‖=1

|〈(N − λI)x, x〉| = sup
‖x‖=1

∣∣∣∣
∫ T

0
(µ(t)− λ)x(t)2 dt

∣∣∣∣ .

Let us suppose that µ ∈ L∞(0, T ) satisfies

µ1 ≤ µ(t) ≤ µ2 , for a.e. t ∈ [0, T ] .

Then, taking λ = (µ1 + µ2)/2, by (17) we have that

∥∥∥∥N − µ1 + µ2

2
I

∥∥∥∥ = sup
‖x‖=1

∣∣∣∣
∫ T

0

(
µ(t)− µ1 + µ2

2

)
x(t)2 dt

∣∣∣∣

≤ µ2 − µ1

2
< dist

(
µ1 + µ2

2
, σ(L)

)
.

Hence, with this choice of λ, the operator Tλ is a contraction, so that prob-
lem (12) only has the trivial solution.

As a first consequence of Theorem 4.1, we have the following.

Corollary 4.2. If 0 < µ1 ≤ µ2 are such that, either µ2 ≤ c2, or

µ2 > c2 and µ1 + µ2 >
1

2c2
(µ2 − µ1)

2 +
c2

2
, (18)

then (c, µ1, µ2) satisfies the Property (Psym).

Proof. After noticing that σ(L), as a subset of R2, is contained in the curve

C =
{
(x, y) : x =

1

c2
y2

}
,

it will be useful to compute the distance from C of a given point (µ, 0), with
µ > 0. Since

[
d((µ, 0), (x, c

√
x))

]2
= x2 + (c2 − 2µ)x+ µ2,

taking into account that x ≥ 0, an elementary argument shows that

dist((µ, 0), C) =

{
µ if µ ≤ c2/2 ,

c
√

µ− c2/4 if µ > c2/2 .

Hence, condition (17) will surely hold if either µ1 + µ2 ≤ c2, or

µ1 + µ2 > c2 and
µ2 − µ1

2
< c

√
µ1 + µ2

2
− c2

4
,

14



i.e.,

µ1 + µ2 > c2 and µ1 + µ2 >
1

2c2
(µ2 − µ1)

2 +
c2

2
.

If we replace the last inequality with an equality, we get a parabola which is
tangent to the horizontal axis at the point (c2, 0). This is why we can replace
the conditions µ1 + µ2 ≤ c2 and µ1 + µ2 > c2 by the simpler ones µ2 ≤
c2 and µ2 > c2, respectively, thus obtaining exactly our assumption (18).
Theorem 4.1 then applies, to complete the proof.

Remark 4.3. It could be interesting to observe that the conditions in the
above corollary are independent of the period T .

It is rather surprising that, as visualized in Figure 3, Theorem 3.3 and
Theorem 4.1 are independent of each other. In Figure 3 we see that the
regions in the plane (µ2, µ1) where Theorem 3.3 and Theorem 4.1 apply are
not contained one in the other. To illustrate this fact, for simplicity let us
compare Corollary 3.5 with Theorem 4.1, providing two examples where one
applies and the other does not.

Example 1. If T = 2π, c = 1, µ1 = 72 and µ2 = 98, then dist (85, σ(L)) ≈
9.8 < 13, so (17) does not hold and we cannot apply Theorem 4.1. However,
we can apply Corollary 3.5 since µ2/µ1 ≈ 1.36 and exp

(
cπ/

√
µc
2

)
≈ 1.37.

Example 2. If T = 2π, c = 1, µ1 = 0.01 and µ2 = 1.1, then µ2/µ1 =
110 > exp(π/

√
0.85) ≈ 30.2, so that the assumption in Corollary 3.5 is not

fulfilled. Conversely, Corollary 4.2 applies since µ2 > c2 and

1.11 = µ1 + µ2 >
1

2c2
(µ2 − µ1)

2 +
c2

2
≈ 1.09 .

Theorem 4.1 will now permit us to improve Corollary 3.8, where the main
assumption (15) was that, for some positive integer N ,

(
2πN

T

)2

≤ µ1 −
c2

4
≤ µ2 −

c2

4
≤

(
2π(N + 1)

T

)2

.

Indeed, as announced in the Introduction, in the following corollary we pro-
vide a more general sufficient condition which seems to be new in the liter-
ature.

Corollary 4.4. If c > 0 and there exist χ ∈ [0, c2/2] and a positive integer
N for which

(
2πN

T

)2

≤ µ1 − χ ≤ µ2 − χ ≤
(
2π(N + 1)

T

)2

,

then (c, µ1, µ2) satisfies the Property (Psym).
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Figure 3: A comparison of the regions where Theorem 3.3 (light blue) and
Theorem 4.1 (orange) apply. Here T = 2π, c = 1

3 and N = 1, 2, 3 for the two
first figures, while N = 1 for the last ones. The figures on the left show the
orange region above the blue one, while the ones on the right show the blue
region above the orange one.

Proof. By the change of variable y(t) = v((2π/T )t), we can assume T = 2π
and that there exist χ ∈ [0, c2/2] and a positive integer N for which

N2 ≤ µ1 − χ ≤ µ2 − χ ≤ (N + 1)2 .

Let

α =
µ1 + µ2

2
− χ .

We consider two cases.

First case: N2 ≤ α ≤ N2 +N + 1
2 .

We want to show that, for every integer ` ≥ 0,

∣∣α+ χ− (N + `)2 ± ic(N + `)
∣∣ > α−N2 , (19)
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from which we easily deduce that

dist

(
µ1 + µ2

2
, σ(L)

)
= dist(α+ χ, σ(L)) > α−N2 >

µ2 − µ1

2
.

The claim (19) is equivalent to
(
α+ χ− (N + `)2

)2
+ c2(N + `)2 > (α−N2)2,

i.e., to

χ2 + 2χ(α− (N + `)2) + ((N + `)2 − α)2 + c2(N + `)2 > (α−N2)2.

Since χ ∈ [0, c2/2], we see that

2χ(α− (N + `)2) + c2(N + `)2 = 2χα+ (c2 − 2χ)(N + `)2

≥ 2χN2 + (c2 − 2χ)N2 = c2N2 > 0 , (20)

It now suffices to prove that

χ2 + ((N + `)2 − α)2 ≥ (α−N2)2.

The case ` = 0 clearly holds true. If ` ≥ 1 we have

χ2 + ((N + `)2 − α)2 ≥ ((N + 1)2 − α)2 ≥ (α−N2)2 ,

and we are done.

Second case: N2 +N + 1
2 ≤ α ≤ (N + 1)2 .

We want to show that, for every integer ` ≥ 0,
∣∣α+ χ− (N + `)2 ± ic(N + `)

∣∣ > (N + 1)2 − α , (21)

from which we deduce easily

dist(α+ χ, σ(L)) > (N + 1)2 − α >
µ2 − µ1

2
.

If ` = 0, since

(α+ χ−N2)2 + c2N2 > (α+ χ−N2)2 ≥ (α−N2)2 ≥ ((N + 1)2 − α)2 ,

we easily conclude.
Let now ` ≥ 1. The claim (21) is equivalent to

χ2 + 2χ(α− (N + `)2) + ((N + `)2 − α)2 + c2(N + `)2 > ((N + 1)2 − α)2.

Using (20), it suffices to prove that

χ2 + ((N + `)2 − α)2 ≥ ((N + 1)2 − α)2 ,

which holds true since

(N + `)2 − α ≥ (N + 1)2 − α > 0 .

The proof is completed.
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5 A counterexample

We will now show that the condition (14) in Corollary 3.6 is, in some cases,
the best possible.

Theorem 5.1. For every c > 0 there exist µ1 < µ2 such that µc
1 > 0 and

(c, µ1, µ2) does not satisfy the Property (Psym). Moreover, if there exists a
positive integer N for which

0 < c ≤ 4N

T
ln

(
1 +

2

N

)
, (22)

then µ1 , µ2 can be chosen in such a way that

µc
2 ≤

(
2π(N + 1)

T

)2

,
µc
2

µc
1

= exp

(
c

T

2N

)
. (23)

Proof. Fix any positive integer N and define the positive constants

µc
1 =

[π
ω

(
1 + e−ωc/4

)]2
, µc

2 =
[π
ω

(
1 + eωc/4

)]2
,

where ω = T/N . Then,
1√
µc
1

+
1√
µc
2

=
ω

π
,

and
µc
2

µc
1

= eωc/2.

Now, set

S1 =
π

2
√
µc
1

, S2 =
π

2
√
µc
1

+
π

2
√
µc
2

=
ω

2
, S3 =

π√
µc
1

+
π

2
√

µc
2

,

and

µc(t) =

{
µc
1 if t ∈ [0, S1[∪ [S2, S3[ ,

µc
2 if t ∈ [S1, S2[∪ [S3, ω[ .

Let vo : [0, ω]→ R be the function defined as

vo(t) =





1√
µc
1

sin(
√

µc
1t) if t ∈ [0, S1[ ,

1√
µc
1

cos(
√

µc
2 (t− S1)) if t ∈ [S1, S2[ ,

−
√

µc
2

µc
1

sin(
√
µc
1 (t− S2)) if t ∈ [S2, S3[ ,

−
√

µc
2

µc
1

cos(
√
µc
2 (t− S3)) if t ∈ [S3, ω] ,
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It is a solution of
{
v′′ + µc(t)v = 0 ,

v(0) = v(ω) = 0, v′(0) = 1, v′(ω) = eωc/2 .

Finally, let xo : [0, ω]→ R be defined as

xo(t) = e−ct/2vo(t) .

Then xo shares the same regularity of vo and the same sign, as well, and

xo(0) = xo(ω) = 0 , xo
′(0) = xo

′(ω) = 1 .

Now, if we choose µ1 = µc
1 + c2/4, µ2 = µc

2 + c2/4, and

µ(t) = µc(t) +
c2

4
,

extending both µ(t) and xo(t) by T
N -periodicity over the interval [0, T ] we

have that µ ∈ L∞(0, T ) and xo is a nontrivial solution of
{
x′′ + cx′ + µ(t)x = 0

x(0) = x(T ) , x′(0) = x′(T ) .

We have thus proved that (c, µ1, µ2) does not satisfy the Property (Psym).
To conclude the proof observe that, if (22) holds, then the inequality in (23)
also holds.

6 A generalization of Theorem 1.1

In this section we will use the notation ē = 1
T

∫ T
0 e(t) dt and E(t) =

∫ t
0 e(s) ds.

The following result generalizes Theorem 1.1 stated in the Introduction.

Theorem 6.1. Assume that there exist three positive constants d, a1, a2, with
a1 < a2, and a function g : R→ R such that

0 < a1g(x) ≤ f(t, x) ≤ a2g(x) if x ≥ d ,

a2g(x) ≤ f(t, x) ≤ a1g(x) < 0 if x ≤ −d . (24)

Let
Md = max{|f(t, x)| : t ∈ [0, T ] , |x| ≤ d} ,

and

K =

(√
a2
a1
− 1

)−1
. (25)

If ē = 0 and

cd+ ‖E‖∞ +
√

(cd+ ‖E‖∞)2 + 8dMdK < K(cd− ‖E‖∞) , (26)

then problem (1) has a solution.
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Figure 4: The invariant set.

Proof. We write the equivalent system

x′ = y − cx+ E(t) , y′ = −f(t, x) , (27)

and follow the lines of [7], constructing a positively invariant compact set
containing the origin. This set, depicited in Figure 4, is delimited by some
piecewise smooth simple closed curves, as described below.

Let δ be the positive solution of the equation

Kδ2 − (cd+ ‖E‖∞)δ − 2dMd = 0 ,

i.e.,

δ =
cd+ ‖E‖∞ +

√
(cd+ ‖E‖∞)2 + 8dMdK

2K
.

We set
y1 = Kδ = cd+ ‖E‖∞ + 2dMd/δ . (28)

By (26), we have
2δ < cd− ‖E‖∞ . (29)

We start from a point P1 = (−d, y1). Define the point P2 = (d, y1 + δ)
and let `0 be the segment joining P1 and P2. Now let G(x) =

∫ x
d g(ξ) dξ and

consider the two functions

V1(x, y) =
1

2
(y − δ)2 + a1G(x) ,

V2(x, y) =
1

2
(y − δ)2 + a2G(x) ,
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We follow the curve V1(x, y) = V1(P2) starting from P2 until we reach
the line y = δ at a point Q = (xQ, δ) and then the curve V2(x, y) = V2(Q)
until we reach x = d at some point P3 = (d, y3) with y3 < δ. Denote by `1
and `2 these pieces of curves. It has to be

V1(P2) = V1(Q) =
a1
a2

V2(Q) =
a1
a2

V2(P3) ,

hence
(y3 − δ)2 =

a2
a1

y21 =
a2
a1

K2δ2 > δ2 ,

where the last inequality follows by (25). Hence y3 < 0, and we deduce that
√

a2
a1

y1 = |y3 − δ| = δ − y3 ,

and so, by (28),

|y3| =
√

a2
a1

y1 − δ = y1

(√
a2
a1
−K−1

)
= y1 .

We can now proceed symmetrically and define P̃2 = (−d, y3 − δ) and let ˜̀
0

be the segment joining P̃1 = P3 and P̃2. Now let G̃(x) =
∫ x
−d g(ξ) dξ and

consider the two functions

Ṽ1(x, y) =
1

2
(y + δ)2 + a1G̃(x) ,

Ṽ2(x, y) =
1

2
(y + δ)2 + a2G̃(x) ,

We follow the curve Ṽ1(x, y) = Ṽ1(P̃2) starting from P̃2 until we reach the
line y = −δ at a point Q̃ = (x

Q̃
,−δ) and then the curve Ṽ2(x, y) = Ṽ2(Q̃)

until we reach x = −d at some point P̃3 = (−d, ỹ3). Denote by ˜̀
1 and ˜̀

2

these pieces of curves. Arguing as above we can prove that ỹ3 = |y3|, and so
ỹ3 = y1. Hence P̃3 coincides with P1.

We want to prove now that the compact region Ω bounded by the lines

`0 , `1 , `2 , ˜̀0 , ˜̀1 , ˜̀2

is strictly positively invariant. Let

Φ(t, x, y) = (y − cx+ E(t),−f(t, x))
be the field associated with (27).

• On `0, if we denote with ν1 = (δ,−2d) the inner normal to `1, and
recalling that −d ≤ x ≤ d, we obtain

Φ(t, x, y) · ν1 = δy − cδx+ δE(t) + 2df(t, x)

> δ (y1 − cd− ‖E‖∞ − 2dMd/δ) = 0 .

Notice that in the above computation the strict inequality y − cx >
y1 − cd holds along `0.
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• On `1, from (29) and recalling that x ≥ d and y ≥ δ here, we have,
along the trajectories of (27),

d

dt
V1(x(t), y(t)) =

(
a1g(x(t)), y(t)− δ

)
· Φ

(
t, x(t), y(t)

)

=
(
y(t)− δ

)(
a1g(x(t))− f(t, x(t))

)

+ a1g(x(t))
(
E(t)− cx(t) + δ

)

≤ a1g(x(t))
(
‖E‖∞ − cd+ δ

)
< 0 .

• On `2 the same reasoning holds considering that now we are dealing
with V2.

• A similar argument can be performed for ˜̀
0, ˜̀

1, and ˜̀
2 considering

that now we are dealing with Ṽ1 and Ṽ2, respectively.

The above construction shows that the compact set Ω is strictly positively
invariant.

If we assume the uniqueness of the solutions to initial value problem
associated with (27), then the conclusion directly follows from Brouwer’s
fixed point theorem. Otherwise we can uniformly approximate the function
f(t, x) on [0, T ] × [x

Q̃
, xQ] by a sequence of continuous functions fn(t, x)

which are locally Lipschitz continuous in x. The strict positive invariance
of Ω persists when n is large enough if f is replaced by fn. A standard
compactness argument allows us to complete the proof.

Remark 6.2. The result of Theorem 1.1 can be recovered as a consequence
of Theorem 6.1. Indeed, there is no loss of generality in assuming ē = 0,
simply taking g(x) − ē instead of g(x). Then, choosing f(t, x) = g(x),
d > ‖E‖∞/c, a1 = 1− ε and a2 = 1+ ε, with ε > 0 sufficiently small, all the
assumptions of Theorem 6.1 are easily verified.

Here is a consequence in the case when f(t, x) has a linear growth in x.

Corollary 6.3. Assume that there exist two positive constants µ1, µ2 such
that

µ1 ≤ lim inf
|x|→∞

f(t, x)

x
≤ lim sup

|x|→∞

f(t, x)

x
≤ µ2 .

If

µ1 > µ2

(
2c2 + 8µ2

3c2 + 8µ2

)2

,

then problem (1) has a solution.

Proof. Without loss of generality we can assume that ē = 0, simply replacing
f(t, x) by f(t, x)− ē. Moreover, we can find ε ∈ ]0, a1[ such that, setting

a1 = µ1 − ε , a2 = µ2 + ε ,
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one has

a1 > a2

(
2c2 + 8a2
3c2 + 8a2

)2

, (30)

and, for d > 0 sufficiently large, (24) holds with g(x) = x and

Md = max{ |f(t, x)| : t ∈ [0, T ] , |x| ≤ d} ≤ a2d . (31)

Recalling (25), after some rearrangements we can show that (30) is equivalent
to

1 +
√

1 + 8a2K/c2 < K .

Then, there is η0 > 0 such that if |η| < η0 we get

1 + η +
√

(1 + η)2 + 8a2K/c2 < K(1− η) ,

So, for d large enough we have

1 +
‖E‖∞
cd

+

√(
1 +

‖E‖∞
cd

)2

+ 8a2K/c2 < K

(
1− ‖E‖∞

cd

)
,

leading to

cd+ ‖E‖∞ +
√
(cd+ ‖E‖∞)2 + 8a2d2K < K(cd− ‖E‖∞) ,

which implies (26), in view of (31). Theorem 6.1 then applies to complete
the proof.

We now consider the case f(t, x) = µ(t)x, and obtain a new sufficient
condition in order to have the Property (Psym).

Corollary 6.4. Assume 0 < µ1 ≤ µ2 and c > 0 are such that

µ1 > µ2

(
2c2 + 8µ2

3c2 + 8µ2

)2

. (32)

Then (c, µ1, µ2) satisfies the Property (Psym).

Proof. By Corollary 6.3, the problem
{
x′′ + cx′ + µ(t)x = e(t) ,

x(0) = x(T ) , x′(0) = x′(T ) .

has a solution for every e ∈ L2(0, T ). The conclusion then follows from the
Fredholm alternative.

Remark 6.5. It could be surprising that in condition (32) there is no de-
pendence on the period T . However, in the proof of Theorem 6.1 we have
discovered the existence of a positively invariant set, and this fact guarantees
that the condition will apply to any possible period T .
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Remark 6.6. Corollary 6.4 could be deduced from Corollary 4.2. Indeed
the function p : [0,+∞[→ R defined as

p(x) = x

(
2c2 + 8x

3c2 + 8x

)2

,

appearing in (32), is strictly convex and limx→+∞(p(x)−x) = −c2/4. Hence
p(x) > x−c2/4 for every x ≥ 0. Since the parabola x+y = 1

2c2
(y−x)2+c2/2,

appearing in (18), is symmetric with respect to the line y = x and contains
the point (c2, 0) one can deduce that the region where Corollary 4.2 can
be applied contains the region where the hypotheses of Corollary 6.4 are
fulfilled.

7 Proof of Theorems 2.3 and 2.10

Let us first prove Theorem 2.3. To this aim, we start providing some esti-
mates on the number of clockwise rotations around the origin of a solution
of (7) in the phase plane.

Lemma 7.1. Let N be a nonnegative integer satisfying (8). Then, for any
nontrivial solution v of (7), the curve t 7→ (v(t), v′(t)) makes at most N
clockwise rotations around the origin in the time interval [0, T ].

Proof. Let α ≥ 0 and β ≥ 0 be such that α+β = c. We write the differential
equation in (7) as a system

v′ = w − αv , −w′ = βw + (µ(t)− αβ)v+ − (ν(t)− αβ)v−.

and fix any nontrivial solution (v, w). By uniqueness of the solutions of
Cauchy problems, it has to be (v(t), w(t)) 6= (0, 0) for every t ∈ [0, T ]. Let
N be the integer number of clockwise rotations of (v, w) around the origin
in the time interval [0, T ]. We introduce the modified polar coordinates

v(t) =

{
δ+ρ(t) cos θ(t) if θ(t) ∈

[
−π

2 ,
π
2

[
,

δ−ρ(t) cos θ(t) if θ(t) ∈
]
−3π

2 ,−π
2

[
,

w(t) = ρ(t) sin θ(t) ,

for some δ+, δ− > 0.

We now focus our attention on the case when θ(t) ∈
]
−π

2 ,
π
2

[
. A simple

computation provides
{
δ+ρ

′ cos θ − δ+ρθ
′ sin θ = ρ sin θ − δ+ρα cos θ

−ρ′ sin θ − ρθ′ cos θ = ρβ sin θ + δ+ρ(µ(t)− αβ) cos θ .

Hence,

−θ′ = 1

δ+
sin2 θ +

β − α

2
sin(2θ) + δ+(µ(t)− αβ) cos2 θ .
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The particular choice α = β leads us to

−θ′(t) = 1

δ+
sin2 θ(t) + δ+

(
µ(t)− c2

4

)
cos2 θ(t) .

Then, using the notation in (6),

sin2 θ(t) + δ2+µ
c
1 cos

2 θ(t) ≤ −δ+θ′(t) ≤ sin2 θ(t) + δ2+µ
c
2 cos

2 θ(t) . (33)

Analogously, when θ(t) ∈
]
−3π

2 ,−π
2

[
we get

sin2 θ(t) + δ2−ν
c
1 cos

2 θ(t) ≤ −δ−θ′(t) ≤ sin2 θ(t) + δ2−ν
c
2 cos

2 θ(t) . (34)

In particular we have −θ′(t) > 0 for every t. We now provide an estimate of
the time needed by the solution in order to complete a rotation around the
origin. Let t1 < t2 < t3 be such that

θ(t1) =
π

2
, θ(t2) = −

π

2
, θ(t3) = −

3π

2
,

and

θ(t) ∈
]
−π

2 ,
π
2

[
for every t ∈ ]t1, t2[ ,

θ(t) ∈
]
−3π

2 ,−π
2

[
for every t ∈ ]t2, t3[ .

Taking δ+ = 1/
√

µ∗2 , integrating in (33) on the interval [t1, t2], we deduce

t2 − t1 ≥
π√
µc
2

. (35)

On the other hand, taking δ− = 1/
√
ν∗2 , from (34) we deduce

t3 − t2 ≥
π√
νc2

. (36)

Hence, summing up, the time t3 − t1 needed by the solution to perform a
complete rotation in the plane satisfies

t3 − t1 ≥
π√
µc
2

+
π√
νc2

.

We have thus proved that N ≤ N + 1.

By contradiction, assume that N = N + 1. Then equalities must hold
in (35) and (36). Moreover, one has µ(t) = µ2 for almost every t ∈ [t1, t2]
while ν(t) = ν2 for almost every t ∈ [t2, t3]. Consequently, v solves

{
v′′ + cv′ + µ2v

+ − ν2v
− = 0

v(0) = v(T ) , v′(0) = v′(T ) .

Since c > 0, multiplying in the equation by v′ and integrating over [0, T ],
one easily proves that v ≡ 0, a contradiction.
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Hence N ≤ N , thus concluding the proof.

Let us now introduce a notion related to the Property (P ).

Definition 7.2. Given γ ∈ R, we say that the row (ĉ, µ̂1, µ̂2, ν̂1, ν̂2) satisfies
the Property (Pγ) if, for every pair of functions µ̂, ν̂ in L∞(0, T ) such that

µ̂1 ≤ µ̂(t) ≤ µ̂2 , ν̂1 ≤ ν̂(t) ≤ ν̂2 , for a.e. t ∈ [0, T ] , (37)

the problem
{
z′′ + ĉz′ + µ̂(t)z+ − ν̂(t)z− = 0

z(0) = z(T ) = 0 , z′(0) = 1 , z′(T ) = eγT
(38)

has no solution.

The following lemma relating the Properties (P ) and (Pγ) will be useful.

Lemma 7.3. Given the five-number row (c, µ1, µ2, ν1, ν2), recall the notation
cγ = c− 2γ and set

µj,γ = µj − cγ + γ2 , νj,γ = νj − cγ + γ2 , j = 1, 2 .

Then, the following statements are equivalent.

(i) The row (c, µ1, µ2, ν1, ν2) satisfies the Property (P ).

(ii) For every γ ∈ R, the row (cγ , µ1,γ , µ2,γ , ν1,γ , ν2,γ) satisfies the Prop-
erty (Pγ).

(iii) There exists γ ∈ R for which (cγ , µ1,γ , µ2,γ , ν1,γ , ν2,γ) satisfies the Prop-
erty (Pγ).

Proof. (i) ⇒ (ii) By contradiction, let z(t) be a solution of (38), for some
γ ∈ R, ĉ = cγ , and µ̂(t), ν̂(t) satisfying (37), with µ̂j = µj,γ , ν̂j = νj,γ ,
j = 1, 2. Setting v(t) = e−γtz(t) we get a solution of (7) with

c = ĉ+ 2γ , µ(t) = µ̂(t) + cγ − γ2 , ν(t) = ν̂(t) + cγ − γ2 ,

and (5) holds, with µj = µ̂j + cγ − γ2 and νj = ν̂j + cγ − γ2, j = 1, 2.

(ii)⇒ (iii) is obvious.

(iii) ⇒ (i) By contradiction, let v(t) be a nontrivial solution of (7), for
some µ(t), ν(t) satisfying (5). After extending it on R by T -periodicity,
we can find a positive constant C∗ and a t∗ ∈ [0, T ] for which the function
w(t) = C∗v(t+ t∗) solves

{
w′′ + cw′ + µ(t+ t∗)w+ − ν(t+ t∗)w− = 0

w(0) = w(T ) = 0 , w′(0) = w′(T ) = 1 .
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Then, z(t) = eγtw(t) provides a solution of (38) with

ĉ = c− 2γ , µ̂(t) = µ(t+ t∗)− cγ + γ2 , ν̂(t) = ν(t+ t∗)− cγ + γ2 ,

and (37) holds, with µ̂j = µj,γ and ν̂j = νj,γ , j = 1, 2.

We are now ready to carry on the proof of our main result.

Proof of Theorem 2.3. Assume by contradiction that (c, µ1, µ2, ν1, ν2) does
not satisfy the Property (P ). Fix γ > 0 satisfying (9). Then by Lemma 7.3,
there exist some functions µ̂, ν̂ in L∞(0, T ) such that

µ1,γ ≤ µ̂(t) ≤ µ2,γ , ν1,γ ≤ ν̂(t) ≤ ν2,γ , for a.e. t ∈ [0, T ] ,

and the problem

{
v′′ + cγv

′ + µ̂(t)v+ − ν̂(t)v− = 0

v(0) = v(T ) = 0 , v′(0) = 1 , v′(T ) = eγT

has a solution. We define

µ(t) = µ̂(t) + cγ − γ2 , ν(t) = ν̂(t) + cγ − γ2 ,

and notice that

µ1 ≤ µ(t) ≤ µ2 , ν1 ≤ ν(t) ≤ ν2 , for a.e. t ∈ [0, T ] ,

and
µ̂(t)− c2γ/4 = µ(t)− c2/4, ν̂(t)− c2γ/4 = ν(t)− c2/4.

We then write the equivalent system

{
v′ = w − (cγ/2)v ,

w′ = −(cγ/2)w − (µ(t)− c2/4)v+ + (ν(t)− c2/4)v− .
(39)

Now we introduce the modified polar coordinates

v = δρ cos θ , w = ρ sin θ , (40)

for some δ > 0, and we first concentrate on the half-plane v ≥ 0. Let

Aγ = {(v, w) : v ≥ 0 , w ≥ (cγ/2)v} , Bγ = {(v, w) : v ≥ 0 , w ≤ (cγ/2)v} .

We consider different polar coordinates (40) for the sets Aγ and Bγ choos-
ing different values of δ as follows: we take δ = 1/

√
µc
1 on Aγ and δ = 1/

√
µc
2

on Bγ .
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Now, let us consider a point on the half-line w =
cγ
2 v with v ≥ 0. We

denote by (ρ[Aγ ], θ[Aγ ]) its polar coordinates as a point of the set Aγ . Sim-
ilarly we denote by (ρ[Bγ ], θ[Bγ ]) its polar coordinates as a point of the set
Bγ . We can compute

θ[Aγ ] = arctan
cγ

2
√
µc
1

, θ[Bγ ] = arctan
cγ

2
√
µc
2

, (41)

while

ρ[Bγ ] =

√
4µc

2 + c2γ
4µc

1 + c2γ
ρ[Aγ ] . (42)

We have the following estimates:





δρ′

ρ
= [1− δ2(µ(t)− c2/4)] cos θ sin θ − δcγ/2 ,

−δθ′ = 1− [1− δ2(µ(t)− c2/4)] cos2 θ .

Hence,
1

ρ

dρ

dθ
=

δcγ/2− [1− δ2(µ(t)− c2/4)] cos θ sin θ

1− [1− δ2(µ(t)− c2/4)] cos2 θ
. (43)

It can be seen that the function

φθ(s) =
δcγ/2− [1− δ2s] cos θ sin θ

1− [1− δ2s] cos2 θ
, s > 0 ,

has derivative of the same sign of sin θ− (cγ/2)δ cos θ = 1
ρ(w− (cγ/2)v), and

so, roughly speaking, it is increasing on Aγ and decreasing on Bγ . This fact
permits us to deduce from (43) the following estimate

1

ρ

dρ

dθ
≥





cγ

2
√
µc
1

on Aγ ,

cγ

2
√
µc
2

on Bγ .
(44)

Let us now consider a solution performing a clockwise half-rotation aro-
und the origin in the half-plane v ≥ 0 in a certain time interval. Assume that
it starts from a point Q0 = (0, ρ(π/2)), crosses the half-line w = (cγ/2)v
at a point Q1 and arrives at a point Q2 = (0,−ρ(−π/2)). We denote as
above with (ρ[Aγ ], θ[Aγ ]) and (ρ[Bγ ], θ[Bγ ]) the two possible variants of polar
coordinates of the point Q1.

Integrating in (44), we get

ρ[Aγ ] ≤ ρ
(π
2

)
exp

(
− cγ

2
√

µc
1

(π
2
− θ[Aγ ]

))
,
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ρ
(
− π

2

)
≤ ρ[Bγ ] exp

(
− cγ

2
√
µc
2

(π
2
+ θ[Bγ ]

))
,

hence, recalling (41) and (42),

ρ
(
− π

2

)
≤ ρ

(π
2

)
F+(γ) ,

where

F+(γ) =

√
4µc

2 + c2γ
4µc

1 + c2γ
exp

(
− cγ

2
√

µc
1

(π
2
− θ[Aγ ]

)
− cγ

2
√

µc
2

(π
2
+ θ[Bγ ]

))
.

Analogously, we can consider a solution performing a half-rotation in the
half-plane v ≤ 0. Setting

A†γ = {(v, w) : v ≤ 0 , w ≤ (cγ/2)v} , B†γ = {(v, w) : v ≤ 0 , w ≥ (cγ/2)v} .
and

θ[A†γ ] = arctan
cγ

2
√
νc1

, θ[B†γ ] = arctan
cγ

2
√
νc2

,

we find that

ρ
(
− 3π

2

)
≤ ρ

(
− π

2

)
F−(γ) ,

with

F−(γ) =
√

4νc1 + c2γ
4νc2 + c2γ

exp

(
− cγ

2
√

νc2

(π
2
− θ[A†γ ]

)
− cγ

2
√
νc1

(π
2
+ θ[B†γ ]

))
.

So,

ρ
(
− 3π

2

)
≤ ρ

(π
2

)
F+(γ)F−(γ) . (45)

We now claim that the solution (v, w) of (39) performs at most N clock-
wise rotations around the origin in the time interval [0, T ]. Indeed, by the
change of variable u(t) = eγtv(t) we recover a solution of (7) and Lemma 7.1
can be applied, to confirm our claim.

To conclude, since the estimate (45) holds for any rotation around the
origin and there areN ≤ N of them, we can compute, using assumption (9),
since ρ(π/2) = 1 and γ > 0,

eγT = ρ
(π
2
− 2πN

)
≤ ρ

(π
2

)
[F+(γ)F−(γ)]N < 1 · eγ T

N
N ≤ eγT ,

a contradiction. The proof of Theorem 2.3 is thus completed.

Proof of Theorem 2.10. We will be very sketchy. First of all, in the spirit of
Lemma 7.1, we can prove that in this case the solution makes at least N +1
clockwise rotations around the origin in the time interval [0, T ]. Then, we
need to switch the choice of δ in the polar coordinates (40) so to obtain (44)
with the reversed inequality, where the values µc

1 and µc
2 are swapped in the

two lines. Finally, we similarly obtain the analogue of estimate (45), with
reversed inequality, thus reaching the final contradiction.
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