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Abstract. After a brief historical account, starting with the celebrated
Poincaré–Birkhoff Theorem, we provide a multiplicity result for peri-
odic solutions of some Hamiltonian systems whose Hamiltonian function
H(t, x, y) is periodic in the space variables x, and even in the variables
(t, y). Our result is based on a recent theorem by R. Ortega and the
author, and it does not require any twist condition on the solutions of
the system.

1 A historical introduction

In this section we will provide a brief historical account on the development
of the theory of periodic solutions of Hamiltonian systems which originated
from the celebrated Poincaré–Birkhoff Theorem. We will start from the origi-
nal conjecture by Poincaré, concerning fixed points of a planar area-preserving
homeomorphism, and follow the efforts done to prove it and generalize it over
more than one hundred years so to obtain a powerful tool to be used in the ap-
plications. We will try to explain the relation with the Lusternik–Schnirelmann
theory and its generalizations, which have been used to extend the theorem
to higher dimensions, so to provide multiple periodic solutions for Hamilto-
nian systems. Finally, we will emphasize a recent result of the author with
R. Ortega on a two-point boundary value problem, which however is strongly
related with the Poincaré–Birkhoff Theorem, and which we will then use to
prove the multiplicity of periodic solutions to some Hamiltonian systems with
symmetries.

1.1 The Poincaré–Birkhoff Theorem

Among the most influential mathematicians in history we acknowledge Jules
Henri Poincaré, who passed away 111 years ago, on July 17th, 1912. Just
three months before his death, in the May 1912 issue of the Rendiconti del
Circolo Matematico di Palermo he published his paper “Sur un théorème de
géométrie”, which asserts the existence of at least two fixed points for an area-
preserving homeomorphism of a planar circular annulus onto itself, such that
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the points of the inner circle Γ1 are moved along Γ1 in the clockwise sense and
the points of the outer circle Γ2 are moved along Γ2 in the counter-clockwise
sense [101].

However, Poincaré was not able to prove this result, and he tried to justify
himself with these words (in our translation):

I have never presented such an incomplete work to the public; there-
fore, I think it necessary to briefly explain the reasons which con-
vinced me to publish it, and, above all, those which drove me to
start it. I have already proved in the past the existence of periodic
solutions for the three body problem; however, the result was still
unsatisfactory [...] While thinking at this problem, I convinced my-
self that the answer should depend on the truth or falseness of a
geometric theorem [...] So, I was led to research the veracity of this
theorem, but I met some unexpected difficulties [...] It seems that,
in such a situation, I should refrain from any publication until I
have solved the problem; but, after all the pointless efforts made
over many months, I thought that the wiser choice was to leave the
problem to mature, while resting for some years; this would have
been fine if I had been sure to be able to take it up again one day;
but at my age I cannot be so sure. On the other hand, the impor-
tance of the subject is too great and the quantity of results so far
obtained too considerable, to resign myself to let them definitively
unfruitful [...] I think that these considerations are sufficient to
justify me.

The existence of one fixed point was proved by George David Birkhoff [10]
the year later, in 1913, while the proof of the existence of a second fixed point
was provided by Birkhoff himself [12] only in 1925 (see also [14, 26] for a
modern exposition). Since then, the “théorème de géométrie” is known as the
Poincaré–Birkhoff Theorem.

Applications of the Poincaré–Birkhoff Theorem to dynamical systems com-
ing from nonlinear mechanics and geometry were already suggested by Poincaré
in [101] and studied by Birkhoff in [11, 13]. As mentioned by Zehnder in [125],
Arnold considered this theorem as “the seed of symplectic topology”.

1.2 First extensions in the planar case

In the case of planar Hamiltonian systems one often looks for the existence
of periodic solutions as fixed points of the Poincaré map. However, a major
difficulty in the application of the Poincaré–Birkhoff Theorem is the construc-
tion of invariant annular regions. Hence, a modification of the theorem not
assuming the invariance conditions for the annulus and its inner and outer
boundaries became necessary for the applications.
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In 1976, Jacobowitz [80, 81], following a suggestion of Moser [97], proposed
a modified version of the Poincaré–Birkhoff Theorem for a topological pointed
disc, showing how to apply it to the search of periodic solutions to some super-
linear second order differential equations. Applications in this direction were
also given by Hartman [77] and Butler [27]. Based on Jacobowitz’s result,
W.-Y. Ding [41, 42] obtained a new version of the Poincaré–Birkhoff Theorem
where the boundary invariance assumption was removed. Moreover, in [42] the
circular annulus was replaced by a topological annulus whose inner and outer
boundaries Γ1 and Γ2 are Jordan curves, assuming only Γ1 to be star-shaped.
It has been shown by Martins and Ureña in [92] that this star-shapedness as-
sumption is not eliminable. Later on, Le Calvez and Wang in [86] provided
an example showing that a star-shapedness assumption on the outer boundary
is also needed, thus proving that Ding’s theorem, hence most probably also
Jacobowitz’s, were not correct.

Meanwhile, Ding’s theorem had been used by many authors to prove exis-
tence and multiplicity of periodic solutions of some non-autonomous Hamilto-
nian systems. See, e.g., [15, 16, 20, 22, 27, 28, 36, 37, 38, 39, 40, 46, 48, 51, 52,
56, 62, 72, 78, 80, 91, 102, 103, 107, 108, 109, 110, 122, 123, 124]. Fortunately,
all these papers deal with annuli for which both boundaries are star-shaped,
and Rebelo [107] was able to save the situation proving a safer version of the
Poincaré–Birkhoff Theorem where such an assumption was made. We refer
to [61, 85] for further references and a complete historical account until the
year 2012, the centennial of Poincaré’s original paper.

Let us now state a modern version of the Poincaré–Birkhoff Theorem pro-
viding the existence and multiplicity of periodic solutions to a planar Hamil-
tonian system

x′ = ∂yH(t, x, y) , y′ = −∂xH(t, x, y) , (1)

where H : R × R2 → R is a continuous function, with continuous partial
derivatives ∂xH(t, x, y) and ∂yH(t, x, y). The following theorem is contained
in [70].

Theorem 1. Assume H(t, x, y) to be T -periodic in t for some T > 0, and
τ -periodic with respect to x, for some τ > 0. Let γ1, γ2 : R → R be two
continuous and T -periodic functions, with γ1(x) < γ2(x) for every x ∈ R,
satisfying the following property: All solutions (x, y) of (1) starting with y(0) ∈
[γ1(x(0)), γ2(x(0))] are defined on [0, T ] and are such that{

y(0) = γ1(x(0)) ⇒ x(T )− x(0) < 0 ,

y(0) = γ2(x(0)) ⇒ x(T )− x(0) > 0 .
(2)

Then, system (1) has at least two geometrically distinct T -periodic solutions
(x, y), with y(0) ∈ ]γ1(x(0)), γ2(x(0))[ .
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Let us specify what we mean by geometrically distinct solutions. By the
periodicity assumption, once a solution z(t) = (x(t), y(t)) of (1) has been
found, infinitely many others appear by just adding an integer multiple of
2π to x(t). We will call geometrically distinct two solutions which cannot be
obtained from each other in this way.

Assumption (2) is usually called twist condition, and the same conclusion
also holds if the inequalities in (2) are reversed. The original Poincaré’s setting
on an annulus can be recovered by a change of variables, choosing some suitable
polar coordinates. Notice that in Theorem 1 no uniqueness assumption is made
for the solutions of initial value problems (hence the Poincaré map could be
multivalued).

As an illustrative example, consider the planar system

x′ = ψ(y + E(t)) , y′ = g(x) , (3)

where all functions involved are continuous on the whole real line R.

Corollary 2. Let the following sign assumption hold.

∃d > 0 : |σ| ≥ d ⇒ σψ(σ) > 0 .

Moreover, let the function E(t) be T -periodic, and the function g(x) be 2π-

periodic, with
∫ 2π

0
g(s) ds = 0. Then, system (3) has at least two geometrically

distinct T -periodic solutions.

Proof. Since g(x) is bounded, Theorem 1 directly applies, taking as constant
the functions γ1(x) = −R and γ2(x) = R, with R > 0 large enough.

Corollary 3. Let φ : I → R be an increasing homeomorphism, with I an
open interval containing 0, and φ(0) = 0. Moreover, let the function g(x)

be continuous and 2π-periodic, with
∫ 2π

0
g(s) ds = 0, and the function e(t) be

T -periodic, with
∫ T

0
e(t) dt = 0. Then, the equation

(φ(x′))′ = g(x) + e(t) . (4)

has at least two geometrically distinct T -periodic solutions.

Proof. Setting ψ = φ−1 and E(t) =
∫ t

0
e(τ) dτ , equation (4) can be written in

the form of system (3), and Corollary 2 directly applies.

The case φ(y) = y was first proved in [95] by a variational method, taking
as a model the forced pendulum equation. For the relativistic pendulum, when
φ(y) = y/

√
1− y2, the result has been proved in [7, 25]. See also [65].
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1.3 The relation with Lusternik–Schnirelmann theory

The theory of Lusternik and Schnirelmann was first published in Russian in
1930. The French translation [90] appeared in the “Exposés sur l’analyse
mathématique et ses applications”, published under the direction of J. Hada-
mard, who introduces it with the following words (our translation):

[. . . ] we will admire the novelty and breadth of views, the power
and fecundity of ideas expressed. We considered it appropriate not
to allow the reader ignore a work of this value.

As the authors say in their introduction, they were motivated by some problems
raised by Poincaré in a field connecting Analysis and Topology, a domain where
the most important advances at that time had been achieved by Birkhoff.

In the following years, the ideas of Lusternik and Schnirelmann were ex-
tended and generalized in several directions. In 1964, Schwartz [112] provided
a first infinite-dimensional version of the theory, thus starting the development
of variational methods, in view of the applications to different boundary value
problems. Indeed, both ODE’s and PDE’s could be handled using those meth-
ods, providing several multiplicity results. In 1978, Rabinowitz [105] showed
us how the periodic problem for a Hamiltonian system could be treated using
a variational method. In this case, a major difficulty lies in the fact that the
associated functional is strongly indefinite. On the other hand, there have
been many attempts to generalize the Poincaré–Birkhoff Theorem to higher
dimensions starting with Birkhoff himself, who considered this an outstanding
question [12, 13]. In the sixties Arnold proposed some famous conjectures, some
of which are still open problems. Since then, various higher-dimensional ver-
sions of the Poincaré–Birkhoff Theorem were claimed, for maps which are close
to the identity and also for monotone twist maps [2, 3, 24, 98, 99, 100, 121].

Using a different approach, Conley and Zehnder [34, Theorem 3] proved an-
other possible version of the Poincaré–Birkhoff Theorem in higher dimensions.
They obtained the multiplicity of periodic solutions for a Hamiltonian system
assuming that the C2-smooth Hamiltonian function H = H(t, x, y) is periodic
in t and in the space variables xk, and quadratic in y on a neighborhood of
infinity. Precisely, they assumed

|y| ≥ R ⇒ H(t, x, y) = 1
2
〈By, y〉+ 〈a, y〉 , (5)

for some R > 0, some vector a ∈ RN and some regular symmetric matrix B.
Remarkably, their result does not need the Poincaré time-map to be close to
the identity, nor to have a monotone twist.

The development of infinite-dimensional Lusternik–Schnirelmann methods
would allow Szulkin [113, Theorem 4.2] to generalize the Conley and Zehnder
theorem by replacing the term 〈a, y〉 by nonlinearities G(t, x, y) with bounded
first-order derivatives. Further results along these lines can be found in [8, 9,
31, 47, 57, 58, 75, 79, 82, 83, 87, 93, 94, 96, 106, 114].
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1.4 A higher dimensional Poincaré–Birkhoff Theorem
for Hamiltonian systems

Despite all this ample literature it seems that, for the time being, there is still
no genuine generalization of the Poincaré–Birkhoff theorem to higher dimen-
sions. However, in 2017, the author together with A.J. Ureña proved a higher
dimensional version of the Poincaré–Birkhoff Theorem while considering the
Hamiltonian system

x′ = ∇yH(t, x, y) , y′ = −∇xH(t, x, y) , (6)

where H : R × R2N → R is a continuous function, with continuous partial
gradients ∇xH(t, x, y) and ∇yH(t, x, y). Here,

x = (x1, . . . , xN) , y = (y1, . . . , yN) .

Let us see how Theorem 1 can be generalized in the simpler case when γ1(x) = a
and γ2(x) = b are constant functions.

Theorem 4. Let H(t, x, y) be T -periodic in t for some T > 0, and that, for
every k = 1, . . . , N , it is τk-periodic with respect to the variable xk, for some
τk > 0. Let D be a convex body in RN with a smooth boundary, and assume
that all the solutions (x, y) of (6) starting with y(0) ∈ D are defined on [0, T ]
and are such that

y(0) ∈ ∂D ⇒ 〈x(T )− x(0) , νD(y(0))〉 > 0 . (7)

Then, system (6) has at least N + 1 geometrically distinct T -periodic solutions
(x, y), with y(0) ∈ int(D).

In the above statement, νD(y) denotes the outward unit normal vector to
D , for any y ∈ ∂D . The twist condition (7) can be generalized in several
different directions. See [33, 53, 54, 70, 71] for further details.

This result has already found several applications (see [17, 19, 23, 29, 32,
35, 44, 45, 49, 50, 63, 64, 66, 67, 68, 69, 76, 88, 89, 104, 116, 117, 118, 119, 120]).
It was applied to vortex dynamics [5] and to Keplerian dynamics [18]. Finally,
it has also been extended to infinite-dimensional Hamiltonian systems [21, 55].

1.5 A new functional setting

A crucial step in the application of variational methods is the choice of the
space where to define the functional to be studied. For the T -periodic problem
associated with the Hamiltonian system (6), the natural space seems to be the

one made of those functions z = (x, y) with both x and y belonging to H
1/2
T .

Recently the author jointly with R. Ortega [60] has obtained the following
multiplicity result for a two-point boundary value problem associated with
system (6) with two-point boundary conditions

y(a) = 0 = y(b) . (8)
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Theorem 5. Let H : [a, b] × R2N → R be a continuous function, with con-
tinuous partial gradients ∇xH(t, x, y) and ∇yH(t, x, y), and assume that, for
every k = 1, . . . , N , it is τk-periodic with respect to the variable xk, for some
τk > 0. Assume moreover that all solutions of (6) starting with y(a) = 0
are defined on [a, b]. Then, problem (6)-(8) has at least N + 1 geometrically
distinct solutions.

Surprisingly enough, no twist condition is assumed in the above statement.
The main novelty in the proof of Theorem 5 lies in the fact that, while for
the periodic problem x and y are usually both taken in the same space H

1/2
T ,

in [60] we have assumed x and y to belong to some complementary spaces,
which are closely related to fractional Sobolev spaces.

When the Hamiltonian function has the special form H(t, x, y) = 1
2
|y|2 +

G(t, x), problem (6)-(8) becomes a Neumann boundary value problem for a
second order differential equation. We can find a multiplicity result for the
Neumann problem by Castro [30] in 1980 and a similar one by Rabinowitz [106]
in 1988. Both papers use variational methods.

The aim of this paper is to provide the existence and multiplicity of T -
periodic solutions for a Hamiltonian system of the type (6) whose Hamiltonian
function is T -periodic in t and presents some symmetries. More precisely, we
will assume H(t, x, y) to be even, both in t and in y. In this setting, no twist
condition will be needed.

We will then extend our result to infinite dimensional systems, passing
through a finite dimensional approximation. However, the passage to the limit
in the dimension will eventually only guarantee the existence of one periodic
solution. We refer to [4, 21, 43, 55, 59, 84, 111] for related results in infinite
dimension.

2 Finite-dimensional systems

2.1 The main result

We consider the Hamiltonian system (6), where H : R×R2N → R is a continu-
ous function, with continuous partial gradients ∇xH(t, x, y) and ∇yH(t, x, y).
As above, we use the notation z = (x, y), with

x = (x1, . . . , xN) , y = (y1, . . . , yN) .

Here are our assumptions.

(A1) The function H(t, x, y) is T -periodic in the variable t, for some T > 0.

(A2) For every k ∈ {1, . . . , N} there is a τk > 0 such that the function H(t, x, y)
is τk-periodic in the variable xk .
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Let us now introduce the notation

TN =
N∏
k=1

[0, τk] .

In view of (A2), the following assumptions will be made only for those x
belonging to TN .

(A3) One has
∇yH

(
T
2
, x, 0

)
= 0 , for every x ∈ TN .

(A4) The function H(t, x, y) is even in (t, y), i.e.,

H(−t, x,−y) = H(t, x, y) , for every (t, x, y) ∈ R× TN × RN .

(A5) The solutions z = (x, y) of (6) such that z(0) ∈ TN × {0} are defined on
the whole time interval

[
0, T

2

]
.

Here is our main result.

Theorem 6. Let the assumptions (A1)-(A5) hold true. Then, system (6) has
at least N+1 geometrically distinct T -periodic solutions (x, y). These solutions
satisfy

(x(−t), y(−t)) = (x(t),−y(t)) , for every t ∈ R ,
and

y
(
nT

2

)
= 0 , for every n ∈ Z .

Proof. By Theorem 5, assumptions (A2) and (A5) guarantee the existence of
N + 1 geometrically distinct solutions (x, y) of (6) satisfying the two-point
boundary condition

y(0) = 0 = y
(
T
2

)
. (9)

Let z = (x, y) be one of such solutions, defined on the interval
[
0, T

2

]
. We

will extend it to the whole line R so to obtain the T -periodic solution we are
looking for.

Before doing this, notice that

x′(0) = 0 = x′
(
T
2

)
.

Indeed, by (A4),

∇xH(−t, x,−y) = ∇xH(t, x, y) , ∇yH(−t, x,−y) = −∇yH(t, x, y) , (10)

hence
x′(0) = ∇yH(0, x(0), y(0)) = ∇yH(0, x(0), 0) = 0 ;

moreover, by (A3),

x′
(
T
2

)
= ∇yH

(
T
2
, x
(
T
2

)
, y
(
T
2

))
= ∇yH

(
T
2
, x
(
T
2

)
, 0
)

= 0 .

First of all, we extend z(t) = (x(t), y(t)) to the interval
[
− T

2
, T

2

]
by setting

(x(−t), y(−t)) = (x(t),−y(t)) .

It is easy to see that this function is continuously differentiable on the whole
interval

[
− T

2
, T

2

]
.
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Now, since x(t) is even on
[
− T

2
, T

2

]
and y

(
− T

2

)
= y
(
T
2

)
= 0, we have that

z
(
− T

2

)
= z
(
T
2

)
.

We can then extend z(t) to R by T -periodicity, thus obtaining a continuous
function. Let us prove that it is differentiable. We just need to show that it is
such at t = T

2
. Indeed,

lim
t→T

2

+
(x′(t), y′(t)) = lim

t→−T
2

+
(x′(t+ T ), y′(t+ T ))

= lim
t→−T

2

+
(x′(t), y′(t))

= lim
t→−T

2

+
(−x′(−t), y′(−t))

= lim
t→T

2

−
(−x′(t), y′(t)) =

(
0, y′

(
T
2

))
,

hence
lim
t→T

2

+
(x′(t), y′(t)) = lim

t→T
2

−
(x′(t), y′(t)) =

(
0, y′

(
T
2

))
.

Finally, let us prove that z(t) is a solution of (6) on the whole line R. We
know that it is a solution on

[
0, T

2

]
and that it is differentiable on R. Then,

on
[
− T

2
, 0
]

, by (10) we have

x′(t) = −x′(−t) = −∇yH(−t, x(−t), y(−t))
= −∇yH(−t, x(t),−y(t)) = ∇yH(t, x(t), y(t)) ,

and

y′(t) = y′(−t) = −∇xH(−t, x(−t), y(−t))
= −∇xH(−t, x(t),−y(t)) = −∇xH(t, x(t), y(t)) .

We have thus proved that z(t) is a solution of (6) on
[
− T

2
, 0
]
. Hence, it is a

solution on
[
− T

2
, T

2

]
. Now, by (A1), the T -periodicity of z(t) guarantees that

it is a solution on the whole R.

We have thus proved that any solution of (6) on
[
0, T

2

]
satisfying (9) gen-

erates a T -periodic solution of (6). As already said above, we have N + 1 of
them, and they are geometrically distinct. The proof is thus completed.

We now introduce a substitute of assumption (A5).

(A′5) There exists a constant c̄ > 0 such that

|∇xH(t, x, y)| ≤ c̄(1 + |y|) , for every (t, x, y) ∈ [0, T ]× TN × R .

We thus have the following.
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Corollary 7. Let the assumptions (A1)-(A4) and (A′5) hold true. Then, the
same conclusion of Theorem 6 holds.

Proof. By the periodicity assumption in the components of the x variable, the
solutions (x, y) of (6) can be interpreted as if x(t) belongs to TN , for every t.
By (A′5) and the compactness of TN , one can easily deduce that (A5) holds,
hence Theorem 6 applies.

Remark 8. Notice that no twist condition is needed in the above statements.

Remark 9. The results of this section should be compared with those in [1, 6,
115], involving Hamiltonian systems with symmetries. See also the references
therein.

2.2 Some corollaries

Let N = 1 and consider the planar system

x′ = f(t, y) , y′ = g(t, x) , (11)

where the functions f, g : R × R → R are continuous. The Hamiltonian
function is

H(t, x, y) =

∫ y

0

f(t, σ) dσ +

∫ x

0

g(t, s) ds .

Corollary 10. Let the following assumptions hold true.

(A1) f and g are T -periodic in t.

(A2) g is τ -periodic in x, with
∫ τ

0
g(t, s) ds = 0, for every t.

(A3) f
(
T
2
, 0
)

= 0.

(A4) f(−t,−y) = −f(t, y) and g(−t, x) = g(t, x), for every t, x, y.

Then, system (11) has at least two geometrically distinct T -periodic solutions
(x, y). These solutions satisfy

(x(−t), y(−t)) = (x(t),−y(t)) , for every t ∈ R ,

and
y
(
nT

2

)
= 0 , for every n ∈ Z .

Proof. Assumptions (A1)-(A4) are direct consequences of (A1)-(A4), respec-
tively. Moreover, assumption (A′5) is surely satisfied, since g is bounded.
Hence, Corollary 7 applies.

We immediately get the following result for system (3).

Corollary 11. Assume that E(t) is T -periodic and odd, with E(T
2
) = 0. Let

ψ be an odd function, and let g(x) be 2π-periodic, with
∫ 2π

0
g(s) ds = 0. Then,

the same conclusion of Corollary 10 holds for system (3).
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Proof. Setting f(t, y) = ψ(y + E(t)), we have that

f(−t,−y) = ψ(−y + E(−t)) = ψ(−y − E(t)) = −ψ(y + E(t)) = −f(t, y) .

Then, Corollary 10 applies.

Let us compare Corollary 11 with Corollary 2. We notice that in Corol-
lary 11 no sign assumption is needed on ψ, which however is assumed to be an
odd function. Concerning the function E(t), in Corollary 11 it is assumed to
be odd, with E(T

2
) = 0, while in Corollary 2 one only needs it to be T -periodic.

3 Infinite-dimensional systems

In this section we deal with an infinite-dimensional Hamiltonian system on a
separable real Hilbert space H. Precisely, we consider the system (6), where
H : R×H×H → R is assumed to be continuous in (t, x, y) and continuously
differentiable in z = (x, y).

It will often be convenient to identify the space H with `2, the space of real
sequences ξ = (ξk)k≥1 such that

∑∞
k=1 ξ

2
k <∞, endowed with the usual scalar

product

〈ξ, ξ̃〉H =
∞∑
k=1

ξkξ̃k ,

and the associated norm ‖ξ‖H =
√
〈ξ, ξ〉H . We will also denote by ‖ · ‖H×H

the usual norm in the product space H×H.

We can thus rewrite (6) as a system of infinitely many scalar ODE’s, i.e.,
x′k =

∂H

∂yk
(t, (x1, x2, . . .), (y1, y2, . . .)) ,

y′k = −∂H
∂xk

(t, (x1, x2, . . .), (y1, y2, . . .)) ,

k = 1, 2, . . . , (12)

where x = (x1, x2, . . .) and y = (y1, y2, . . .) belong to `2.

Here are our assumptions.

(A1) The function H(t, x, y) is T -periodic in the variable t, for some T > 0.

(A2) There exists a sequence of positive real numbers (τk)k≥1 in `2 such that,
for every k ≥ 1, the function H(t, x, y) is τk-periodic in the variable xk .

It will be convenient to use the notation

T∞ =
∞∏
k=1

[0, τk] .

This is a compact set homeomorphic to the Hilbert cube. In view of (A2), the
following assumptions will be made only for those x belonging to T∞.
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(A3) One has
∇yH

(
T
2
, x, 0

)
= 0 , for every x ∈ T∞.

(A4) The function H(t, x, y) is even in (t, y), i.e.,

H(−t, x,−y) = H(t, x, y) , for every (t, x, y) ∈ [0, T ]× T∞ ×H .

(A5) There exists a constant c̄ > 0 such that

|∇xH(t, x, y)| ≤ c̄(1 + |y|) , for every (t, x, y) ∈ [0, T ]× T∞ ×H .

(A6) There exists a constant L > 0 such that

‖∇zH(t, z1)−∇zH(t, z2)‖H×H ≤ L ‖z1 − z2‖H×H ,
for every t ∈ [0, T ] and z1, z2 ∈ T∞ ×B(0, c̄T ec̄T ) .

(We have denoted by B(0, R) the closed ball in H centered at 0 with radius R.)

Here is our result.

Theorem 12. Let the assumptions (A1)-(A6) hold true. Then, system (12)
has a T -periodic solution. This solution (x, y) satisfies

(x(−t), y(−t)) = (x(t),−y(t)) , for every t ∈ R ,

and
y
(
nT

2

)
= 0 , for every n ∈ Z .

Remark 13. This result should be compared with [21, Theorem 2.1], where a
twist condition involving some finite dimensional approximating systems was
required. Here we do not need any twist condition. The same as in [21], the
multiplicity of solutions remains an open problem.

Proof. We proceed as in [21]. First of all we notice that any solution z(t) =
(x(t), y(t)) of (12) starting with z(0) ∈ T∞ × {0} is defined on [0, T ] and
satisfies

‖y(t)‖ ≤ c̄T ec̄T , for every t ∈ [0, T ] .

This follows from the compactness of T∞, the linear growth assumption (A5)
and Gronwall’s Lemma. (Here, and in the sequel of the proof, we use a sim-
plified notation for the norms.) Moreover, by (A6), such a solution is therein
unique.

For every integer N ≥ 1 we define the projection PN : `2 → RN as

PN(ξ1, ξ2, . . . ) = (ξ1, ξ2, . . . , ξN) ,

and the immersion IN : RN → `2 as

IN(η1, η2, . . . , ηN) = (η1, η2, . . . , ηN , 0, 0, . . . ) .

12



Let HN : R× RN × RN → R be defined as

HN(t, u, v) = H(t, INu, INv) , (13)

and consider the Hamiltonian system

u′ = ∇vHN(t, u, v) , v′ = −∇uHN(t, u, v) , (14)

where u = (u1, . . . , uN) and v = (v1, . . . , vN) ∈ RN . Since

∇uHN(t, u, v) = PN∇xH(t, INu, INv) ,

∇vHN(t, u, v) = PN∇yH(t, INu, INv) ,

it can be verified that, for N large enough, all the assumptions of Corollary 7
hold true for system (14). Hence, there exists a T -periodic solution wN(t) =
(uN(t), vN(t)) of (14) with wN(0) = wN

(
T
2

)
∈ TN × {0}, and

‖INvN(t)‖ ≤ c̄T ec̄T , for every t ∈ [0, T ] .

We now define the operators IN : RN × RN → `2 × `2 as

IN(u, v) = (INu, INv) = ((u1, . . . , uN , 0, . . .), (v1, . . . , vN , 0, . . .)) ,

and set zN0 = INw
N(0). We thus have a sequence (zN0 )N in the compact set

T∞ × {0}, which therefore has a subsequence, still denoted by (zN0 )N , which
converges to some z0 ∈ T∞×{0}. In view of the arguments at the beginning of
the proof, the solution z(t) of (6) starting from z(0) = z0 is uniquely defined
on [0, T ]. Hence, following the lines of the proof in [21, Theorem 2.1], it is
possible to prove that

lim
N→∞

INw
N(t) = z(t) , uniformly in t ∈ [0, T ] .

Being wN(0) = wN(T ), we have that z(0) = z(T ). Extending z(t) be T -
periodicity, by (A1) we have thus found the periodic solution we were looking
for.
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[10] G.D. Birkhoff, Proof of Poincaré’s geometric theorem, Trans. Amer. Math.
Soc. 14 (1913), 14–22.

[11] G.D. Birkhoff, Dynamical systems with two degrees of freedom, Trans.
Amer. Math. Soc. 18 (1917), 199–300.

[12] G.D. Birkhoff, An extension of Poincaré’s last geometric theorem, Acta
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Birkhoff Theorem, J. Differential Equations 262 (2017), 1064–1084.

[54] A. Fonda and P. Gidoni, Coupling linearity and twist: an extension of the
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[88] J. López-Gómez, E. Muñoz-Hernández and F. Zanolin, On the applica-
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