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Abstract

We prove some multiplicity results for Neumann-type boundary value
problems associated with a Hamiltonian system. Such a system can be
seen as the weak coupling of two systems, the first of which has some peri-
odicity properties in the Hamiltonian function, the second one presenting
the existence of a well-ordered pair of lower/upper solutions.

1 Introduction
In the recent paper [11], the first author jointly with R. Ortega have obtained
a multiplicity result for a two-point boundary value problem associated with a
Hamiltonian system in R2N . For simplicity in the exposition, let us recall their
result for a planar system

x′ = ∂yH(t, x, y) , y′ = −∂xH(t, x, y) , (1)

with Neumann-type boundary conditions

y(a) = 0 = y(b) . (2)

Theorem 1 (Fonda–Ortega [11]). Let H : [a, b] × R2 → R be a continuous
function with continuous partial derivatives with respect to x and y. Assume
moreover that H is τ -periodic with respect to x, for some τ > 0, and that all
solutions of (1) starting with y(a) = 0 are defined on [a, b]. Then, problem (1)-
(2) has at least two geometrically distinct solutions.

Let us take a moment to explain what we mean by geometrically distinct
solutions. In view of the τ -periodicity of H in the x-variable, we can define an
equivalence relation in C1([a, b])× C1([a, b]) as follows:

(x, y) ∼ (x̂, ŷ) ⇔ x− x̂ ∈ τZ .

We say that two solutions (x, y) and (x̂, ŷ) of (1) are geometrically distinct if
they do not belong to the same equivalence class.

There are some similarities between Theorem 1 and the Poincaré–Birkhoff
Theorem (cf. [15]) for the periodic problem associated with the Hamiltonian
system (1). The main striking difference, however, lies in the fact that no twist
condition is needed in Theorem 1.
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Although the Neumann problem for scalar second order equations has been
widely studied, there are only few papers in the literature proving multiplicity
results for Neumann-type problems associated with systems of ordinary differ-
ential equations. See, e.g., [2, 19].

We now consider a four-dimensional system of the form
x′ = ∂yH(t, x, y) + ε∂yP (t, x, y, u, v) ,

y′ = −∂xH(t, x, y)− ε∂xP (t, x, y, u, v) ,

u′ = f(t, v) + ε∂vP (t, x, y, u, v) ,

v′ = g(t, u)− ε∂uP (t, x, y, u, v) ,

(3)

with Neumann-type boundary conditions{
y(a) = 0 = y(b) ,

v(a) = 0 = v(b) .
(4)

Here H : [a, b] × R2 → R and P : [a, b] × R4 → R are continuous functions,
with continuous partial derivatives with respect to the variables x, y, u, v ; the
functions f : [a, b] × R → R and g : [a, b] × R → R are continuous, and ε is a
small real parameter.

When ε = 0, problem (3)-(4) decouples into two planar problems, the first
one being (1)-(2), the second one being

u′ = f(t, v), v′ = g(t, u) , (5)

with the boundary conditions

v(a) = 0 = v(b). (6)

Concerning problem (5)-(6), we will assume the existence of a pair of strict
well-ordered lower/upper solutions, the definition of which will be recalled in
Section 2.

Besides the regularity hypotheses stated above, here is the list of our as-
sumptions.

(A1) The functionH = H(t, x, y) is τ -periodic in the variable x, for some τ > 0 .

(A2) All solutions (x, y) of (1) starting with y(a) = 0 are defined on [a, b] .

(A3) The function P = P (t, x, y, u, v) is τ -periodic in the variable x .

(A4) The function P = P (t, x, y, u, v) has a bounded gradient with respect to
z = (x, y, u, v), i.e., there exists C > 0 such that

|∇zP (t, z)| ≤ C for every (t, z) ∈ [a, b]× R4 .

(A5) There exist a strict lower solution α and a strict upper solution β for
problem (5)-(6) such that α ≤ β .

(A6) The function f has continuous partial derivative with respect to the vari-
able v and there exists λ > 0 such that

∂vf(t, v) ≥ λ , for every (t, v) ∈ [a, b]× R .
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(A7) ∂vP is independent of x and y, and locally Lipschitz continuous in v.

Let us state our main result.

Theorem 2. Let assumptions (A1)− (A7) hold true. Then, there exists ε > 0
such that, when |ε| ≤ ε, problem (3)-(4) has at least two solutions (x, y, u, v)
with α ≤ u ≤ β.

The proof is provided in Section 3. It relies on a Theorem by Szulkin [21],
which can be seen as an infinite-dimensional extension of the classical Lusternik–
Schnirelmann theory on the multiplicity of critical points.

Theorem 2 is the counterpart of the main result in [14] for the periodic
problem associated with system (3). In that paper, a further twist condition
was needed in order to apply an extension of the Poincaré–Birkhoff Theorem
due to the first author and P. Gidoni [7]. Surprisingly enough, in Theorem 2,
as for Theorem 1, no twist condition is needed.

In Sections 4 and 5 we will extend Theorem 2 to higher dimensions. An
analogue of system (3) will be considered in R2M × R2L, assuming periodicity
in the variables x1, . . . , xM . We will obtain the existence of at least M + 1
solutions to the related Neumann-type boundary value problem assuming either
the existence of a pair of well-ordered vector valued lower/upper solutions (in
Section 4), or a Hartman-type condition (in Section 5).

2 Lower and upper solutions
Let us recall the definitions of lower and upper solutions for planar systems
(cf. [9, 12, 13]).

Definition 3. A C1-function α : [a, b]→ R is a lower solution for problem (5)-
(6) if there exists a C1-function vα : [a, b]→ R such that, for every t ∈ [a, b],{

v < vα(t) ⇒ f(t, v) < α′(t) ,

v > vα(t) ⇒ f(t, v) > α′(t) ,
(7)

v′α(t) ≥ g(t, α(t)) , (8)

and
vα(a) ≥ 0 ≥ vα(b) .

The lower solution α is strict if the strict inequality holds in (8), for every
t ∈ [a, b].

Definition 4. A C1-function β : [a, b]→ R is an upper solution for problem (5)-
(6) if there exists a C1-function vβ : [a, b]→ R such that, for every t ∈ [a, b],{

v < vβ(t) ⇒ f(t, v) < β′(t) ,

v > vβ(t) ⇒ f(t, v) > β′(t) ,
(9)

v′β(t) ≤ g(t, β(t)) , (10)

and
vβ(a) ≤ 0 ≤ vβ(b) .

The upper solution β is strict if the strict inequality holds in (10), for every
t ∈ [a, b].
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We will consider the case when the pair of lower/upper solutions is well-
ordered, i.e., such that α ≤ β. For an intuitive meaning of the previous defini-
tions, see Figure 1.

u = α(t) u = β(t)

v = vα(t)

v = vβ(t)
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Figure 1: A visual illustration of the above definitions from a dynamical point
of view. Horizontal arrows represent the relative velocity u′ of solutions of
system (5) compared with α′ and β′, as stated in (7) and (9). Curved arrows
indicate the essence of conditions (8) and (10), comparing v′ with v′α and v′β .

Let us recall the following consequence of [12, Corollary 10].

Theorem 5. Let assumption (A6) hold true. If α, β is a well-ordered pair of
lower/upper solutions for problem (5)-(6), then there exists a solution (u, v)
of (5)-(6) such that α ≤ u ≤ β.

Remark 6. As an immediate consequence of (7) and (9) we have, respectively,

f(t, vα(t)) = α′(t) , f(t, vβ(t)) = β′(t) , (11)

for every t ∈ [a, b]. In view of Assumption (A6), these identities uniquely deter-
mine the functions vα and vβ.

Remark 7. In the case when f(t, v) = v, problem (5)-(6) is equivalent to the
Neumann problem {

u′′ = g(t, u) ,

u′(a) = 0 = u′(b) .

In such a case a lower solution α will satisfy the usual conditions{
α′′(t) ≥ g(t, α(t)) ,

α′(a) ≥ 0 ≥ α′(b) ,

while for an upper solution β we will have{
β′′(t) ≤ g(t, β(t)) ,

β′(a) ≤ 0 ≤ β′(b) .
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Indeed, in this case it is sufficient to choose vα = α′ and vβ = β′. These are
the classical definitions of lower/upper solutions dating back to the pioneering
works [17, 18, 20] (for a historical account, see [3]).

3 The proof of Theorem 2
In this section we will prove Theorem 2. Precisely, in Section 3.1 we modify the
problem and provide some useful lemmas. Then, in Section 3.2, we define the
function spaces where the variational problem will be settled. In Sections 3.3
and 3.4 we introduce the functional whose critical points correspond to the
solutions of the modified problem, the existence of which will follow from the
application of a theorem by Szulkin. Finally, we will show that such solutions
are indeed solutions of the original problem.

Without loss of generality, from now on, we will assume [a, b] = [0, π]. More-
over, it is not restrictive to look for ε in ]0, 1].

3.1 Some preliminaries
In this section we provide some preliminary tools which will be useful for proving
the main result. First of all we remark that, since the inequalities in (8) and (10)
are assumed to be strict, by continuity there exists a δ̄ > 0 such that, if 0 <
δ ≤ δ̄, then α(t) + δ and β(t) − δ are still a well-ordered pair of lower/upper
solutions for problem (5)-(6), with the same associated functions vα and vβ . In
what follows we replace α(t) with α(t) + δ and β(t) with β(t)− δ.

Before stating the next lemma, we recall that, by assumption (A7), the
function ∂vP does not depend on x and y.

Lemma 8. For every ε ∈ R there exist some C1-functions αε and βε such that

(i) f(t, vα(t)) + ε∂vP (t, αε(t), vα(t)) = α′ε(t) ,

(ii) f(t, vβ(t)) + ε∂vP (t, βε(t), vβ(t)) = β
′

ε(t) ,

(iii) |αε(t)− α(t)| < εCπ , and |βε(t)− β(t)| < εCπ ,

for every t ∈ [0, π], where the constant C is defined in assumption (A4).

Proof. Let Γ : [0, π]× R→ R be the continuous function defined by

Γ(t, w) = ∂vP (t, α(t) + w, vα(t)) ,

and let wε : [0, π]→ R be a solution of the Cauchy problem{
w′ = εΓ(t, w) ,

w(0) = 0 .

Define
αε(t) = α(t) + wε(t) .

Then, recalling (11), we get

f(t, vα(t)) + ε∂vP (t, αε(t), vα(t)) = α′(t) + w′ε(t) = α′ε(t) ,
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so that (i) is proved. Notice that

|Γ(t, w)| ≤ C , for every (t, w) ∈ [0, π]× R ,

with the constant C provided by (A4). Hence, |wε(t)| ≤ εCπ, for every t ∈ [0, π],
thus proving the first part of (iii). An analogous argument applies for proving
the existence of the function βε satisfying (ii) and its property in (iii).

Remark 9. Lemma 8 above is the analogue of [14, Lemma 3.1]. We observe
however that in [14] a different approach was chosen, i.e., the functions α and
β were kept the same for every ε, while vα and vβ varied. Our approach here
permits to avoid some regularity assumptions needed in [14].

Here after, we are going to modify system (3). Set

A = minα , B = maxβ ,

M = max{|g(t, s)| : t ∈ [0, π], s ∈ [A− 1, B + 1]} , (12)

and choose
d ≥ max{(M + 1)π, ||vα||∞, ||vβ ||∞}+ 1 . (13)

We define f̃ : [0, π]× R→ R by

f̃(t, v) = f(t, γ(v)) + v − γ(v) , (14)

where

γ(v) =


−d , if v ≤ −d ,
v , if |v| ≤ d ,
d , if v ≥ d ,

and g̃ε : [0, π]× R→ R by

g̃ε(t, u) = g(t, ηε(t, u))− ηε(t, u) + u ,

where

ηε(t, u) =


αε(t) , if u ≤ αε(t) ,
u , if αε(t) ≤ u ≤ βε(t) ,
βε(t) , if u ≥ βε(t) .

In the above definition, αε and βε are the functions introduced in Lemma 8.

Concerning the function H, by assumption (A2) there exists a constant
D > 0 such that every solution (x, y) of the system (1), starting with y(0) = 0,
satisfies

|y(t)| ≤ D , for every t ∈ [0, π] , (15)

(see e.g. [5]). Let ζ : R→ R be a C∞-function such that

ζ(y) =

{
1 , if |y| ≤ D + 1 ,

0 , if |y| ≥ D + 2 .
(16)

Then consider the function H̃ : [0, π]× R2 → R defined as

H̃(t, x, y) = ζ(y)H(t, x, y) ,

so that the partial derivatives of H̃(t, x, y) with respect to x and y are bounded.
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We can now introduce the modified system
x′ = ∂yH̃(t, x, y) + ε∂yP (t, x, y, u, v) ,

y′ = −∂xH̃(t, x, y)− ε∂xP (t, x, y, u, v) ,

u′ = f̃(t, v) + ε∂vP (t, x, y, u, v) ,

v′ = g̃ε(t, u)− ε∂uP (t, x, y, u, v) ,

(17)

which can also be written as
x′ = ∂yK̃ε(t, x, y, u, v) ,

y′ = −∂xK̃ε(t, x, y, u, v) ,

u′ = v + ∂vK̃ε(t, x, y, u, v) ,

v′ = u− ∂uK̃ε(t, x, y, u, v) ,

(18)

where

K̃ε(t, x, y, u, v) = H̃(t, x, y)−Gε(t, u) + F (t, v) + εP (t, x, y, u, v) , (19)

with F (t, v) =

∫ v

0

(
f̃(t, s)− s

)
ds , Gε(t, u) =

∫ u

0

(
g̃ε(t, σ)− σ

)
dσ .

We will prove that, for |ε| small enough, the modified problem (17)-(4) has
at least two geometrically distinct solutions. These solutions will indeed be the
solutions of the original problem (3)-(4) we are looking for. In order to show
this, we first need to prove some preliminary lemmas.

Lemma 10. There exists ε > 0 such that, if (x, y, u, v) is a solution of prob-
lem (17)-(4), with |ε| ≤ ε, then |y(t)| ≤ D + 1, for every t ∈ [0, π].

Proof. Assume, by contradiction, that, for all n ≥ 1, there exists a solution
(xn, yn, un, vn) of problem (17)-(4), with ε = 1/n, satisfying ‖yn‖∞ > D + 1.

By the periodicity of H̃ and P in the variable x we can assume without
loss of generality that xn(0) ∈ [0, τ ] for every n. Moreover, since, H̃ and P
have bounded gradients, the sequences (xn)n and (yn)n are uniformly bounded,
together with their derivatives, hence, by the Ascoli–Arzelà Theorem, they uni-
formly converge, up to a subsequence, to some functions x0 and y0, respectively.
We can write

xn(t) = xn(0) +

∫ t

0

(
∂yH̃(s, xn(s), yn(s))

+ 1
n∂yP (s, xn(s), yn(s), un(s), vn(s))

)
ds ,

and

yn(t) =

∫ t

0

(
− ∂xH̃(s, xn(s), yn(s))− 1

n∂xP (s, xn(s), yn(s), un(s), vn(s))
)
ds .

The functions in the integrals are bounded, hence by the dominated convergence
theorem we can take the limits and obtain

x0(t) = x0(0) +

∫ t

0

∂yH̃(s, x0(s), y0(s)) ds ,

y0(t) =

∫ t

0

−∂xH̃(s, x0(s), y0(s)) ds .
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Therefore, (x0, y0) is a solution of system (1), with H replaced by H̃, starting
with y0(0) = 0, satisfying ‖y0‖∞ ≥ D+1. Such a solution will solve the original
system (1) on some maximal interval [0, ω] ⊆ [0, π]. By the estimate in (15), it
has to be ω = π and ‖y0‖∞ ≤ D, a contradiction.

In what follows we will always assume 0 < ε ≤ 1
Cπ , where the constant C is

the one introduced in assumption (A4).

Lemma 11. Reducing if necessary the constant ε, if |ε| ≤ ε, then,{
v < vα(t) ⇒ f̃(t, v) + ε∂vP (t, αε(t), v) < α′ε(t) ,

v > vα(t) ⇒ f̃(t, v) + ε∂vP (t, αε(t), v) > α′ε(t) ,
(20)

{
v < vβ(t) ⇒ f̃(t, v) + ε∂vP (t, βε(t), v) < β′ε(t) ,

v > vβ(t) ⇒ f̃(t, v) + ε∂vP (t, βε(t), v) > β′ε(t) ,
(21){

v′α(t) > g̃ε(t, αε(t))− ε∂uP (t, x, y, αε(t), vα(t)) ,

v′β(t) < g̃ε(t, βε(t))− ε∂uP (t, x, y, βε(t), vβ(t)) ,
(22)

for every (t, x, y, v) ∈ [0, π]× R3.

Proof. We start by proving the second inequality in (20). Fix t ∈ [0, π], and
assume v > vα(t). We need to consider two cases: the first when vα(t) < v < d,
and the second when v ≥ d.
Case 1 : vα(t) < v < d. Using in the order (14), Lemma 8(i), assumptions (A6)
and (A4), we get

f̃(t, v) + ε∂vP (t, αε(t), v)− α′ε(t)
= f(t, v) + ε∂vP (t, αε(t), v)− α′ε(t)
= f(t, v)− f(t, vα(t)) + ε[∂vP (t, αε(t), v)− ∂vP (t, αε(t), vα(t))]

≥ λ(v − vα(t))− 2C|ε| .

If v − vα(t) > 2
λ ≥

2C|ε|
λ , then

λ(v − vα(t))− 2C|ε| > 0 .

Conversely, if 0 < v − vα(t) ≤ 2
λ , then by assumption (A7) we get

f̃(t, v) + ε∂vP (t, αε(t), v)− α′ε(t) ≥ λ(v − vα(t))− |ε|C̃(v − vα(t)) ,

where C̃ is the Lipschitz constant such that

|∂vP (t, u, v)− ∂vP (t, u, vα(t))| ≤ C̃|v − vα(t)| ,

for every (t, u) ∈ [0, π]× [A− 1, B + 1]. Choosing |ε| < λ/C̃, we get

f(t, v) + ε∂vP (t, αε(t), v)− α′ε(t) > 0 .

Case 2 : v ≥ d. Similarly as above, if |ε| is small enough, we get

f̃(t, v) + ε∂vP (t, αε(t), v)− α′ε(t)
= f(t, d) + (v − d) + ε∂vP (t, αε(t), v)− α′ε(t)
≥ f(t, d)− f(t, vα(t)) + ε[∂vP (t, αε(t), v)− ∂vP (t, αε(t), vα(t))]

≥ λ(d− vα(t))− 2C|ε| ≥ λ− 2C|ε| > 0 ,

completing the proof of the second inequality in (20).
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The proofs of the first inequality in (20) and of the two inequalities in (21)
are carried out similarly.

We now establish the first inequality in (22), a similar argument holding
for the proof of the latter. Recalling (8) and the fact that α is a strict lower
solution, let e > 0 be such that

v′α(t)− g(t, α(t)) > 2 e > 0, for every t ∈ [0, π] . (23)

Reducing ε if necessary, recalling (iii) in Lemma 8, by the continuity of g we
have

|g(t, α(t))− g̃ε(t, αε(t))| = |g(t, α(t))− g(t, αε(t))| < e , (24)

when |ε| ≤ ε. Combining (23) and (24), we obtain

v′α(t)− g̃ε(t, αε(t)) = v′α(t)− g(t, α(t)) + g(t, α(t))− g̃ε(t, α(t)) > e ,

for all t ∈ [0, π]. So, for |ε| sufficiently small,

v′α(t)− g̃ε(t, αε(t)) + ε∂uP (t, x, y, αε(t), vα(t)) > e− |ε|C > 0 ,

thus completing the proof.

Let us fix now ε satisfying |ε| ≤ ε. We define some open sets in the space
[0, π] × R2 and study some invariance properties of them with respect to the
solutions of system (17). We set

ANE = {(t, u, v) : t ∈ [0, π] , u > βε(t) , v > vβ(t)} ,
ASE = {(t, u, v) : t ∈ [0, π] , u > βε(t), v < vβ(t)} ,
ASW = {(t, u, v) : t ∈ [0, π] , u < αε(t), v < vα(t)} ,
ANW = {(t, u, v) : t ∈ [0, π] , u < αε(t), v > vα(t)} .

The following three lemmas are consequences of Lemma 11. We avoid giving the
detailed proofs as they essentially follow the arguments in [12]; see also [8, 9, 14].

Lemma 12. Let (x, y, u, v) be a solution of (17) defined at a point t0 ∈ [0, π].
We have:

(i) if (t0, u(t0), v(t0)) ∈ ANE , then (t, u(t), v(t)) ∈ ANE for all t > t0 ;

(ii) if (t0, u(t0), v(t0)) ∈ ASE , then (t, u(t), v(t)) ∈ ASE for all t < t0 ;

(iii) if (t0, u(t0), v(t0)) ∈ ASW , then (t, u(t), v(t)) ∈ ASW for all t > t0 ;

(iv) if (t0, u(t0), v(t0)) ∈ ANW , then (t, u(t), v(t)) ∈ ANW for all t < t0 .

Lemma 13. Let (x, y, u, v) be a solution of (17) defined at a point t0 ∈ [0, π].
We have:

(i) if u(t0) > βε(t0) and v(t0) = vβ(t0), then v′(t0) > v′β(t0) ;

(ii) if u(t0) < αε(t0) and v(t0) = vα(t0), then v′(t0) < v′α(t0) .

Lemma 14. Let (x, y, u, v) be a solution of problem (17)-(4). Then, αε(t) ≤
u(t) ≤ βε(t), for every t ∈ [0, π].
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By Lemma 10, the definition of M in (12), and the choice ε ≤ 1
Cπ , we can

finally state the following a priori bound.

Proposition 15. Let (x, y, u, v) be a solution of problem (17)-(4). Then,

αε(t) ≤ u(t) ≤ βε(t) , |v(t)| ≤ (M + 1)π , |y(t)| ≤ D + 1 ,

for every t ∈ [0, π]. In particular it is a solution of problem (3)-(4), too.

Recalling now the preliminary remark at the beginning of this subsection,
going back to the original lower and upper solutions α and β, by (iii) in Lemma 8
we can conclude that, if εCπ ≤ δ, then α ≤ u ≤ β.

3.2 The function spaces
In this section we provide the functional spaces needed in our variational setting.
We refer to [11] for a detailed exposition.

For any µ ∈ ]0, 1[ , we define Xµ as the set of those real valued functions
x̃ ∈ L2(0, π) such that

x̃(t) ∼
∞∑
m=1

x̃m cos(mt) ,

where (x̃m)m≥1 is a sequence in R satisfying
∞∑
m=1

m2µx̃2m <∞ .

The space Xµ is endowed with the inner product and the norm

〈x̃, η̃〉Xµ =

∞∑
m=1

m2µx̃mη̃m , ||x̃||Xµ =

√√√√ ∞∑
m=1

m2µx̃2m .

We denote with C̃1([0, π]) the set of C1-functions having zero mean in [0, π].

Proposition 16. The space Xµ is continuously embedded in L2(0, π) and is
made of functions with zero mean on [0, π]. The set C̃1([0, π]) is a dense subset
of Xµ.

For any ν ∈ ]0, 1[ , we define Yν as the set of those real valued functions
y ∈ L2(0, π) such that

y(t) ∼
∞∑
m=1

ym sin(mt) ,

where (ym)m≥1 is a sequence in R satisfying
∞∑
m=1

m2νy2m <∞ .

The space Yν is endowed with the inner product and the norm

〈y, ρ〉Yν =

∞∑
m=1

m2νymρm , ||y||Yν =

√√√√ ∞∑
m=1

m2νy2m .

We denote with C1
0 ([0, π]) the set of C1-functions y satisfying y(0) = 0 = y(π).
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Proposition 17. The space Yν is continuously embedded in L2(0, π) and if
ν > 1

2 it is continuously embedded in C([0, π]). The set C1
0 ([0, π]) is a dense

subset of Yν .

We will look for solutions of problem (17)-(4) by decomposing them as

x(t) = x+ x̃(t) , and u(t) = u+ ũ(t) ,

where

x =
1

π

π∫
0

x(t) dt and u =
1

π

π∫
0

u(t) dt .

We choose two positive numbers µ < 1
2 < ν such that µ + ν = 1, and consider

the space E = Xµ×Yν× (R×Xµ)×Yν . It is a separable Hilbert space endowed
with the scalar product

〈(x̃ , y , u , ũ , v), (X̃ , Y , U , Ũ , V )〉E
= 〈x̃, X̃〉Xµ + 〈y, Y 〉Yν + uU + 〈ũ, Ũ〉Xµ + 〈v, V 〉Yν ,

and the corresponding norm

||(x̃ , y , u , ũ , v)||E =
√
||x̃||2Xµ + ||y||2Yν + u2 + ||ũ||2Xµ + ||v||2Yν .

Recalling that the function K̃ε in (19) is τ -periodic in x, we can assume x ∈
S1 = R/(τZ) and look for critical points(

z , x
)

=
(
(x̃ , y , u , ũ, v) , x

)
∈ E × S1

of a suitable functional ϕ : E × S1 → R.

Let us briefly describe the rest of the proof of Theorem 2, to be carried out
in the next sections. In Section 3.4 we will introduce a bounded selfadjoint
invertible operator L ∈ L(E) so to define the functional

ϕ(z, x) =
1

2
〈Lz, z〉+ ψ(z, x) , (25)

where ψ : E × S1 → R is given by

ψ(z, x) = ψ
(
(x̃ , y , u , ũ, v) , x

)
=

∫ π

0

K̃ε

(
t , x+ x̃(t) , y(t) , u+ ũ(t) , v(t)

)
dt . (26)

In Section 3.3 we will prove that dψ(E × S1) is relatively compact. Then, in
Section 3.4 we will verify that the critical points of ϕ are indeed solutions of
problem (17)-(4). The existence of such critical points will be provided by the
application of the following theorem, which is a particular case of [21, Theo-
rem 3.8].

Theorem 18 (Szulkin). If ϕ : E × S1 → R is as in (25), where dψ(E × S1) is
relatively compact and L : E → E is a bounded selfadjoint invertible operator,
then there exist at least two critical points of ϕ.

Finally, in view of Proposition 15, we will conclude that such solutions also
solve problem (3)-(4), thus completing the proof of Theorem 2.
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3.3 The functional ψ
With the aim of applying Szulkin’s Theorem, in this section we prove that the
functional ψ defined in (26) is continuously differentiable, with Fréchet differ-
ential dψ, and the image dψ(E × S1) is relatively compact in the dual space
L(E × S1,R). The proof essentially follows the arguments of [11, Section 2.2].
For sake of simplicity, in this section we replace S1 with the linear space R. The
function ψ is defined in the same way.

Proposition 19. The functional ψ : E ×R→ R is continuously differentiable.

Proof. Fix any point (z0, x0) =
(
(x̃0, y0, u0, ũ0, v0), x0)

)
∈ E × R. For every

(z, x) =
(
(x̃, y, u, ũ, v), x

)
∈ E × R we compute the directional derivative

dGψ(z0, x0)(z, x) = lim
s→0

1

s

(
ψ(z0 + sz, x0 + sx)− ψ(z0, x0)

)
=

∫ π

0

(
∂xH̃

(
t, x0 + x̃0(t), y0(t)

) (
x+ x̃(t)

)
+ ∂yH̃

(
t, x0 + x̃0(t), y0(t)

)
y(t)

)
dt

−
∫ π

0

(
g̃ε
(
t, u0 + ũ0(t)

)
−
(
u0 + ũ0(t)

)) (
u+ ũ(t)

)
dt

+

∫ π

0

(
f̃
(
t, v0(t)

)
− v0(t)

)
v(t) dt

+ ε

∫ π

0

(
∂xP

(
t, x0 + x̃0(t), y0(t), u0 + ũ0(t), v0(t)

) (
x+ x̃(t)

)
+ ∂yP

(
t, x0 + x̃0(t), y0(t), u0 + ũ0(t), v0(t)

)
y(t)

+ ∂uP
(
t, x0 + x̃0(t), y0(t), u0 + ũ0(t), v0(t)

) (
u+ ũ(t)

)
+ ∂vP

(
t, x0 + x̃0(t), y0(t), u0 + ũ0(t), v0(t)

)
v(t)

)
dt .

(In the above computations, the dominated convergence theorem has been used,
since all the quantities inside the integrals are uniformly bounded.) We verify
now that the Gâteaux differential dGψ : E ×R→ L(E ×R,R) is continuous at
(z0, x0). The function T : E × R→ [L2(0, π)]4, defined by

T
(
(x̃0, y0, u0, ũ0, v0), x0

)
= (x0 + x̃0, y0, u0 + ũ0, v0) ,

is continuous, as the spaces Xµ and Yν are continuously embedded into L2(0, π).
The Nemytskii operator N : [L2(0, π)]4 → [L2(0, π)]4, defined by

N (x0, y0, u0, v0)(t) =

=
(
∂xH̃

(
t, x0(t), y0(t)

)
+ ε∂xP

(
t, x0(t), y0(t), u0(t), v0(t)

)
,

∂yH̃
(
t, x0(t), y0(t)

)
+ ε∂yP

(
t, x0(t), y0(t), u0(t), v0(t)

)
,

− g̃ε
(
t, u0(t)

)
+ u0(t) + ε∂uP

(
t, x0(t), y0(t), u0(t), v0(t)

)
,

f̃
(
t, v0(t)

)
− v0(t) + ε∂vP

(
t, x0(t), y0(t), u0(t), v0(t)

))
,

is continuous, since all the functions involved are continuous and bounded. Fi-
nally, the linear map Φ : [L2(0, π)]4 → L(E × R,R), defined by

Φ(h1, h2, h3, h4)
(
((x̃, y, u, ũ, v), x)

)
=

∫ π

0

(
h1(t)

(
x+ x̃(t)

)
+ h2(t) y(t) + h3(t)

(
u+ ũ(t)

)
+ h4(t) v(t)

)
dt
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is bounded, hence continuous. As dGψ = Φ ◦ N ◦ T , we conclude that dGψ is
continuous and ψ is Fréchet differentiable, and dψ = dGψ.

We verify now that the set dψ(E ×R) is relatively compact in L(E ×R,R).
We need to recall the Hausdorff-Young-type inequality proved in [11, Proposi-
tion 2.2].

Proposition 20. Assume that 1 < p ≤ 2 ≤ q verify (1/p) + (1/q) = 1. Let
Φ̃ ∈ Lp(0, π) be such that

∫ π
0

Φ̃(t) dt = 0, with

Φ̃(t) ∼
∞∑
m=1

Φm cos(mt) .

Then,
∞∑
m=1

|Φm|q ≤
( 2

π

∫ π

0

|Φ̃(t)|p dt
) q
p

.

For all m ≥ 1, we set

ẽµm(t) =
1

mµ
cos(mt), eνm(t) =

1

mν
sin(mt) ,

e[1],m = (ẽµm, 0, 0, 0, 0, 0) , e[2],m = (0, eνm, 0, 0, 0, 0) , e[3] = (0, 0, 1, 0, 0, 0) ,

e[4],m = (0, 0, 0, ẽµm, 0, 0) , e[5],m = (0, 0, 0, 0, eνm, 0) , e[6] = (0, 0, 0, 0, 0, 1) ,

and consider the orthonormal basis B in E × R defined by

B = {e[1],m, e[2],m, e[3], e[4],m, e[5],m, e[6] : m ≥ 1}.

We need the following result.

Proposition 21. For all ε > 0 there exists m0 ≥ 1 such that, for all (z0, x0) ∈
E × R, we have

∞∑
m=m0

(
|dψ(z0, x0)(e[1],m)|2 + |dψ(z0, x0)(e[2],m)|2 + |dψ(z0, x0)(e[4],m)|2

+ |dψ(z0, x0)(e[5],m)|2
)
< ε .

Proof. Let R be a constant satisfying

‖∇H̃‖∞ + ‖∇P‖∞ + ‖f̃(t, σ)− σ‖∞ + ‖g̃ε(t, σ)− σ‖∞ ≤ R . (27)

Fix (z0, x0) ∈ E × R and expand the function

Φ(t) = ∂xH̃
(
t, x0 + x̃0(t), y0(t)

)
+ ε∂xP

(
t, x0 + x̃0(t), y0(t), u0 + ũ0(t), v0(t)

)
in a Fourier series as Φ(t) ∼ Φ0 +

∑∞
k=1 Φk cos(kt). We have

dψ(z0, x0)(e[1],m) =

∫ π

0

Φ(t) ẽµm(t) dt =
π

2

1

mµ
Φm .
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Pick ρ > 2 such that 2µρ > 1 and set

Sm0
=
( ∞∑
m=m0

1

m2µρ

) 1
ρ

.

Let ρ′ be the conjugate exponent of ρ, satisfying 1/ρ+ 1/ρ′ = 1. By the Hölder
inequality, we have

∞∑
m=m0

1

m2µ
Φ2
m ≤

( ∞∑
m=m0

1

m2µρ

) 1
ρ
( ∞∑
m=m0

|Φm|2ρ
′
) 1
ρ′
.

In the following computation we apply the Hausdorff–Young inequality of Propo-
sition 20 to Φ̃(t) = Φ(t) − Φ0. Moreover, we observe that |Φ(t) − Φ0| ≤ 2R,
where R is the constant defined in (27). We get

∞∑
m=m0

|dψ(z0, x0)(e[1],m)|2 =
π2

4

∞∑
m=m0

1

m2µ
Φ2
m ≤

π2

4
Sm0

( ∞∑
m=m0

|Φm|2ρ
′
) 1
ρ′

≤ π2

4
Sm0

( 2

π

∫ π

0

|Φ(t)− Φ0|
2ρ′

2ρ′−1 dt
)2ρ′−1

≤ π2

4
Sm0

24ρ
′−1R2ρ′ .

Since lim
m0→∞

Sm0
= 0 we conclude that there exists m0 such that

∞∑
m=m0

|dψ(z0, x0)(e[1],m)|2 < ε

4
,

for all (z0, x0) ∈ E × R. Similar computations allow to take m0 such that
∞∑

m=m0

|dψ(z0, x0)(e[2],m)|2 < ε

4
,

∞∑
m=m0

|dψ(z0, x0)(e[4],m)|2 < ε

4
,

∞∑
m=m0

|dψ(z0, x0)(e[5],m)|2 < ε

4
,

hence the claim is proved.

Proposition 22. The image dψ(E × R) is relatively compact in L(E × R,R).

Proof. To verify that dψ(E × R) is bounded in L(E × R,R), take any (z, x) =
(x̃, y, u, ũ, v, x) ∈ E × R with unitary norm and compute

|dψ(z0, x0)(z, x)|

≤

( ∞∑
m=1

(
|dψ(z0, x0)(e[1],m)|2 + |dψ(z0, x0)(e[2],m)|2 + |dψ(z0, x0)(e[4],m)|2

+ |dψ(z0, x0)(e[5],m)|2
)

+ |dψ(z0, x0)(e[3])|2 + |dψ(z0, x0)(e[6])|2
) 1

2

. (28)

We note that both

dψ(z0, x0)(e[3]) =

∫ π

0

(
∂xH̃

(
t, x0 + x̃0(t), y0(t)

)
+ ε∂xP

(
t, x0 + x̃0(t), y0(t), u0 + ũ0(t), v0(t)

))
dt
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and

dψ(z0, x0)(e[6]) =

∫ π

0

(
− g̃ε

(
t, u0 + ũ0(t)

)
−
(
u0 + ũ0(t)

)
+ ε∂uP

(
t, x0 + x̃0(t), y0(t), u0 + ũ0(t), v0(t)

) )
dt

are uniformly bounded. Moreover, by Proposition 21, the series in the right-
hand side of (28) is also uniformly bounded, hence we conclude that dψ(E×R)
is bounded.

To verify compactness, pick any sequence
(
dψ(zn0 , x

n
0 )
)
n
in dψ(E×R), where

zn0 = (x̃n0 , y
n
0 , u

n
0 , ũ

n
0 , v

n
0 ). Since dψ(E×R) is bounded, we may assume that the

sequence weakly converges to some h ∈ L(E ×R,R). We aim to prove that the
sequence strongly converges to h.

We set h[1],m = h(e[1],m), h[2],m = h(e[2],m), h[3] = h(e[3]), h[4],m = h(e[4],m),
h[5],m = h(e[5],m) and h[6] = h(e[6]), so that,

‖h‖2L(E×R,R) =

∞∑
m=1

(
h2[1],m + h2[2],m + h2[4],m + h2[5],m

)
+ h2[3] + h2[6] <∞. (29)

Fix ε > 0. By Proposition 21, there is m0 > 1, such that, for all (z0, x0) ∈
E × R, we have

∞∑
m=m0

(
|dψ(z0, x0)(e[1],m)|2 + |dψ(z0, x0)(e[2],m)|2 + |dψ(z0, x0)(e[4],m)|2

+ |dψ(z0, x0)(e[5],m)|2
)
< ε.

(30)

By (29), we may further assume that

∞∑
m=m0

(
h2[1],m + h2[2],m + h2[4],m + h2[5],m

)
< ε. (31)

From the weak convergence of the sequence
(
dψ(zn0 , x

n
0 )
)
n
, we can take n0 ∈ N

large enough such that, for all n ≥ n0, for all m ≥ 1, with m ≤ m0− 1, we have

|dψ(zn0 , x
n
0 )(e[1],m)− h[1],m|2 + |dψ(zn0 , x

n
0 )(e[2],m)− h[2],m|2

+ |dψ(zn0 , x
n
0 )(e[4],m)− h[4],m|2 + |dψ(zn0 , x

n
0 )(e[5],m)− h[5],m)|2 < ε

m0 − 1
(32)

and furthermore

|dψ(zn0 , x
n
0 )(e[3])− h[3]|2 + |dψ(zn0 , x

n
0 )(e[6])− h[6]|2 < ε. (33)
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Then we compute, using (30), (31), (32), and (33),

|dψ(zn0 , x
n
0 )(z, x)− h(z, x)|2

≤
m0−1∑
m=1

(
|dψ(zn0 , x

n
0 )(e[1],m)− h[1],m|2 + |dψ(zn0 , x

n
0 )(e[2],m)− h[2],m|2

+ |dψ(zn0 , x
n
0 )(e[4],m)− h[4],m|2 + |dψ(zn0 , x

n
0 )(e[5],m)− h[5],m)|2

)
+ |dψ(zn0 , x

n
0 )(e[3])− h[3]|2 + |dψ(zn0 , x

n
0 )(e[6])− h[6]|2

+

∞∑
m=m0

(
|dψ(zn0 , x

n
0 )(e[1],m)|2 + |dψ(zn0 , x

n
0 )(e[2],m)|2

+ |dψ(zn0 , x
n
0 )(e[4],m)|2 + |dψ(zn0 , x

n
0 )(e[5],m)|2

)
+

∞∑
m=m0

(
h2[1],m + h2[2],m + h2[4],m + h2[5],m

)
≤
m0−1∑
m=1

ε

m0 − 1
+ ε+ ε+ ε = 4ε.

We just proved that the sequence
(
dψ(zn0 , x

n
0 )
)
n
strongly converges to h. This

shows that the set dψ(E × R) is relatively compact in L(E × R,R).

3.4 The operator L
In this section we are going to introduce the operator L which is in force in the
application of Theorem 18.

Let us first introduce a continuous symmetric bilinear form B : D×D → R,
where

D = C̃1([0, π])× C1
0 ([0, π])× R× C̃1([0, π])× C1

0 ([0, π]) .

Given z = (x̃, y, u, ũ, v) and Z = (X̃, Y, U, Ũ , V ) in D we define

B(z, Z) =

∫ π

0

[
y′(t)X̃(t) + v′(t)Ũ(t)− x̃′(t)Y (t)− ũ′(t)V (t)

+ v(t)V (t)−
(
u+ ũ(t)

)(
U + Ũ(t)

)]
dt ,

which is equivalent to

B(z, Z) =

∫ π

0

[
Y ′(t)x̃(t) + V ′(t)ũ(t)− X̃ ′(t)y(t)− Ũ ′(t)v(t)

+ V (t)v(t)−
(
U + Ũ(t)

)(
u+ ũ(t)

)]
dt ,

recalling the boundary conditions y(0) = 0 = y(π), v(0) = 0 = v(π), Y (0) =
0 = Y (π), and V (0) = 0 = V (π).

Let us verify that the form B is continuous in D × D with the topology
induced by the topology of E × E. We can write

y =

∞∑
m=1

ym sin(mt), X̃ =

∞∑
m=1

X̃m cos(mt),

16



and compute

∣∣∣∣∫ π

0

y′(t) X̃(t) dt

∣∣∣∣ =
π

2

∣∣∣∣∣
∞∑
m=1

mym X̃m

∣∣∣∣∣ =
π

2

∣∣∣∣∣
∞∑
m=1

mµ ymm
νX̃m

∣∣∣∣∣
≤ π

2
‖y‖Y ν ‖X̃‖Xµ .

Similar inequalities hold for the other terms in the definition of B. For example
we compute, writing

ũ =

∞∑
m=1

ũm cos(mt), Ũ =

∞∑
m=1

Ũm cos(mt),

∣∣∣∣∫ π

0

(
u+ ũ(t)

) (
U + Ũ(t)

)
dt

∣∣∣∣ ≤ π ∣∣uU ∣∣+
π

2

∣∣∣∣∣
∞∑
m=1

ũm Ũm

∣∣∣∣∣
≤ π

∣∣uU ∣∣+
π

2

∣∣∣∣∣
∞∑
m=1

mµũmm
µŨm

∣∣∣∣∣ ≤ π ∣∣uU ∣∣+
π

2
‖ũ‖Xµ ‖Ũ‖Xµ .

Therefore we have∣∣∣B((x̃, y, u, ũ, v), (X̃, Y, U, Ũ , V )
)∣∣∣ ≤ 4π‖(x̃, y, u, ũ, v)‖E ‖(X̃, Y, U, Ũ , V )‖E .

Since D is a dense subspace of E (see Propositions 16 and 17) we can extend
B to a continuous bilinear symmetric form B : E × E → R.

Now, we can introduce the bounded selfadjoint operator L : E → E gener-
ated by B: we define L such that, for every z, Z ∈ E,

B(z, Z) = 〈Lz , Z〉 .

Lemma 23. The operator L is invertible with continuous inverse.

Proof. At first notice that we can decompose B as follows

B(z, Z) = B1
(
(x̃, y), (X̃, Y )

)
+ B2

(
(u, ũ, v), (U, Ũ , V )

)
,

where
B1
(
(x̃, y), (X̃, Y )

)
=

∫ π

0

[
y′(t)X̃(t)− x̃′(t)Y (t)

]
dt ,

and

B2
(
(u, ũ, v), (U, Ũ , V )

)
=

∫ π

0

[
v′(t)Ũ(t)− ũ′(t)V (t)

+ v(t)V (t)−
(
u+ ũ(t)

)(
U + Ũ(t)

)]
dt .

Consequently we will have

L(x̃, y, u, ũ, y) =
(
L1(x̃, y), L2(u, ũ, y)

)
,
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where
B1
(
(x̃, y), (X̃, Y )

)
= 〈L1(x̃, y) , (X̃, Y )〉 ,

and
B2
(
(u, ũ, v), (U, Ũ , V )

)
= 〈L2(u, ũ, v) , (U, Ũ , V )〉 .

Arguing as in [11, Proposition 2.14] we can prove that

‖L1(x̃, y)‖Xµ×Yν =
π

2
‖(x̃, y)‖Xµ×Yν . (34)

Now, we are going to prove that there are two constants c1, c2 > 0 such that

c1‖(u, ũ, v)‖R×Xµ×Yν ≤ ‖L2(u, ũ, v)‖R×Xµ×Yν ≤ c2‖(u, ũ, v)‖R×Xµ×Yν , (35)

for every (u, ũ, v) ∈ R×Xµ × Yν . To this aim, let (p, p̃, q) ∈ R × Xµ × Yν be
such that

〈L2(u, ũ, v), (U, Ũ , V )〉R×Xµ×Yν
= B2

(
(u, ũ, v), (U, Ũ , V )

)
= 〈(p, p̃, q), (U, Ũ , V )〉R×Xµ×Yν , (36)

for every (U, Ũ , V ) ∈ R×Xµ × Yν . Setting

p̃ ∼
∞∑
m=1

pm cos(mt) , q ∼
∞∑
m=1

qm sin(mt) ,

ũ ∼
∞∑
m=1

um cos(mt) , v ∼
∞∑
m=1

vm sin(mt) ,

and choosing in (36) at first V = 0, and next U + Ũ = 0 we get the identities
p = −πu ,
pmm

2µ = π
2 (−um +mvm) ,

qmm
2ν = π

2 (mum + vm) .

(37)

In particular

pmm
µ =

π

2
(−umm−µ +mνvm) , qmm

ν =
π

2
(umm

µ + vmm
−ν) ,

so that, using the Young inequality,

p2mm
2µ + q2mm

2ν =
π2

4

[
u2mm

2µ(1 +m−4µ) + v2mm
2ν(1 +m−4ν)

− 2(umm
µ)(vmm

ν)(m−2µ −m−2ν)
]

(38)

≤ π2
[
u2mm

2µ + v2mm
2ν
]
.

Hence, from the first identity in (37) we get

‖L2(u, ũ, v)‖2R×Xµ×Yν = p2 + ‖p̃‖2Xµ + ‖q‖2Yν

= p2 +

∞∑
m=1

(p2mm
2µ + q2mm

2ν)

≤ π2

(
u2 +

∞∑
m=1

(u2mm
2µ + v2mm

2ν)

)
≤ π2‖(u, ũ, v)‖2R×Xµ×Yν ,
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so that we can choose c2 = π in (35).

We now provide the value c1. At first notice that (38) in the case m = 1
reads as

p21 + q21 =
π2

4
· 2 (u21 + v21) . (39)

For m ≥ 2, since (m−2µ − m−2ν) ≤ m−2µ ≤ ( 1
2 )2µ, from (38) we get, using

again the Young inequality,

p2mm
2µ + q2mm

2ν ≥ π2

4

[
u2mm

2µ + v2mm
2ν − 2|ummµvmm

ν |( 1
2 )2µ

]
≥ π2

4

(
1− ( 1

2 )2µ
) [
u2mm

2µ + v2mm
2ν
]
.

Finally we get, from the first estimate in (37) and (39),

‖L2(u, ũ, v)‖2R×Xµ×Yν = p2 + ‖p̃‖2Xµ + ‖q‖2Yν

≥ π2

4

(
1− ( 1

2 )2µ
)(

u2 +

∞∑
m=1

(u2mm
2µ + v2mm

2ν)

)
≥ π2

4

(
1− ( 1

2 )2µ
)
‖(u, ũ, v)‖2R×Xµ×Yν ,

providing the constant c1 = π
2

√
1− ( 1

2 )2µ. Hence, (35) holds.

Summing up, from (34) and (35), since c1 ≤ π
2 ≤ c2, we deduce that

c1‖z‖E ≤ ‖L(z)‖E ≤ c2‖z‖E ,

in particular L is continuous and kerL = {0}. A classical reasoning (cf. [11,
Proposition 2.14]) shows that the image of L is closed and, since L is selfadjoint,
we conclude that it is bijective and admits a continuous inverse L−1 : E →
E.

Proposition 24. If
(
(x̃0 , y0 , u0 , ũ0, v0) , x0

)
is a critical point of ϕ, then

(x0 + x̃0 , y0 , u0 + ũ0, v0) is a solution of problem (17)-(4) .

Proof. Let
(
z0 , x0

)
=
(
(x̃0 , y0 , u0 , ũ0, v0) , x0

)
∈ E×R be a critical point of ϕ.

Then, for any
(
z , x

)
=
(
(x̃ , y , u , ũ, v) , x

)
∈ E × R, we have

0 = dϕ(z0, x0)(z, x) = B
(
z0, z

)
+ dψ(z0, x0)(z, x). (40)

Let us consider u ∈ C1([0, π]) and write u = ũ + u, with u = 1
π

∫ π
0
u(t) dt.

Choosing
(
z , x

)
=
(
(0 , 0 , u , ũ, 0) , 0

)
in (40), we obtain

0 =

∫ π

0

(
− ũ′ v0− (u+ ũ) (u0 + ũ0)+∂uK̃ε(t, x0 + x̃0, y0, u0 + ũ0, v0) (u+ ũ)

)
dt,

that is, as u′ = ũ′,

−
∫ π

0

u′ v0 dt =

∫ π

0

(
(u0 + ũ0)− ∂uK̃ε(t, x0 + x̃0, y0, u0 + ũ0, v0)

)
u dt.
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Therefore, in the sense of distributions, we have

v′0 = (u0 + ũ0)− ∂uK̃ε(t, x0 + x̃0, y0, u0 + ũ0, v0),

which is the fourth equation in (18). In particular, v0 ∈W 1,2(0, π) and therefore
it is continuous. With a similar reasoning, choosing, respectively,

(
z , x

)
=(

(0 , y , 0 , 0 , 0) , 0
)
,
(
z , x

)
=
(
(x̃ , 0 , 0 , 0 , 0) , 0

)
and

(
z , x

)
=
(
(0 , 0 , 0 , 0 , v) , 0

)
in formula (40), we see that the functions x0 + x̃0, y0 and u0 + ũ0 are continuous
and, in the sense of distributions, satisfy the other three equations in (18).
From the equations in (18), we also deduce that (x0 + x̃0 , y0 , u0 + ũ0, v0) ∈
C1([0, π])4, so that the equations are satisfied in the classical sense. Therefore
(x0 + x̃0 , y0 , u0 + ũ0, v0) is a solution of problem (17). Since y0, v0 ∈ Yν , the
boundary conditions (4) are also satisfied and the conclusion follows.

4 The higher dimensional case
For z = (x, y, u, v) ∈ RN , we write

x = (x1, . . . , xM ) ∈ RM , y = (y1, . . . , yM ) ∈ RM ,
u = (u1, . . . , uL) ∈ RL, v = (v1, . . . , vL) ∈ RL.

We now consider the higher dimensional system
x′ = ∇yH(t, x, y) + ε∇yP (t, x, y, u, v) ,

y′ = −∇xH(t, x, y)− ε∇xP (t, x, y, u, v) ,

u′j = fj(t, vj) + ε ∂vjP (t, x, y, u, v) , j = 1, . . . , L ,

v′j = gj(t, uj)− ε ∂ujP (t, x, y, u, v) , j = 1, . . . , L ,

(41)

with Neumann-type boundary conditions{
y(a) = 0 = y(b) ,

v(a) = 0 = v(b) .
(42)

Here H : [a, b] × R2M → R, P : [a, b] × R2M+2L → R and fj : [a, b] × R → R
are continuous functions, with continuous partial derivatives with respect to the
variables x, y, u, v, for every j = 1, . . . , L ; the functions gj : [a, b] × R → R are
continuous, and ε is a small real parameter.

We recall the definition of lower and upper solution for the system

u′j = fj(t, vj) , v′j = gj(t, uj) , j = 1, . . . , L , (43)

with Neumann-type boundary conditions

v(a) = 0 = v(b) . (44)

Definition 25. A C1-function α : [a, b] → RL is a lower solution for prob-
lem (43)-(44) if there exists a C1-function vα : [a, b]→ RL such that, for every
t ∈ [a, b] and j = 1, . . . , L,{

s < vα,j(t) ⇒ fj(t, s) < α′j(t) ,

s > vα,j(t) ⇒ fj(t, s) > α′j(t) ,
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v′α,j(t) ≥ gj(t, αj(t)) , (45)

and
vα,j(a) ≥ 0 ≥ vα,j(b) .

The lower solution is strict if the strict inequalities in (45) hold, for every t ∈
[a, b] and j = 1, . . . , L.

Definition 26. A C1-function β : [a, b] → RL is an upper solution for prob-
lem (43)-(44) if there exists a C1-function vβ : [a, b]→ RL such that, for every
t ∈ [a, b] and j = 1, . . . , L,{

s < vβ,j(t) ⇒ fj(t, s) < β′j(t) ,

s > vβ,j(t) ⇒ fj(t, s) > β′j(t) ,

v′β,j(t) ≤ gj(t, βj(t)) , (46)

and
vβ,j(a) ≤ 0 ≤ vβ,j(b) .

The upper solution is strict if the strict inequalities in (46) hold, for every
t ∈ [a, b] and j = 1, . . . , L.

In the sequel, inequalities of n-tuples will be meant component-wise. Here
is the list of our assumptions.

(A1′) The function H = H(t, x, y) is τj-periodic in the variable xj , for some
τj > 0, for every j = 1, . . . ,M .

(A2′) All solutions (x, y) of system

x′ = ∇yH(t, x, y) , y′ = −∇xH(t, x, y)

starting with y(a) = 0 are defined on [a, b] .

(A3′) The function P = P (t, x, y, u, v) is τj-periodic in the variable xj , for every
j = 1, . . . ,M .

(A4′) The function P = P (t, x, y, u, v) has a bounded gradient with respect to
z = (x, y, u, v).

(A5′) There exist a strict lower solution α and a strict upper solution β for
problem (43)-(44) such that α ≤ β .

(A6′) There exists λ > 0 such that ∂sfj(t, s) ≥ λ, for every (t, s) ∈ [a, b] × R
and j = 1, . . . , L .

(A7′) For every j = 1, . . . , L, the partial derivative ∂vjP depends only on t, u
and vj and is locally Lipschitz continuous with respect to vj .

Let us state our main theorem.

Theorem 27. Let assumptions (A1′)–(A7′) hold true. Then, there exists ε > 0
such that, when |ε| ≤ ε, problem (41)-(42) has at leastM+1 solutions (x, y, u, v)
with α ≤ u ≤ β.
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Proof. Arguing as in Lemma 8, for every ε ∈ R and j = 1, . . . , L there exist
some C1-functions αε,j : [a, b]→ R and βε,j : [a, b]→ R such that

fj(t, vα,j(t)) + ε∂vjP (t, αε(t), vα(t)) = α′ε,j(t) ,

fj(t, vβ,j(t)) + ε∂vjP (t, βε(t), vβ(t)) = β
′

ε,j(t) ,

|αε,j(t)− αj(t)| < εCπ , and |βε,j(t)− βj(t)| < εCπ ,

for every t ∈ [a, b], where ‖∇zP‖∞ ≤ C, from assumption (A4′).

Proceeding with the same strategy as in Section 3.1, we get the following
modified system associated with system (41),

x′ = ∇yH̃(t, x, y) + ε∇yP (t, x, y, u, v) ,

y′ = −∇xH̃(t, x, y)− ε∇xP (t, x, y, u, v) ,

u′j = f̃j(t, vj) + ε∂vjP (t, x, y, u, v) , j = 1, . . . , L ,

v′j = g̃ε,j(t, uj)− ε∂ujP (t, x, y, u, v) j = 1, . . . , L .

(47)

In system (47),

• for every j = 1, . . . , L, f̃j : [a, b]× RL → R is defined by

f̃j(t, vj) =


fj(t,−dj) + vj + dj , if vj ≤ −dj ,
fj(t, vj) , if |vj | ≤ dj ,
fj(t, dj) + vj − dj , if vj ≥ dj ,

where d = (d1, . . . , dj) is defined similarly as in (13).

• for every j = 1, . . . , L, g̃ε,j : [a, b]× RL → R is defined by

g̃ε,j(t, uj) =


gj(t, αε,j(t))− αε,j(t) + uj , if uj ≤ αε,j(t) ,
gj(t, uj) , if αε,j(t) ≤ uj ≤ βε,j(t) ,
gj(t, βε,j(t))− βε,j(t) + uj , if uj ≥ βε,j(t) .

• H̃ : [a, b]× R2M → R is defined by

H̃(t, x, y) = ζ(|y|)H(t, x, y) ,

where ζ is given in (16).

System (47) can also be written as
x′ = ∇yK̃ε(t, x, y, u, v) ,

y′ = −∇xK̃ε(t, x, y, u, v) ,

u′j = vj + ∂vj K̃ε(t, x, y, u, v) , j = 1, . . . , L ,

v′j = uj − ∂uj K̃ε(t, x, y, u, v) , j = 1, . . . , L ,

(48)

where

K̃ε(t, x, y, u, v) = H̃(t, x, y) + εP (t, x, y, u, v) +

L∑
j=1

(
Fj(t, vj)−Gε,j(t, uj)

)
,

with Fj(t, vj) =

vj∫
0

(
f̃j(t, s)− s

)
ds , Gε,j(t, uj) =

∫ uj

0

(
g̃ε,j(t, σ)− σ

)
dσ .
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Arguing as in Lemma 11, we can verify that αε and βε are indeed lower and
upper solutions for the modified problem.

We will consider functions x and y belonging to the spaces

XM
µ = Xµ × · · · ×Xµ, YMν = Yν × · · · × Yν .

Proposition 16 and Proposition 17 which are taken from [11] hold here also.

The existence of M + 1 solutions of problem (41) with Neumann boundary
conditions (42) will be given through the application of the following theorem.

Theorem 28 (Szulkin). If ϕ : E × TM → R is as in (25), where dψ(E × TM )
is relatively compact and L : E → E is a bounded selfadjoint invertible operator,
then there exist at least M + 1 critical points of ϕ.

In the above theorem, TM denotes the torus

TM = (R/τ1Z)× · · · × (R/τMZ) .

We will apply it with L defined with the same strategy adopted in Section 3.4,
the functionals ϕ and ψ defined by (25) and (26), respectively. All the hypothe-
ses of Szulkin’s theorem are verified, providing the existence of M + 1 solutions
of the modified problem.

The lemmas stated in Section 3.1 are also true for the higher dimensional
situation. Specifically, Proposition 15 in the higher dimensional setting assures
that all the M + 1 distinct solutions of (47)-(42) are also solutions of prob-
lem (41)-(42). This completes the proof.

5 A further result in higher dimension
Finally we want to deal with a system of a different type, i.e.,

x′ = ∇yH(t, x, y) + ε∇yP (t, x, y, u) ,

y′ = −∇xH(t, x, y)− ε∇xP (t, x, y, u) ,

u′ = v , v′ = ∇uG(t, u)− ε∇uP (t, x, y, u) ,

(49)

with Neumann-type boundary conditions{
y(a) = 0 = y(b) ,

v(a) = 0 = v(b) .
(50)

Here H : [a, b] × R2M → R, P : [a, b] × R2M+L → R and G : [a, b] × RL → R
are continuous functions, with continuous partial derivatives with respect to the
variables x, y, u. Here is our result.

Theorem 29. Let assumptions (A1′)–(A4′) hold true. Moreover, let R > 0 be
such that

|u| = R ⇒ 〈∇uG(t, u), u〉 > 0 . (51)

Then, there exists ε > 0 such that, when |ε| ≤ ε, problem (49)-(50) has at least
M + 1 solutions (x, y, u, v) with |u(t)| ≤ R, for every t ∈ [a, b].
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Proof. We modify the function H exactly as above. Moreover, we also modify
G as follows. From the Hartman’s condition (51) and the continuity of the inner
product, there exists ē > 0 and λ > 0 such that

R ≤ |u| ≤ R+ ē ⇒ 〈∇uG(t, u), u〉 ≥ λ . (52)

Without loss of generality we can assume that

R ≤ |u| ≤ R+ ē ⇒ G(t, u) ≤ 0 , for every t ∈ [a, b] . (53)

Define the function G̃ : [a, b]× RL → R by

G̃(t, u) = η(|u|)G(t, u) +
1

2
|u|2(1− η(|u|)) , (54)

where η : R→ R is a C∞-function such that

η(r) =

{
1 , if r ≤ R ,
0 , if r ≥ R+ ē ,

and
η′(r) ≤ 0, when R ≤ r ≤ R+ ē . (55)

We consider the modified system
x′ = ∇yH̃(t, x, y) + ε∇yP (t, x, y, u) ,

y′ = −∇xH̃(t, x, y)− ε∇xP (t, x, y, u) ,

u′ = v , v′ = ∇uG̃(t, u)− ε∇uP (t, x, y, u) .

(56)

We are in force to apply Szulkin’s Theorem 28, which provides us at leastM+1
solutions for problem (56)-(50).

We now need to show that the solutions of problem (56)-(50) satisfy

|u(t)| ≤ R, for every t ∈ [a, b] ,

so that they are also solutions of problem (49)-(50). In order to show this, we
argue by contradiction. Suppose there is t0 ∈ [a, b] such that

|u(t0)| = max{|u(t)| : t ∈ [a, b]} > R .

Let f(t) = |u(t)|2; we have f ′(t) = 2〈u(t), u′(t)〉, and

f ′′(t) = 2〈u′(t), u′(t)〉+ 2〈u(t), u′′(t)〉
= 2|u′(t)|2 + 2〈u(t), v′(t)〉

= 2|u′(t)|2 + 2〈u(t),∇uG̃(t, u(t))− ε∇uP (t, x(t), y(t), u(t))〉 .
(57)

Assume first that t0 ∈ ]a, b[ . Then, since f(t) has a maximum point at t = t0,
we have

f ′(t0) = 0 and f ′′(t0) ≤ 0 . (58)

On the other hand, if t0 = a, then necessarily f ′(a) = 2〈u(a), v(a)〉 = 0, hence
also in this case it has to be f ′′(a) ≤ 0. The same if t0 = b; it will be f ′(b) =
2〈u(b), v(b)〉 = 0, hence f ′′(b) ≤ 0. We thus conclude that (58) holds in any
case of t0 ∈ [a, b].
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Let us now analyze two distinct cases.

The first case is when |u(t0)| ≥ R + ē. From (57) and (54), if we apply the
Cauchy–Schwarz inequality and the fact that |∇uP (t, x(t), y(t), u(t))| ≤ C, we
get

f ′′(t0) ≥ 2〈u(t0), u(t0)− ε∇uP (t0, x(t0), y(t0), u(t0))〉
≥ 2|u(t0)|2 − 2|ε| |u(t0)| |∇uP (t0, x(t0), y(t0), u(t0))|

= 2|u(t0)|
[
|u(t0)| − |ε| |∇uP (t0, x(t0), y(t0), u(t0))|

]
≥ 2R

[
R− |ε|C

]
> 0 ,

when |ε| is small, a contradiction.

The other case is when R < |u(t0)| < R+ ē. Then, we compute

f ′′(t0) ≥ 2
〈
u(t0), η′(|u(t0)|) u(t0)

|u(t0)|
G(t0, u(t0))

〉
− 2
〈
u(t0), 12u(t0)|u(t0)|η′(|u(t0)|)

〉
+ 2
〈
u(t0), η(|u(t0)|)∇uG(t0, u(t0)) + u(t0)(1− η(|u(t0)|))

〉
− 2
〈
u(t0), ε∇uP (t0, x(t0), y(t0), u(t0))

〉
,

≥ 2|u(t0)|η′(|u(t0)|)G(t0, u(t0))︸ ︷︷ ︸
E1

+ 2η(|u(t0)|)〈u(t0),∇uG(t0, u(t0))〉+ 2(1− η(|u(t0)|))|u(t0)|2︸ ︷︷ ︸
E2

− |u(t0)|3η′(|u(t0)|)︸ ︷︷ ︸
E3

− 2ε|u(t0)||∇uP (t0, x(t0), y(t0), u(t0))|︸ ︷︷ ︸
E4

.

From (53) and (55), we have that E1 ≥ 0. Again from (55), it follows that
E3 ≤ 0. From (52) and |u(t0)| > R, we have

E2 ≥ 2
(
λη(|u(t0)|) + (1− η(|u(t0)|))R2

)
≥ 2 min{λ,R2} > 0 .

Finally,
E4 ≤ 2|ε|(R+ ē)|∇uP (t0, x(t0), y(t0), u(t0))| .

Combining all the above facts, for |ε| sufficiently small we get f ′′(t0) > 0, a
contradiction.

This completes the proof.

Remark 30. The assumption (51) was introduced by Hartman [16] for the
periodic problem (see also [4]). Notice that, when L = 1, it is equivalent to
asking that the constant functions α = −R and β = R are a strict lower solution
and a strict upper solution, respectively.
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6 Examples and final remarks
As an illustrative example of application of Theorem 2, we consider the problem

x′′ = h(x) + ε∂xP (t, x, u) ,

u′′ = g(u) + ε∂uP (t, x, u) ,

x′(a) = 0 = x′(b) , u′(a) = 0 = u′(b) ,

(59)

where the functions h, g : R → R are continuous and P : [0, π] × R2 → R
is continuous and has bounded continuous partial derivatives ∂xP (t, x, u) and
∂uP (t, x, u). The functions h and P are 2π-periodic in x, with

∫ 2π

0
h(s) ds = 0.

Concerning the function g we assume the existence of some constants α < β
such that g(α) < 0 < g(β).

A typical example for the function h in the first equation in (59) might be
h(x) = − sinx, in which case we have a perturbed pendulum equation. Another
choice would be the saw-tooth function h(x) = arcsin(sinx). Concerning the
second equation, possible examples for the function g are

arctanu , u3 , sinu , sinu2 , u5 sinu , . . .

For the higher dimensional cases, similar examples can be constructed.

Let us now mention some possible further developments and open problems.
1. The assumption in (A5) requiring that the lower and upper solutions are
strict could probably be avoided by an approximation procedure, but in the
limit process we may loose the multiplicity of solutions.
2. The possibility of considering systems without a small parameter ε will be
analyzed elsewhere.
3. We wonder whether assumptions (A6) and (A7), and their corresponding
higher dimensional versions, could be weakened.
4. We have treated here only the case when the lower and upper solutions are
well-ordered. It would be interesting to know if the results may be extended to
the non-well-ordered case.
5. In this paper we dealt with C1-smooth lower and upper solutions. Following
the ideas developed in [9], one might consider weaker regularity assumptions.
6. In view of the results in [10], concerning the radial solutions for an ellip-
tic problem with Neumann boundary conditions, one could try to deal with a
coupled system, where the fourth equation in (3) is replaced by

tn−1v′ = tn−1
[
g(t, u)− ε∂uP (t, x, y, u, v)

]
, t ∈ [0, R] .

7. It would be interesting to extend the results of this paper to an infinite-
dimensional setting (see [1] for the periodic problem).

References
[1] A. Boscaggin, A. Fonda and M. Garrione, An infinite-dimensional version

of the PoincarÃľ-Birkhoff theorem on the Hilbert cube, Ann. Sc. Norm.
Super. Pisa Cl. Sci. 20 (2020), 751–770.

26



[2] A. Castro, Periodic solutions of the forced pendulum equation, Differential
Equations (Proc. Eighth Fall Conf., Oklahoma State Univ., Stillwater,
1979), pp. 149–160, Academic Press, New York, 1980.

[3] C. De Coster and P. Habets, Two-Point Boundary Value Problems, Lower
and Upper Solutions, Elsevier, Amsterdam, 2006.

[4] G. Feltrin and F. Zanolin, Bound sets for a class of φ-Laplacian operators,
J. Differential Equations 297 (2021), 508–535.

[5] A.F. Filippov, Differential Equations with Discontinuous Righthand Sides,
Kluwer, Dordrecht, 1988.

[6] A. Fonda, M. Garzón and A. Sfecci, An extension of the Poincaré–Birkhoff
Theorem coupling twist with lower and upper solutions, Preprint (2022).

[7] A. Fonda and P. Gidoni, Coupling linearity and twist: an extension of the
Poincaré–Birkhoff Theorem for Hamiltonian systems, NoDEA - Nonlin.
Differential Equations Appl. 27 (2020), No. 55, 26 pp.

[8] A. Fonda, G. Klun, F. Obersnel, and A. Sfecci, On the Dirichlet problem
associated with bounded perturbations of positively-(p, q)-homogeneous
Hamiltonian systems, J. Fixed Point Theory Appl. 24 (2022), Paper No.
66, 32 pp.

[9] A. Fonda, G. Klun and A. Sfecci, Well-ordered and non-well-ordered lower
and upper solutions for periodic planar systems, Adv. Nonlinear Stud. 21
(2021), 397–419.

[10] A. Fonda, N.G. Mamo, F. Obersnel, and A. Sfecci, A lower/upper solu-
tions result for generalised radial p-Laplacian boundary value problems,
Mediterr. J. Math., to appear.

[11] A. Fonda and R. Ortega, A two-point boundary value problem associated
with Hamiltonian systems on a cylinder, Rend. Circ. Mat. Palermo, online
first, DOI: 10.1007/s12215-023-00872-w.

[12] A. Fonda, A. Sfecci and R. Toader, Two-point boundary value problems
for planar systems: a lower and upper solutions approach, J. Differential
Equations 308 (2022), 507–544.

[13] A. Fonda and R. Toader, A dynamical approach to lower and upper so-
lutions for planar systems, Discrete Contin. Dynam. Systems 41 (2021),
3683–3708.

[14] A. Fonda and W. Ullah, Periodic solutions of Hamiltonian systems cou-
pling twist with generalized lower/upper solutions, Preprint (2022).

[15] A. Fonda and A.J. Ureña, A higher dimensional Poincaré–Birkhoff theo-
rem for Hamiltonian flows, Ann. Inst. H. Poincaré Anal. Non Linéaire 34
(2017), 679–698.

[16] P. Hartman, On boundary value problems for systems of ordinary, nonlin-
ear, second order differential equations, Trans. Am. Math. Soc. 96 (1960),
493–509.

27



[17] M. Nagumo, Über die Differentialgleichung y′′ = f(t, y, y′), Proc. Phys-
Math. Soc. Japan 19 (1937), 861–866.

[18] E. Picard, Sur l’application des méthodes d’approximations successives
à l’étude de certaines équations différentielles ordinaires, J. Math. Pures
Appl. 9 (1893), 217–271.

[19] P.H. Rabinowitz, On a class of functionals invariant under a Zn action,
Trans. Amer. Math. Soc. 310 (1988), 303–311.

[20] G. Scorza Dragoni, Il problema dei valori ai limiti studiato in grande per
le equazioni differenziali del secondo ordine, Math. Ann. 105 (1931), 133–
143.

[21] A. Szulkin, A relative category and applications to critical point theory
for strongly indefinite functionals, Nonlinear Anal. 15 (1990), 725–739.

Authors’ addresses:

A. Fonda, F. Obersnel, N.G. Mamo and A. Sfecci
Dipartimento di Matematica e Geoscienze
Università degli Studi di Trieste
P.le Europa 1, 34127 Trieste, Italy
e-mail: a.fonda@units.it, natnaelgezahegn.mamo@phd.units.it,

obersnel@units.it, asfecci@units.it

Mathematics Subject Classification: 34B15.

Keywords: Hamiltonian systems; Neumann boundary conditions; lower and
upper solutions; Hartman condition.

28


