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Abstract

We extend the Poincaré–Birkhoff Theorem to a Hamiltonian system
which couples two systems with fairly different behaviours; the first one
involves a twist assumption, while the second one is generated from a
nonresonant isochronous center. By a suitable change of variables we
modify the second system into a perturbation of a nonresonant linear
one, and then prove that there exist multiple periodic solutions.

1 Introduction and statement of the main result

The celebrated Poincaré–Birkhoff Theorem [25] has been recently extended in
the framework of Hamiltonian systems to any even dimension [20], with possible
coupling with some nonresonant asymptotically linear system [11]. It is the aim
of this paper to show that, in this coupling, linearity can be replaced by positive
homogeneity, still preserving the already established multiplicity results.

We consider a Hamiltonian system in R2N of the type
q̇ = ∇pH(t, q, p) +∇pP (t, q, p, w) ,

ṗ = −∇qH(t, q, p)−∇qP (t, q, p, w) ,

Jẇ = ∇H (w) + ∇wP (t, q, p, w) ,

(1.1)

where we assume that all the involved functions are continuous, and T -periodic
in their first variable t. Here N = M + L, and we write w = (u, v), with

q = (q1, . . . , qM ) ∈ RM , p = (p1, . . . , pM ) ∈ RM ,

u = (u1, . . . , uL) ∈ RL, v = (v1, . . . , vL) ∈ RL .

We have denoted by J =
(

0 −IL

IL 0

)
the standard symplectic 2L×2L matrix.

Moreover, we assume that H : R2L → R is of the type

H (u, v) =

L∑
j=1

Hj(uj , vj) ,
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for some functions Hj : R2 → R.
In order to introduce a twist condition, we first consider the case when D is

a rectangle in RM , i.e.

D = [a1, b1]× · · · × [aM , bM ] ,

and we denote by D̊ its interior. Here are our hypotheses.

A1. For every i ∈ {1, . . . ,M}, there is a Ti > 0 for which the function H(t, q, p)

is Ti-periodic in the variable qi .

A2. There exists an M -tuple σ = (σ1, . . . , σM ) ∈ {−1, 1}M such that for every
C1-function W : [0, T ]→ R2L, all the solutions (q, p) of systemq̇ = ∇pH(t, q, p) +∇pP (t, q, p,W(t))

ṗ = −∇qH(t, q, p)−∇qP (t, q, p,W(t)) ,
(1.2)

starting with p(0) ∈ D, are defined on [0, T ] and, for every i ∈ {1, . . . ,M}, we
have pi(0) = ai ⇒ σi(qi(T )− qi(0)) < 0 ,

pi(0) = bi ⇒ σi(qi(T )− qi(0)) > 0 .

A3. For every j ∈ {1, . . . , L}, the Hamiltonian function Hj : R2 → R is
positively homogeneous of degree 2 and positive, i.e.,

Hj(λζ) = λ2Hj(ζ) > 0 , for every ζ ∈ R2 \ {0} and λ > 0 .

In this setting, the origin (0, 0) is an isochronous center for the planar au-
tonomous system

Jζ̇ = ∇Hj(ζ) . (1.3)

For every j ∈ {1, . . . , L}, all solutions of system (1.3) besides the origin are
periodic and have the same minimal period, which will be denoted by τj .

A4. The function P (t, q, p, w) is Ti-periodic in qi, for every i ∈ {1, . . . ,M}, and
has a bounded gradient with respect to (q, p, w).

Here is our first result.

Theorem 1.1. Assume that A1 – A4 hold true and

T

τj
/∈ N , for every j ∈ {1, . . . , L} . (1.4)

Then there are at least M + 1 geometrically distinct T -periodic solutions of
system (1.1), with p(0) ∈ D̊.
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Clearly enough, when a T -periodic solution (q, p, w) of system (1.1) has been
found, we may obtain infinitely many others by just adding an integer multiple
of Ti to the qi-th component. We say that two solutions are geometrically
distinct if they cannot be obtained from each other in this way.

The above theorem extends the Poincaré–Birkhoff Theorem as stated in [20].
Its proof will be given is Section 2. By a suitable change of variables, similarly
as in [1, 6, 15], we first modify the second system into a perturbation of a
nonresonant linear one, and then use the results in [11] to prove the multiplicity
of periodic solutions. Some variants of Theorem 1.1 and examples of applications
will be provided in Section 3.

Different extensions of the results in [11, 20] have been proposed, coupling the
twist assumption with the existence of well-ordered lower/upper solutions [10,
19], still obtaining multiplicity of periodic solutions. Our result represents a
step forward in this field of investigation.

2 Proof of Theorem 1.1

In order to simplify the exposition, we first provide the proof for the case M =

L = 1 (Sections 2.1 and 2.2), and then explain how to adapt it to the general
case (Section 2.3). More precisely, in Section 2.1 we deal with the autonomous
system (1.3) and show how to construct an appropriate symplectic change of
variables to linearize it. Most of this part is taken from [1], but we prefer to
report the arguments, for the reader’s convenience. In Section 2.2 we use this
change of variables to modify the original system so to be able to apply a result
from [11]. We thus first consider the four-dimensional system

q̇ = ∂pH(t, q, p) + ∂pP (t, q, p, w) ,

ṗ = −∂qH(t, q, p)− ∂qP (t, q, p, w) ,

Jẇ = ∇H (w) + ∇wP (t, q, p, w) ,

(2.1)

where all functions involved are continuous and T -periodic in t. Clearly enough,
being L = 1, we have that H = H1. Moreover, for simplicity, the period τ1

will simply be denoted by τ .

2.1 The autonomous system

By A3, we have that H (0) = 0, and the Euler Identity holds true, i.e.,

〈∇H (w), w〉 = 2H (w) , for every w ∈ R2. (2.2)

Choose the positive constant

γ = 1
2 min{H (w) : |w| = 1} , (2.3)
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and let η : R→ R be a C∞-function such that η′(s) ≤ 0 for all s ∈ R and

η(s) =

1 , if s ≤ 1 ,

0 , if s ≥ 2 .

Set
Ĥ (w) = η(|w|)γ|w|2 + (1− η(|w|))H (w) , (2.4)

and consider the new system

Jẇ = ∇Ĥ (w) . (2.5)

Notice that Ĥ (w) = H (w) when |w| is large enough, and Ĥ (0) = 0. We first
show that the origin is still a global center for system (2.5). For any w 6= 0, we
have

∇Ĥ (w) =
(
γη′(|w|)|w|+ 2γη(|w|)− η′(|w|)

|w|
H (w)

)
w + (1− η(|w|))∇H (w) .

Then, using (2.2) and (2.3), if w 6= 0 we have

〈∇Ĥ (w), w〉 = η′(|w|)|w|3
(
γ −H

(
w

|w|

))
+2|w|2

(
η(|w|) γ + (1− η(|w|))H

(
w

|w|

))
> 0 .

This shows that the origin is a global center for system (2.5) (cf. [1, Lemma
2.1]). For any w0 ∈ R2 \ {0}, we denote by τ̂(w0) the minimal period of the
solution of (2.5) passing through w0. (Notice that this solution is unique, even
if we are not assuming ∇H to be locally Lipschitz continuous, cf. [26].) The
function τ̂ : R2\{0} → [0,+∞[ thus defined is continuously differentiable (see [1,
Appendix]), and τ̂(w) = τ when |w| is large enough.

Define
δ? = [0,+∞[×{0} ,

and a function ξ : ]0,+∞[→ ]0,+∞[ as follows: for every c > 0, the level line
{w ∈ R2 : Ĥ (w) = c} intersects δ? at the point (ξ(c), 0). By the above
arguments, such a point is unique.

Now define H : R2 → R as

H(w) =
1

τ

∫ Ĥ (w)

0

τ̂(ξ(c), 0) dc . (2.6)

This function is continuously differentiable, and

∇H(w) =
τ̂(w)

τ
∇Ĥ (w) .

Hence, the origin is an isochronous center for the system

Jẇ = ∇H(w) , (2.7)
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since all solutions except the equilibrium 0 have minimal period τ . Moreover,
H(w) = H (w) when |w| is large enough, and

H(w) =
π

τ
|w|2 , when |w| ≤ 1 .

Now, for every w0 ∈ R2 \ {0}, let ζ(t ;w0) be the solution of system (2.7)
satisfying ζ(0 ;w0) = w0, and define θ(w0) ∈ [0, 2π[ as the minimum time for
which

ζ
(
− τ

2π
θ(w0) ;w0

)
∈ δ?.

As shown in [1], the restricted function θ : R2 \ δ? → ]0, 2π[ is continuously
differentiable, and its gradient ∇θ can be continuously extended to R2 \ {0}.
We will still denote this extension by ∇θ : R2 \ {0} → R2.

Notice that, if w(t) 6= 0 is a solution of system (2.7), then w(t0) ∈ δ? for
some t0 ∈ ]t− τ, t ]. Thus θ(w(t)) = 2π

τ (t− t0) for all t ∈ ]t0, t0 + τ [ , hence

d

dt
θ(w(t)) =

2π

τ
, for every t ∈ ]t0, t0 + τ [ .

Now define Λ : R2 → R2 by

Λ(w) =


√
τ

π
H(w)

(
cos θ(w), − sin θ(w)

)
, if w 6= 0 ,

0 , if w = 0 .

As a consequence of [1, Proposition 2.2], we have that the map Λ is a sym-
plectic diffeomorphism and satisfies

det Λ′(w) = 1 , for every w ∈ R2.

By the change of variables z = Λ(w), system (2.7) becomes

Jż =
2π

τ
z .

Hence, this change of variables considerably simplifies the problem, leading to a
linear system. The sequel of the proof of Theorem 1.1 will be based on the idea
of applying this change of variables to the general system (2.1), so to obtain the
coupling of a twisting system with a linear one.

2.2 Back to the original system

By the global existence assumption in A2, there exists a constant C > 0 such
that, for any solution (q, p) of (1.2) starting with p(0) ∈ [a, b], one has that

|p(t)| ≤ C , for every t ∈ [0, T ] .

Let σ : R→ R be a C∞-function such that

σ(s) =

1 , if s ≤ C ,

0 , if s > C + 1 ,
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and set
Ĥ(t, q, p) = σ(|p|)H(t, q, p) . (2.8)

Then Ĥ has a bounded gradient with respect to (q, p).
In addition, we define

P̃ (t, q, p, z) = P (t, q, p,Λ−1(z)) .

Lemma 2.1. The function P̃ has a bounded gradient with respect to (q, p, z).

Proof. By A4, both

∂qP̃ (t, q, p, z) = ∂qP (t, q, p,Λ−1(z)) , ∂pP̃ (t, q, p, z) = ∂pP (t, q, p,Λ−1(z))

are bounded, and

∇zP̃ (t, q, p, z) =
[
(Λ−1(z))′

]tr∇wP (t, q, p,Λ−1(z))

=
[
(Λ′(Λ−1(z)))tr

]−1∇wP (t, q, p,Λ−1(z)) .

ByA4 again,∇wP (t, q, p, w) is bounded, so it is sufficient to show that (Λ′(w))−1

is bounded. For |w| large enough, we have that H(w) = H (w). By denoting
c(w) = cos θ(w) and s(w) = sin θ(w), with w = (u, v) ∈ R2, we have

Λ′(w) =

[
a11(w) a12(w)

a21(w) a22(w)

]
,

where

a11(w) =

√
τ

π

(
∂uH (w)

2
√

H (w)
c(w)−

√
H (w) ∂uθ(w) s(w)

)
,

a12(w) =

√
τ

π

(
∂vH (w)

2
√

H (w)
c(w)−

√
H (w) ∂vθ(w) s(w)

)
,

a21(w) =

√
τ

π

(
− ∂uH (w)

2
√

H (w)
s(w)−

√
H (w) ∂uθ(w) c(w)

)
,

a22(w) =

√
τ

π

(
− ∂vH (w)

2
√

H (w)
s(w)−

√
H (w) ∂vθ(w) c(w)

)
.

Recalling that det Λ′(w) = 1, the inverse matrix is

(Λ′(w))−1 =

[
a22(w) −a12(w)

−a21(w) a11(w)

]
.

From the definition of θ, for w 6= 0 and λ > 0 we see that θ(λw) = θ(w), hence
∇θ(λw) = λ−1∇θ(w). Therefore, recalling that H is positively homogeneous
of degree 2, we easily conclude that all the elements of the matrix (Λ′(w))−1

are bounded, uniformly in w ∈ R2, cf. [1, Eq. (3.3)]. This proves that the map
P̃ has a bounded gradient with respect to z.

6



Now we consider the modified system
q̇ = ∂pĤ(t, q, p) + ∂pP̃ (t, q, p, z) ,

ṗ = −∂qĤ(t, q, p)− ∂qP̃ (t, q, p, z) ,

Jż =
2π

τ
z + ∇zP̃ (t, q, p, z) ,

(2.9)

where we have applied the change of variables z = Λ(w). The new Hamiltonian
function is defined as

H̃(t, q, p, z) = Ĥ(t, q, p) +
π

τ
|z|2 + P̃ (t, q, p, z) .

Using A2 and (1.4), we conclude by [11, Corollary 2.4] that the modified sys-
tem (2.9) has at least two geometrically distinct T -periodic solutions such that
p(0) ∈ ]a, b[ .

Recalling that Λ is a diffeomorphism, we can apply the inverse change of
variables w = Λ−1(z) and obtain the two solutions of system (2.1) we were
looking for. This concludes the proof in the case M = L = 1.

2.3 Conclusion of the proof

We now briefly explain how the above proof for the case M = L = 1 can be
adapted to the general case. For every j ∈ {1, . . . , L}, there exists a symplectic
diffeomorphism Λj : R2 → R2 such that the change of variables ρ = Λj(ζ)

transforms system (1.3) into

Jρ̇ =
2π

τj
ρ .

Define Λ : R2L → R2L by

Λ(u, v) = (Λ1(u1, v1), . . . ,ΛL(uL, vL)) .

Then Λ is a symplectic diffeomorphism. Let us define

P̃ (t, q, p, z) = P (t, q, p,Λ−1(z)) .

As in Lemma 2.1, we can show that the function P̃ has a bounded gradient with
respect to (q, p, z).

By a cut-off function σ, we modify the Hamiltonian H like in (2.8), setting

Ĥ(t, q, p) = σ(|p|)H(t, q, p) ,

so that the new Hamiltonian Ĥ has a bounded gradient with respect to (q, p).
We now consider the modified system

q̇ = ∇pĤ(t, q, p) +∇pP̃ (t, q, p, z) ,

ṗ = −∇qĤ(t, q, p)−∇qP̃ (t, q, p, z) ,

Jżj =
2π

τj
zj + ∇zj P̃ (t, q, p, z) , j = 1, . . . , L ,

(2.10)
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where we have applied the change of variables z = Λ(w). Using A2 and (1.4),
we conclude by [11, Corollary 2.4] that the modified system (2.10) has at least
M + 1 geometrically distinct T -periodic solutions, such that p(0) ∈ D̊ .

Recalling that Λ is a diffeomorphism, we can apply the inverse change of
variables w = Λ−1(z) and obtain the solutions of system (1.1) we are looking
for.

3 Some variants and applications

We now consider some variants of Theorem 1.1. To this aim, let us first recall
some definitions. A closed convex bounded subset D of RM having nonempty
interior D̊ is said to be a convex body of RM . If we assume that D has a
smooth boundary, then we denote the unit outward normal at ξ ∈ ∂D by νD(ξ).
Moreover, we say that D is strongly convex if for any p ∈ ∂D, the map F : D →
R defined by F(ξ) = 〈ξ − p, νD(p)〉 has a unique maximum point at ξ = p.

Let us first state the following “avoiding rays” assumption.

A2′. There exists a convex body D of RM , having a smooth boundary, such that
for σ ∈ {−1, 1} and for every C1-function W : [0, T ] → R2L, all the solutions
(q, p) of system (1.2) starting with p(0) ∈ D are defined on [0, T ], and

p(0) ∈ ∂D ⇒ q(T )− q(0) /∈ {σλ νD(p(0)) : λ ≥ 0} .

Theorem 3.1. If in the statement of Theorem 1.1 we replace assumption A2

by A2′, the same conclusion holds.

Proof. The argument is the same as the one in the proof of Theorem 1.1, with
the only difference that instead of applying [11, Corollary 2.4], we apply [11,
Corollary 2.1].

Let us now state the following “indefinite twist” assumption.

A2′′. There are a strongly convex body D of RM having a smooth boundary
and a symmetric regular M × M matrix A such that for every C1-function
W : [0, T ]→ R2L, all the solutions (q, p) of system (1.2) starting with p(0) ∈ D
are defined on [0, T ], and

p(0) ∈ ∂D ⇒ 〈q(T )− q(0) , AνD(p(0))〉 > 0 .

Theorem 3.2. If in the statement of Theorem 1.1 we replace assumption A2

by A2′′, the same conclusion holds.

Proof. Apply [11, Corollary 2.3] instead of [11, Corollary 2.4].
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There are many possible applications of our result. The twist condition
is encountered in the framework of scalar second order differential equations,
with many different possible behaviours of the retraction forces (see, e.g., [8]
for an updated list of references). Concerning the positively homogeneous case,
various particular cases have been treated, starting with the pioneering papers
by Fucik [21] and Dancer [3] (see also, e.g., [7] and the references therein).

As a first example, in the case M = L = 1, consider the coupling of a
pendulum-like equation with an asymmetric oscillator, i.e.,q̈ +A sin q = e(t) + ∂qP (t, q, u) ,

ü+ µu+ − νu− = ∂uP (t, q, u) ,
(3.1)

where the constants A,µ, ν are positive. In the above, we have used the notation
u+ = max{u, 0}, u− = max{−u, 0}. Assume that P (t, q, u) is T -periodic in t

and 2π-periodic in q, and that it has a bounded gradient with respect to (q, u).
Setting E(t) =

∫ t
0
e(s) ds, system (3.1) is equivalent toq̇ = p+ E(t) , ṗ = −A sin q + ∂qP (t, q, u) ,

u̇ = v , v̇ = −µu+ + νu− + ∂uP (t, q, u) .

Assuming e(t) to be T -periodic with∫ T

0

e(t) dt = 0 ,

the function E(t) is T -periodic, as well.
Let us verify the twist condition A2. Notice that there exists K > 0 such

that, for every C1-function U : [0, T ]→ R, all the solutions (q, p) of the system

q̇ = p+ E(t) , ṗ = −A sin q + ∂qP (t, q,U(t))

are defined on [0, T ] and satisfy

|ṗ(t)| ≤ K , for every t ∈ [0, T ] .

Define b = KT + ‖E‖∞ + 1 and a = −(KT + ‖E‖∞ + 1). Then, if p(0) = b, we
have

q̇(t) = p(t) + E(t) = p(0) +

∫ t

0

ṗ(s) ds+ E(t) ≥ b−KT − ‖E‖∞ > 0 ,

for every t ∈ [0, T ], and so q(T ) − q(0) > 0. Similarly, if p(0) = a, then
q(T )− q(0) < 0. Assumption A2 is thus satisfied.

On the other hand, if we define H by

H (u, v) =
1

2
v2 +

µ

2
(u+)2 +

ν

2
(u−)2 ,
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then H is positive, positively homogeneous of degree 2, and all the solutions of
system Jẇ = ∇H (w) with w = (u, v) are periodic with a fixed period

τ =
π
√
µ

+
π√
ν
.

All the assumptions of Theorem 1.1 are satisfied, and we can thus state the
following.

Corollary 3.3. In the above setting, assume moreover that
√
µν

√
µ+
√
ν
6= nπ

T
, for every n ∈ N .

Then system (3.1) has at least two geometrically distinct T -periodic solutions.

The above example can easily be extended to a system of the typeq̈i +Ai sin qi = ei(t) + ∂qiP (t, q, u) , i = 1, . . . ,M ,

üj + µju
+
j − νju

−
j = ∂uj

P (t, q, u) , j = 1, . . . , L ,

where all constants Ai, µj , νj are positive. Assume that P (t, q, u) is T -periodic
in t and 2π-periodic in each qi , it has a bounded gradient with respect to (q, u),
and that the functions ei(t) are T -periodic with∫ T

0

ei(t) dt = 0 , for every i = 1, . . . ,M .

In this case, one gets the existence of M + 1 geometrically distinct T -periodic
solutions.

A variant of system (3.1) in the above example is given byq̈ +A sin q = e(t) + ∂qP (t, q, u) ,

Jẇ + µw+ − νw− = ∂uP (t, q, u) ,
(3.2)

where, being w = (u, v), one has w+ = (u+, v+) and w− = (u−, v−). Assuming
µν > 0, as shown in [7], the minimal period of the isochronous system Jẇ +

µw+ − νw− = 0 is

τ =
π

2

(
1√
|µ|

+
1√
|ν|

)2

.

We thus get the following.

Corollary 3.4. In the above setting, assume moreover that

µν

(
√
|µ|+

√
|ν|)2

6= nπ

2T
, for every n ∈ N .

Then system (3.2) has at least two geometrically distinct T -periodic solutions.
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One can similarly provide a generalization of Corollary 3.4 to higher dimen-
sions as well. We avoid the details, for briefness. All the above results generalize
a classical theorem in [24] by Mawhin and Willem on the multiplicity of periodic
solutions for the pendulum equation.

Several other situations can be tackled using our results. Here we sketch
some possible examples. Consider, e.g., a system of the typeq̈i + gi(t, qi) = ∂qiP (t, q, w) , i = 1, . . . ,M ,

Jẇj = ∇Hj(wj) + ∇wj
P (t, q, w) , j = 1, . . . , L ,

where the functions Hj : R2 → R are as above, and the functions gi : R×R→ R
are continuous and T -periodic in their first variable.

When the retraction functions gi have a superlinear growth at infinity, one
can follow the approach in [4, 16] to prove the existence of infinitely many T -
periodic solutions. Indeed, the large amplitude solutions of the first system
rotate around the origin faster and faster, with a time of rotation going to zero
with the amplitude. Passing to suitably rotating polar coordinates, we recover
the necessary twist condition (see [16] for the details).

A similar argument applies when the functions gi have different behaviours
near the origin and near infinity, thus generating a twisting behaviour in the
associated phase planes, like in [23], or for systems involving a parameter (see,
e.g., [2] and the references therein), where the same situation is recovered after
a change of coordinates. Perturbation results can also be obtained, as shown,
e.g., in [9]. Let us finally mention the possibility of treating, with the same
techniques, problems with one or more singularities (see, e.g., [13, 17] and the
references therein). In all these mentioned situations, multiplicity of T -periodic
solutions is obtained.

On the other hand, if the functions gi have a sublinear growth at infinity,
we can use the approach developed in [5, 18] to get an infinite number of sub-
harmonic solutions, i.e., periodic solutions having as minimal period an integer
multiple of T . In this case, the large amplitude solutions of the first system
rotate around the origin very slowly, with a time of rotation going to infinity.

Similar results for two-point boundary value problems have been recently
obtained in [12, 14, 22] (see also [8]). The main novelty there is that no twist
condition is needed. The extension of Theorem 1.1 to this setting will appear
elsewhere.
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