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Abstract

Dealing with a forced system ruled by a positively-(p, q)-homoge-
neous Hamiltonian function and a friction term, we propose a nonreso-
nance condition in order to generalize a classical result by Frederickson
and Lazer. We are thus able to treat both the periodic problem and
the boundedness problem. In particular, our results apply to scalar
p-Laplacian equations with asymmetric nonlinearities.

1 Introduction and main results

We start considering the scalar equation

d

dt

(
|ẋ|p−2ẋ

)
+ h(ẋ) + µ(x+)p−1 − ν(x−)p−1 = e(t) , (1.1)

where x+ = max{x, 0}, x− = max{−x, 0}. Here p, µ and ν are positive
constants, with p > 1, while h and e are continuous and uniformly bounded
functions.

In [9], Frederickson and Lazer have studied the above problem with p = 2

and µ = ν, i.e., dealing with the equation

ẍ+ h(ẋ) + µx = e(t) .

In the case when the function e(t) is 2π-periodic and µ = N2 for some
N ∈ N, the equation can be seen as a perturbation of a resonant oscillator.
Hence, in order to get the existence of a 2π-periodic solution, some additional
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conditions have to be required. In that paper (see also [11]), the authors
provide an existence result under the assumption

2
[
h(+∞)− h(−∞)

]
>

∫ 2π

0
e(t) cos(Nt+ θ) dt , for every θ ∈ [0, 2π] ,

where h(±∞) denote the limits of the functions h at ±∞. They also proved
that, when h is assumed to be strictly increasing, this condition is indeed
necessary and sufficient for the existence of a 2π-periodic solution. Note that
here and in the sequel we choose T = 2π as the value of the period just in
order to simplify the notations. Should the period T be different, we can
reduce to this case by a simple change of variable.

Our first aim in this paper is to generalize the above result by Freder-
ickson and Lazer to equation (1.1) by introducing a suitable nonresonance
condition. We will also deal with the problem of existence of bounded solu-
tions when the function e(t) is not assumed to be periodic. In this case we
will need to accordingly modify the Frederickson–Lazer-type nonresonance
condition.

In order to explain our results in a more precise way, we remold equa-
tion (1.1) to the equivalent planar system−ẏ = µ(x+)p−1 − ν(x−)p−1 + h(|y|q−2y)− e(t) ,

ẋ = |y|q−2y ,
(1.2)

where (1/p) + (1/q) = 1. We are thus led to study a more general system,

Jż = ∇H(z) +G(t, z) , (1.3)

where J =
(
0 −1

1 0

)
denotes the standard symplectic matrix. We assume

the function H : R2 → R to be continuously differentiable, and the function
G : R× R2 → R2 to be continuous. Notice that in (1.2) we have

H(x, y) =
1

q
|y|q + 1

p

(
µ[x+]p + ν [x−]p

)
.

Here are the main hypotheses for our results.

(A1) The function H : R2 → R is positively-(p, q)-homogeneous and posi-
tive, meaning that, for some p > 1 and q > 1 with (1/p) + (1/q) = 1,
we have

H(γqx, γpy) = γp+qH(x, y) > 0 , for every (x, y) ∈ R2\{0} and γ > 0 .
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In this setting, the origin (0, 0) is an isochronous center for the planar
autonomous system

Jż = ∇H(z) , (1.4)

i.e., besides the origin, all solutions of system (1.4) are periodic and have
the same minimal period, which we denote by T . This fact is a consequence
of [4, Lemma 2.1], since one can see that the area a(E) of the set {z ∈ R2 :

H(z) ≤ E} is linear in E.

(A2) One has
lim

γ→+∞
γ−

p+q
2 G(t, γqx, γpy) = 0 ,

uniformly for x2 + y2 = 1 and t ∈ R.

It can be easily seen that in the above condition one could equivalently ask
that the limit is uniform for (x, y) belonging to compact subsets of R2 \ {0}.

Let us first focus our attention on the periodic problem. We then need
to introduce the following assumption.

(A3) Denoting by ψ(t) = (ψ1(t), ψ2(t)) a nontrivial solution of the au-
tonomous system (1.4), we assume that there exist d > −1 and C > 0

such that, for every τ ∈ R, α ∈ [0, T ], and γ ≥ 1,

γ
p+q
2
d
〈
G(τ, γqψ1(α), γ

pψ2(α)), (γ
q−p
2 ψ̇1(α), γ

p−q
2 ψ̇2(α))

〉
≥ −C , (1.5)

and, for every θ ∈ [0, T ],∫ 2π

0
lim inf
γ→+∞
s→θ

γ
p+q
2
d
〈
G(t, γqψ1(t+ s), γpψ2(t+ s)),

(γ
q−p
2 ψ̇1(t+ s), γ

p−q
2 ψ̇2(t+ s))

〉
dt > 0 . (1.6)

Here is our main existence result for the periodic problem.

Theorem 1.1. Assume the function G to be 2π-periodic in t, and that (A1)−
(A3) hold true, with

T =
2π

N
, for some N ∈ Z \ {0} .

Then system (1.3) has a 2π-periodic solution.
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There is a large literature for the periodic problem associated with scalar
second order differential equations approaching resonance (see, e.g., [5, 14]
and the references therein). Fewer results are available when dealing with
scalar equations ruled by the p-Laplacian. We refer, e.g., to [3, 10], where
some kind of Landesman–Lazer conditions have been implemented in order
to get existence results.

When no periodicity is assumed on the function G(t, z), we can still look
for the existence of bounded solutions for (1.3), i.e., solutions z(t) for which

sup{|z(t)| : t ∈ R} < +∞ .

To this aim, instead of (A3), we need the following condition.

(A4) Denoting by ψ(t) = (ψ1(t), ψ2(t)) a nontrivial solution of the au-
tonomous system (1.4), we assume that there exist d > −1 and C > 0

such that (1.5) holds, and∫ T

0
lim inf
γ→+∞
s→θ

inf
τ∈R

γ
p+q
2
d
〈
G(τ, γqψ1(t+ s), γpψ2(t+ s)) ,

(γ
q−p
2 ψ̇1(t+ s), γ

p−q
2 ψ̇2(t+ s))

〉
dt > 0 , (1.7)

for every θ ∈ [0, T ].

Here is our existence result for bounded solutions.

Theorem 1.2. Assume that (A1), (A2), and (A4) hold true. Then sys-
tem (1.3) has a bounded solution.

The search of bounded solutions for scalar equations or systems is an
ancient problem dating back to the beginning of the theory of dynamical
systems. We just mention Lagrange stability, KAM theory, and Conley–
Ważewski theory as classical research line sources. Our approach is some-
what related to the one in [12, § II.8], where some techniques involving the
so-called bound sets and guiding functions are exploited in order to prove
the existence of compact invariant sets. Some results more related to Theo-
rem 1.2 can be found in [1, 8, 15, 16, 17, 19].

The paper is organized as follows. In Section 2 we prove our results for
a particular class of perturbed linear systems. In Section 3 we introduce
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a symplectic change of variables which permits us to transform a (p, q)-
homogeneous Hamiltonian system into a linear one. The proof of the main
results in the general setting is then provided in Section 4. Examples of
applications are given in Section 5, and we conclude with some remarks in
Section 6.

2 A perturbed linear system

In this section, we provide the proof of Theorems 1.1 and 1.2 in the simpler
case when

H(z) =
1

2
N |z|2 .

We are thus considering a Hamiltonian satisfying (A1) with p = q = 2.

2.1 Periodic solutions

We are dealing with the 2π-periodic problem associated with

Jż = Nz +G(t, z) , (2.1)

where N ∈ N \ {0}, and the function G : R × R2 → R2 is continuous and
2π-periodic in t.

Let us introduce the function

ϕ(t) =
(
sin(Nt), cos(Nt)

)
.

Notice that it is a nontrivial solution of the autonomous system Jż = Nz.
Assumptions (A2) and (A3) can be rephrased as follow.

(A2′) One has
lim

λ→+∞
λ−1G(t, λz) = 0 ,

uniformly for |z| = 1 and t ∈ R.

As already remarked above, in condition (A2′) one could equivalently ask
that the limit is uniform for z belonging to compact subsets of R2 \ {0}.

(A3′) There exist d > −1 and C > 0 such that, for every τ ∈ R, α ∈
[0, 2π/N ], and λ ≥ 1,

λd
〈
G(τ, λϕ(α)), ϕ̇(α)

〉
≥ −C , (2.2)
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and, for every θ ∈ [0, 2π/N ],∫ 2π

0
lim inf
λ→+∞
s→θ

λd
〈
G(t, λϕ(t+ s)), ϕ̇(t+ s)

〉
dt > 0 .

Now Theorem 1.1, in this setting, can be rephrased as follows.

Theorem 2.1. Assume that conditions (A2′) and (A3′) hold true. Then
system (2.1) has a 2π-periodic solution.

Proof. We need to prove the following a priori bound for the family of prob-
lems Jż = σ[Nz +G(t, z)] + (1− σ)

2N + 1

2
z ,

z(0) = z(2π) ,
(2.3)

parameterized by σ ∈ [0, 1].

Claim. There exists a r̄ > 0 such that every solution z of (2.3) satisfies
∥z∥∞ ≤ r̄.

Proof of the Claim. Assume by contradiction that for every positive integer
n there exist σn ∈ [0, 1] and a solution zn of (2.3), with σ = σn, such that
∥zn∥∞ > n. Passing to a subsequence we can assume that (σn)n converges
to some σ ∈ [0, 1]. Set wn = zn

||zn||∞ . Then,Jẇn = σn

[
Nwn +

G(t, ∥zn∥∞wn)
∥zn∥∞

]
+ (1− σn)

2N + 1

2
wn ,

wn(0) = wn(2π) .

(2.4)

Since (wn)n is uniformly bounded, the differential equation in (2.4) implies
that (wn)n is bounded inH1(0, 2π), and so there exists a 2π-periodic function
w ∈ H1(0, 2π) such that (up to a subsequence) wn → w uniformly and
wn ⇀ w weakly in H1(0, 2π). Therefore, ∥w∥∞ = 1 and passing to the weak
limit in (2.4), by using (A2′) we see that w solvesJẇ = σNw + (1− σ)

2N + 1

2
w ,

w(0) = w(2π) .

Hence, it has to be σ = 1, and Jẇ = Nw. In particular, w(t) ̸= 0 for every
t ∈ [0, 2π], and we can write w(t) = ϕ(t+ θ) for some θ ∈ [0, 2π/N ]. Let us
also write

zn(t) = rn(t)ϕ(t+ χn(t)) ,
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where rn : [0, 2π] → R and χn : [0, 2π] → R are continuous functions. Then,
recalling that zn is a solution of (2.3),

ṙn(t) =
⟨żn(t), zn(t)⟩

rn(t)

= −σn
〈
JG(t, rn(t)ϕ(t+ χn(t))) , ϕ(t+ χn(t))

〉
= −σn

N

〈
G(t, rn(t)ϕ(t+ χn(t))), ϕ̇(t+ χn(t))

〉
.

Multiplying both sides by [rn(t)]
d and integrating the above equation be-

tween 0 and 2π, since ∫ 2π

0
[rn(t)]

dṙn(t) dt = 0 ,

recalling that σn ̸= 0 for n large enough, we have that∫ 2π

0
[rn(t)]

d
〈
G(t, rn(t)ϕ(t+ χn(t))), ϕ̇(t+ χn(t))

〉
dt = 0 .

Now, thanks to (2.2), we can apply Fatou’s Lemma to obtain∫ 2π

0
lim inf

n
[rn(t)]

d
〈
G(t, rn(t)ϕ(t+ χn(t))), ϕ̇(t+ χn(t))

〉
dt ≤ 0 .

Since wn → w uniformly, we have that rn(t) → +∞ and χn(t) → θ for some
θ ∈ R, both limits being uniform in t. Without loss of generality we can
assume that θ ∈ [0, 2π/N ]. Hence,

lim inf
n

[rn(t)]
d
〈
G(t, rn(t)ϕ(t+ χn(t)), ϕ̇(t+ χn(t))

〉
≥ lim inf

λ→+∞
s→θ

λd
〈
G(t, λϕ(t+ s)), ϕ̇(t+ s)

〉
,

and integrating we get a contradiction with (A3′), thus ending the proof of
the claim.

The proof of the theorem can be now completed by a standard application
of the Leray–Schauder topological degree theory.

2.2 Bounded solutions

We now consider system (2.1) without assuming G(t, z) to be periodic in t.
Instead of (A3′), we consider the following assumption.
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(A4′) There exist d > −1 and C > 0 such that (2.2) holds, and∫ 2π/N

0
lim inf
λ→+∞
s→θ

inf
τ∈R

λd
〈
G(τ, λϕ(t+ s)), ϕ̇(t+ s)

〉
dt > 0 ,

for every θ ∈ [0, 2π/N ].

Theorem 2.2. Assume that conditions (A2′) and (A4′) hold true. Then
system (2.1) has a bounded solution.

Proof. We first need to prove the following a priori bound.

Claim. There exists R > 0 such that every solution z of system (2.1) satis-
fying z(t0) = 0 for some t0 is such that |z(t)| ≤ R, for every t ≥ t0.

Proof of the Claim. Assume by contradiction that for every positive integer
n there is a solution zn of system (2.1) satisfying zn(t

0
n) = 0 for a certain

t0n ∈ R and there is tn > t0n such that |zn(tn)| = n and |zn(t)| < n, for
all t ∈ [t0n, tn[ . Let t̄0n ≥ t0n be such that zn(t̄0n) = 0 and zn(t) ̸= 0 for
every t ∈ ]t̄0n, tn]. For those values of t we introduce the polar coordinates
zn(t) = ρn(t)ϕ(θn(t)), where ρ and θ are continuous functions. Then, since
zn solves (2.1), we have

θ̇n(t) = 1 +
1

Nρn(t)

〈
G
(
t, ρn(t)ϕ(θn(t))

)
, ϕ(θn(t))

〉
. (2.5)

By (A2′), for every ε ∈ ]0, 1[ , we can find a sufficiently large R(ε) > 1 such
that, if |zn(t)| ≥ R(ε), then

1− ε ≤ θ̇n(t) ≤ 1 + ε .

In particular, we can find R1 > 0 such that, if |zn(t)| ≥ R1, then θ̇n(t) > 1/2.
So, zn rotates clockwise around the origin when |zn(t)| ≥ R1. Moreover, since
Jϕ̇ = Nϕ, for the radial speed we have

ρ̇n(t) = − 1

N

〈
G
(
t, ρn(t)ϕ(θn(t))

)
, ϕ̇(θn(t))

〉
. (2.6)

For n > R1, we can select a time t1n with the following property: ρn(t1n) = R1

and R1 < ρn(t) < n for every t ∈ ]t1n, tn[ .
We now show that tn − t1n → +∞. Indeed, from (2.6), using (A2′), we

can find a positive constant c such that |ρ̇n(t)| ≤ cρn(t) for every t ∈ [t1n, tn],
and so

ρn(t) ≥ ρn(tn)e
−c(tn−t) = ne−c(tn−t) . (2.7)
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In particular, we get ec(tn−t
1
n) ≥ n/R1, whence tn − t1n → +∞.

As a consequence, for n large, tn − t1n > 4π/N and since θ̇n > 1/2 in the
interval [t1n, tn], the solution zn performs more than one complete rotation
there. So, there exists sn ∈ ]tn−4π/N, tn[ such that zn performs exactly one
rotation around the origin in the time interval [sn, tn]. Let αn ∈ [0, 2π/N ]

be such that θn(sn) = αn. So, zn(sn) = ρn(sn)ϕ(αn) and consequently we
have zn(tn) = ρn(tn)ϕ(αn + 2π/N) = nϕ(αn + 2π/N).

By (2.7), we have

lim
n

min{ρn(t) : t ∈ [sn, tn]} = +∞ ,

hence, from (2.5) and (A2′), we deduce that θ̇n → 1 uniformly.
By letting η = θn(t), for n large enough, we get

0 ≥ [ρn(sn)]
d+1

d+ 1
− [ρn(tn)]

d+1

d+ 1

= −
∫ tn

sn

[ρn(t)]
dρ̇n(t) dt

=
1

N

∫ αn+2π/N

αn

[ρn(θ
−1
n (η))]d

θ̇n(θ
−1
n (η))

〈
G
(
θ−1
n (η), ρn(θ

−1
n (η))ϕ(η)

)
, ϕ̇(η)

〉
dη

≥ 1

N

∫ αn+2π/N

αn

[ρn(θ
−1
n (η))]d

θ̇n(θ
−1
n (η))

inf
τ∈R

〈
G
(
τ, ρn(θ

−1
n (η))ϕ(η)

)
, ϕ̇(η)

〉
dη .

Hence, by the change of variable ω = η−αn, setting λn(ω) = ρn(θ
−1
n (ω+αn))

and bn(ω) = θ̇n(θ
−1
n (ω + αn)),

0 ≥
∫ 2π/N

0

[λn(ω)]
d

bn(ω)
inf
τ∈R

〈
G
(
τ, λn(ω)ϕ(ω + αn)

)
, ϕ̇(ω + αn)

〉
dω .

Since, by (A4′), assumption (2.2) holds, we can apply Fatou’s Lemma so to
get∫ 2π/N

0
lim inf

n

[λn(ω)]
d

bn(ω)
inf
τ∈R

〈
G
(
τ, λn(ω)ϕ(ω + αn)

)
, ϕ̇(ω + αn)

〉
dω ≤ 0 .

Being (αn)n in [0, 2π/N ], we can assume that, up to a subsequence, αn →
α ∈ [0, 2π/N ]. Recalling that θ̇n(t) → 1 uniformly in t, we see that bn(ω) → 1

uniformly in ω, hence∫ 2π/N

0
lim inf
λ→+∞
s→α

λd inf
τ∈R

〈
G
(
τ, λϕ(ω + s)

)
, ϕ̇(ω + s)

〉
dω ≤ 0 ,

thus contradicting (A4′). The claim is thus proved.
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Now, let us prove the existence of the bounded solution we are looking
for. To this purpose, let zn be a solution of (2.1) such that zn(−n) = 0. By
the above argument, we have that |zn(t)| ≤ R for all t ≥ −n, and from (2.1)
we see that the sequence (zn)n is equibounded and equicontinuous. So by the
Ascoli–Arzelà Theorem there exists a subsequence (z

(1)
n )n≥1 which converges

uniformly on [−1, 1] to some function z, which is a solution of (2.1) on
that interval. Consider now the sequence (z

(1)
n )n≥2. Again, there exists

a subsequence (z
(2)
n )n≥2 converging uniformly on [−2, 2] to some solution

of (2.1), which we still denote by z. Indeed, by the uniqueness of the limit,
it is the extension of the previously found function z. In the similar way,
we define on each interval [−j, j] a subsequence (z

(j)
n )n≥j which converges

uniformly to a solution of (2.1) on [−j, j], which we still denote by z since it
coincides with the previously found functions on the domains [−k, k], with
k < j. Hence, the diagonal sequence (z

(j)
j )j≥1 converges to a solution z

of (2.1), uniformly on every compact subset of R. Clearly enough, we have
that |z(t)| ≤ R for all t ∈ R, thus completing the proof.

3 A symplectic change of variables

For the reader’s convenience, we report in this section the main ideas dis-
cussed in [7].

By using (A1), we have that H(0, 0) = 0 and the generalized Euler
Identity holds true, i.e.,〈

∇H(x, y),

(
x

p
,
y

q

)〉
= H(x, y) . (3.1)

Choose the positive constant

Υ = min

{
1

|z|2
H(z) : 1 ≤ |z| ≤ 2

}
, (3.2)

and let η : R → R be a C∞-function such that η′(s) ≤ 0 for all s ∈ R and

η(s) =

1 , if s ≤ 1 ,

0 , if s ≥ 2 .

For z = (x, y), set

Ĥ(z) = η(|z|)Υ|z|2 + (1− η(|z|))H(z) ,
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and consider the new system

Jż = ∇Ĥ(z) . (3.3)

Notice that Ĥ(0) = 0, and Ĥ(z) ̸= 0 for every z ̸= 0. This implies that
every non-zero solution of system (3.3) does not pass through the origin.
Moreover, for every z ̸= 0, we have

∇Ĥ(z) =
(
Υη′(|z|)|z|+ 2Υη(|z|)− η′(|z|)

|z|
H(z)

)
z + (1− η(|z|))∇H(z) .

Then, using (3.1) and (3.2), if z = (x, y) is such that 1 ≤ |z| ≤ 2, we have〈
∇Ĥ(z),

(
x

p
,
y

q

)〉
= η′(|z|)|z|

(
x2

p
+
y2

q

)(
Υ− 1

|z|2
H(z)

)
+ 2η(|z|)Υ

(
x2

p
+
y2

q

)
+ (1− η(|z|))H(z) > 0 . (3.4)

This implies that ∇Ĥ(z) ̸= 0, for 1 ≤ |z| ≤ 2. On the other hand, for
0 < |z| ≤ 1 the Hamiltonian function Ĥ is quadratic, so that ∇Ĥ(z) ̸= 0.
Lastly, for |z| ≥ 2, we have ∇Ĥ(z) = ∇H(z), and it is clear from (3.1) that
∇H(z) ̸= 0. Hence ∇Ĥ(z) ̸= 0 for every z ̸= 0, and the Poincaré–Bendixson
theory guarantees that all the solutions of system (3.3) are periodic. Thus,
the origin is still a global center for system (3.3).

Now for any z0 ∈ R2 \ {0}, we denote by T̂ (z0) the minimal period of
the solution of (3.3) passing through z0. We notice here that this solution
is unique, even if we are not assuming ∇H to be locally Lipschitz contin-
uous, cf. [18]. The function T̂ : R2 \ {0} → R thus defined is continuously
differentiable (see [2]).

Define
δ⋆ = [0,+∞[×{0} ,

and a function ξ : ]0,+∞[→ ]0,+∞[ as follows: for every E > 0, the level
line {z ∈ R2 : Ĥ(z) = E} intersects δ⋆ at the point (ξ(E), 0). Such a point
is unique, since by (3.4) we have that ∂Ĥ

∂x (ξ, 0) > 0 when ξ > 0.

Now, choose E0 > max{H(z) : |z| ≤ 2} and define K̂ : R2 → R as

K̂(z) =
1

T

∫ Ĥ(z)

E0

T̂ (ξ(E), 0) dE + E0 .
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In particular, setting

E0 = {z ∈ R2 : H(z) ≥ E0} , (3.5)

we have
K̂(z) = Ĥ(z) = H(z) , for every z ∈ E0 . (3.6)

The function K̂ is continuously differentiable, and

∇K̂(z) =
T̂ (z)

T
∇Ĥ(z) .

Hence, the origin is an isochronous center for the system

Jż = ∇K̂(z) , (3.7)

since all solutions except the equilibrium 0 are periodic with minimal pe-
riod T . Moreover,

K̂(z) =
π

T
|z|2, if |z| ≤ 1 .

Now, for every z0 ∈ R2 \ {0}, let ζ(t ; z0) be the solution of system (3.7)
satisfying ζ(0 ; z0) = z0, and define θ(z0) ∈ [0, 2π[ as the minimum time for
which

ζ
(
− T

2π
θ(z0) ; z0

)
∈ δ⋆.

As shown in [2], the restricted function θ : R2 \ δ⋆ → ]0, 2π[ is continuously
differentiable, and its gradient ∇θ can be continuously extended to R2 \{0}.
We will still denote this extension by ∇θ : R2 \ {0} → R2.

Hence, by [2, Proposition 2.2], there exists a symplectic diffeomorphism
Λ : R2 → R2 defined by

Λ(z) =


√

T
π
K̂(z)

(
cos θ(z), − sin θ(z)

)
, if z ̸= 0 ,

0 , if z = 0 ,

(3.8)

such that, by the change of variable w = Λ(z), system (3.7) is changed to

Jẇ =
2π

T
w ,

i.e., to Jẇ = Nw. The function Λ satisfies the following relation

[Λ′(z)]TJΛ′(z) = J , (3.9)

for every z ∈ R2, where Λ′(z) represents the Jacobian matrix of Λ. Thus, we
see that

∇K̂(z) = N [Λ′(z)]TΛ(z) (3.10)

for every z ∈ R2.
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4 Proofs of the main results

Let Λ−1 = (Ψ1,Ψ2) and set F0 = Λ(E0), where E0 was introduced in (3.5).

Proposition 4.1. If (u, v) ∈ F0, then

Ψ1(λu, λv) = λ
2
pΨ1(u, v), Ψ2(λu, λv) = λ

2
qΨ2(u, v) ,

for every λ ≥ 1.

Proof. Since H is (p, q)-homogeneous, for γ = λ
2
pq , we have

H(λ
2
px, λ

2
q y) = H(γqx, γpy) = γpqH(x, y) = λ2H(x, y) .

Recalling (3.6) for λ ≥ 1, we have

K̂(λ
2
px, λ

2
q y) = λ2K̂(x, y) ,

when z = (x, y) ∈ E0. It has been proved in [7, Section 3.2] that the func-
tion θ satisfies

θ(γqx, γpy) = θ(x, y) . (4.1)

Thus (3.8) implies that

Λ(λ
2
px, λ

2
q y) =

√
T
π
λ2K̂(x, y)

(
cos(θ(x, y)), − sin(θ(x, y))

)
= λΛ(x, y) .

Hence, writing Λ = (Λ1,Λ2), for every λ ≥ 1 we have

Λ1(λ
2
px, λ

2
q y) = λΛ1(x, y), Λ2(λ

2
px, λ

2
q y) = λΛ2(x, y) .

Setting u = Λ1(x, y) and v = Λ2(x, y), this implies (u, v) ∈ F0 and

(λ
2
px, λ

2
q y) = Λ−1(λu, λv) =

(
Ψ1(λu, λv) , Ψ2(λu, λv)

)
,

and the proof is easily completed.

Let us consider a solution z of (1.3) and define w(t) = Λ(z(t)). If z(t) ∈ E0
for t in a certain interval I, then w(t) ∈ F0, so using (3.9) and recalling (3.6)
and (3.10), in that interval we have

Jẇ = JΛ′(z)ż

= [(Λ′(z))T ]−1Jż

= [(Λ′(z))T ]−1[∇H(z) +G(t, z)]

= Nw + [(Λ′(z))T ]−1G(t, z)

= Nw + [(Λ−1)′(w)]TG(t,Λ−1(w)) .

13



Define
G̃(t, w) = [(Λ−1)′(w)]TG(t,Λ−1(w)) ,

and consider the following modified system

Jẇ = Nw + G̃(t, w) . (4.2)

Given a nontrivial solution ψ of the autonomous system (1.4) satisfying
ψ(t) ∈ E0, cf. (3.5), let ϕ = Λ(ψ). Then ϕ ̸= 0 and Jϕ̇ = Nϕ. Now we need
the following result concerning G and G̃.

Lemma 4.2. If ψ(α) ∈ E0 for some α, then, for every γ > 1 and τ ∈ R,

⟨G(τ, γqψ1(α), γ
pψ2(α)), (γ

q−p
2 ψ̇1(α), γ

p−q
2 ψ̇2(α))⟩

= ⟨G̃(τ, γ
p+q
2 ϕ(α)), ϕ̇(α)⟩ .

Proof. Recalling (3.6), the computations in [7, Section 3.2] show that for
every z = (x, y) ∈ E0 we have

Λ′(z) =

[
a11(z) a12(z)

a21(z) a22(z)

]
,

where, by denoting c(z) = cos θ(z) and s(z) = sin θ(z),

a11(z) =

√
T
π

(
∂xH(z)

2
√
H(z)

c(z)−
√
H(z)∂xθ(z)s(z)

)
,

a12(z) =

√
T
π

(
∂yH(z)

2
√
H(z)

c(z)−
√
H(z)∂yθ(z)s(z)

)
,

a21(z) =

√
T
π

(
− ∂xH(z)

2
√
H(z)

s(z)−
√
H(z)∂xθ(z)c(z)

)
,

a22(z) =

√
T
π

(
− ∂yH(z)

2
√
H(z)

s(z)−
√
H(z)∂yθ(z)c(z)

)
.

Recalling that Λ is symplectic, so detΛ′(z) = 1, the inverse matrix is

(Λ′(z))−1 =

[
a22(z) −a12(z)
−a21(z) a11(z)

]
.

The following identities have been proved in [6]:

∂H

∂x
(γqx, γpy) = γp

∂H

∂x
(x, y) ,

∂H

∂y
(γqx, γpy) = γq

∂H

∂y
(x, y) .

14



In addition, it has been proved in [7, Section 3.2] that the function θ satisfies

∂xθ(γ
qx, γpy)γq = ∂xθ(x, y) , ∂yθ(γ

qx, γpy)γp = ∂yθ(x, y) .

Thus, by using all the above together with (4.1), we have

a11(γ
qx, γpy) = γ

p−q
2 a11(x, y) , a12(γ

qx, γpy) = γ
q−p
2 a12(x, y) ,

a21(γ
qx, γpy) = γ

p−q
2 a21(x, y) , a22(γ

qx, γpy) = γ
q−p
2 a22(x, y) .

Now, for every λ > 1,

⟨G̃(τ, λϕ(α)), ϕ̇(α)⟩

=
〈
[(Λ−1)′(λϕ(α))]TG(τ,Λ−1(λϕ(α))), ϕ̇(α)

〉
=
〈
G(τ,Λ−1(λϕ(α))), [(Λ−1)′(λϕ(α))]ϕ̇(α)

〉
=
〈
G(τ,Λ−1(λϕ(α))), [Λ′(Λ−1(λϕ(α)))]−1ϕ̇(α)

〉
. (4.3)

Setting γ = λ
2
pq > 1, by Proposition 4.1, we have

Λ−1
(
λϕ(α)

)
=
(
Ψ1(λϕ(α)),Ψ2(λϕ(α))

)
=
(
λ

2
pψ1(α), λ

2
qψ2(α)

)
=
(
γqψ1(α), γ

pψ2(α)
)
.

This implies that[
Λ′
(
Λ−1(λϕ(α))

)]−1
=
[
Λ′
(
γqψ1(α), γ

pψ2(α)
)]−1

=

[
γ

q−p
2 a22(ψ(α)) −γ

q−p
2 a12(ψ(α))

−γ
p−q
2 a21(ψ(α)) γ

p−q
2 a11(ψ(α))

]
,

hence [
Λ′
(
Λ−1(λϕ(α))

)]−1
ϕ̇(α) =

(
γ

q−p
2 ψ̇1(α), γ

p−q
2 ψ̇2(α)

)T
,

where we use the fact that ψ̇ = [Λ′(ψ)]−1ϕ̇. This, together with (4.3), implies
that〈
G̃
(
τ, λϕ(α)

)
, ϕ̇(α)

〉
=
〈
G
(
τ, γqψ1(α), γ

pψ2(α)
)
,
(
γ

q−p
2 ψ̇1(α), γ

p−q
2 ψ̇2(α)

)〉
.

The observation
γ = λ

2
pq ⇔ λ = γ

pq
2 = γ

p+q
2

completes the proof of the lemma.
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After these preliminary considerations, we now complete the proof of
Theorems 1.1 and 1.2. Let us focus on the first one.

We prove that (A2) implies (A2′) with G replaced by G̃. It has been
proved in [7, Section 3.2] that (Λ−1)′(w) is bounded for every w ∈ R2, i.e.,
there exists C1 > 0 such that for every w ∈ R2, we have

∥(Λ−1)′(w)∥ ≤ C1 .

Let w belong to a compact subset K of R2\{0} and let (x, y) = Λ−1(w). Since
Λ(0) = 0, also the image Λ(K) is a compact subset of R2 \ {0}. Recalling
Proposition 4.1, we get Λ−1(λw) = (λ

2
px, λ

2
q y), when λ is sufficiently large.

So, by using the definition of G̃, for λ = γ
p+q
2 ≥ 1 we have

λ−1|G̃(t, λw)| ≤ γ−
p+q
2

∥∥∥[(Λ−1)′(λw)]T
∥∥∥|G(t,Λ−1(λw))|

≤ C1γ
− p+q

2 |G(t, γqx, γpy)| .

Hence, (A2′) follows from (A2).

Now, we show that (A3) implies (A3′) with G replaced by G̃. Indeed,
taking λ = γ

p+q
2 large enough, by Lemma 4.2, we have

γ
p+q
2
d⟨G(τ, γqψ1(t+ s), γpψ2(t+ s)), (γ

q−p
2 ψ̇1(t+ s), γ

p−q
2 ψ̇2(t+ s))⟩

= λd⟨G̃(τ, λϕ(t+ s)), ϕ̇(t+ s)⟩ .

Hence, we can apply Theorem 2.1, so problem (4.2) has a 2π-periodic
solution w. Since Λ is a diffeomorphism, by the inverse change of variables
z = Λ−1(w) we obtain a 2π-periodic solution of system (1.3), as desired.
The proof of Theorem 1.1 is thus completed.

Concerning Theorem 1.2, proceeding as above we see that (A4) implies
(A4′) with G replaced by G̃. We can then apply Theorem 2.2, so to obtain
a bounded solution w of system (4.2). By the inverse change of variables
z = Λ−1(w), we obtain a bounded solution z of system (1.3). The proof of
Theorem 1.2 is thus completed, as well.

5 Some possible examples

Concerning an application of Theorem 1.1, we propose a periodic problem
associated with the following asymmetric scalar equation

d

dt

(
|ẋ|p−2ẋ

)
+ h(ẋ) + µ(x+)p−1 − ν(x−)p−1 = e(t) , (5.1)
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with p > 1, where x+ = max{x, 0}, x− = max{−x, 0}, h : R → R and
e : R → R are continuous. We assume that the positive constants µ, ν
satisfy

πp(µ
−1/p + ν−1/p) =

2π

N
, (5.2)

for a certain positive integer N , where

πp =
2(p− 1)

1
p

p sin(πp )
π .

The scalar equation (5.1) corresponds to the system (1.3), where

H(z) =
|y|q

q
+

1

p

(
µ[x+]p + ν[x−]p

)
, G(t, z) =

(
h(|y|q−2y)− e(t)

0

)
,

with (1/p)+(1/q) = 1. The function H is positively-(p, q)-homogeneous and
positive. The nontrivial solutions of the equation

d

dt

(
|ẋ|p−2ẋ

)
+ µ(x+)p−1 − ν(x−)p−1 = 0

are of the form x(t) = cψ1(t − θ) with c > 0, θ ∈ [0, 2π/N ], and ψ1 is the
function, with minimal period 2π/N , defined on the interval [0, 2π/N ] as

ψ1(t) =

µ−1/p sinp(µ
−1/pt) if t ∈

[
0, πpµ

−1/p
]
,

ν−1/p sinp

(
ν−1/p

(
t− πp

µ1/p

))
if t ∈

[
πpµ

−1/p, 2π/N
]
,

extended by periodicity to the whole real line. Concerning the behaviour
of sinp(t), we refer the reader to [13]. So, all the solutions of system Jż =

∇H(z) are periodic with the same minimal period T = 2π/N (see [13, 20]).

We assume the existence of the finite limits

h(±∞) = lim
u→±∞

h(u) .

The following corollary generalizes the result in [9]; it is a consequence of
Theorem 1.1.

Corollary 5.1. In the above setting, assume moreover that e(t) is 2π-peri-
odic and

p sin

(
π

p

)[
h(+∞)− h(−∞)

]
>

∫ 2π

0
e(t)ψ̇1(t+ θ) dt , (5.3)

for every θ ∈ [0, 2π/N ]. Then (5.1) has a 2π-periodic solution.
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Proof. We need to prove that (A2) and (A3) hold so to be able to apply
Theorem 1.1. From the boundedness of G, it is easy to see that assumption
(A2) holds. Let us set ψ = (ψ1, ψ2) with ψ2 = |ψ̇1|p−2ψ̇1 and take d =

(p− q)/(p+ q) = −1 + 2
q > −1.

We see that

γ
p+q
2
d
〈
G
(
τ, γqψ1(α), γ

pψ2(α)
)
,
(
γ

q−p
2 ψ̇1(α), γ

p−q
2 ψ̇2(α)

)〉
=
[
h
(
γqψ̇1(α)

)
− e(τ)

]
ψ̇1(α) . (5.4)

This quantity is bounded, hence (1.5) holds. Moreover, recalling (5.2),∫
{ψ̇1>0}

ψ̇1(t) dt = N

∫ 1
2
πpµ−1/p

− 1
2
πpν−1/p

ψ̇1(t) dt

= N
(
p− 1

) 1
p
(
µ−1/p + ν−1/p

)
= p sin

(
π

p

)
,

and similarly∫
{ψ̇1<0}

ψ̇1(t) dt = N

∫ T − 1
2
πpν−1/p

1
2
πpµ−1/p

ψ̇1(t) dt = −p sin
(
π

p

)
.

From the above computations we can deduce that (1.6) is equivalent to (5.3).
Hence (A3) holds and the proof is completed.

Concerning an application of Theorem 1.2, we propose the asymmetric
scalar equation (5.1), where h : R → R and e : R → R are continuous and
uniformly bounded. The positive constants µ, ν satisfy (5.2). Proceeding as
in the first example, we have the following result.

Corollary 5.2. In the above setting, assume moreover that e(t) is bounded
and

h(+∞)− h(−∞) > sup
t∈R

e(t)− inf
t∈R

e(t) . (5.5)

Then (5.1) has a bounded solution.

Proof. Without loss of generality we can assume supt∈R e(t) = − inft∈R e(t),

simply replacing h by h − 1
2(supt∈R e(t) + inft∈R e(t)). Following the lines

of the previous proof, it remains to verify the validity of (1.7) in order to
successfully apply Theorem 1.2. Once θ ∈ [0, 2π/N ] is fixed, by (5.4) we
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have∫ 2π/N

0
lim inf
λ→+∞
s→θ

inf
τ∈R

[
h(γqψ̇1(t+ s))ψ̇1(t+ s)− e(τ)ψ̇1(t+ s)

]
dt

=

∫
{ψ̇1(·+θ)>0}

lim inf
λ→+∞
s→θ

[[
h(γqψ̇1(t+ s))ψ̇1(t+ s)− ∥e∥∞ψ̇1(t+ s)

]]
dt

+

∫
{ψ̇1(·+θ)<0}

lim inf
λ→+∞
s→θ

[[
h(γqψ̇1(t+ s))ψ̇1(t+ s) + ∥e∥∞ψ̇1(t+ s)

]]
dt

=

∫
{ψ̇1(·+θ)>0}

[[
h(+∞)ψ̇1(t+ θ)− ∥e∥∞ψ̇1(t+ θ)

]]
dt

+

∫
{ψ̇1(·+θ)<0}

[[
h(−∞)ψ̇1(t+ θ) + ∥e∥∞ψ̇1(t+ θ)

]]
dt

=
1

N
p sin

(
π

p

)
[h(+∞)− h(−∞)− 2∥e∥∞] .

So, we deduce (1.7) from (5.5).

6 Final remarks

We conclude the paper with some remarks, and suggesting some open prob-
lems.

1. Concerning the statement of Theorem 1.1, in assumption (A3) we can
replace (1.5) and (1.6) respectively by

γ
p+q
2
d
〈
G(τ, γqψ1(α), γ

pψ2(α)), (γ
q−p
2 ψ̇1(α), γ

p−q
2 ψ̇2(α))

〉
≤ C , (6.1)

and∫ 2π

0
lim sup
γ→+∞
s→θ

γ
p+q
2
d
〈
G(t, γqψ1(t+ s), γpψ2(t+ s)),

(γ
q−p
2 ψ̇1(t+ s), γ

p−q
2 ψ̇2(t+ s))

〉
dt < 0 .

2. Correspondingly, concerning Theorem 1.2, in assumption (A4) we can
replace (1.5) and (1.7) respectively by (6.1) and∫ T

0
lim sup
γ→+∞
s→θ

sup
τ∈R

γ
p+q
2
d
〈
G(τ, γqψ1(t+ s), γpψ2(t+ s)) ,

(γ
q−p
2 ψ̇1(t+ s), γ

p−q
2 ψ̇2(t+ s))

〉
dt < 0 .

3. In [9], the existence of almost periodic solutions was also considered. It
would be interesting to prove an analogue result in the setting of this paper.
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4. It would be desirable to extend the results by Yang [20] to our setting, by
introducing some kind of generalized Landesman–Lazer conditions.

5. Theorems 1.1 and 1.2 could possibly be adapted to systems in higher
dimensions, coupling planar systems ruled by some positively-(p, q)-homoge-
neous and positive Hamiltonians.

6. The possible interaction of Frederickson–Lazer-type conditions with a
Landesman–Lazer-type condition remains a field for further investigation.
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