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Abstract

We provide a new version of the Poincaré–Birkhoff theorem for possibly multivalued suc-
cessor maps associated with planar non-autonomous Hamiltonian systems. As an application,
we prove the existence of periodic and subharmonic solutions of the scalar second order equa-
tion ẍ+ λg(t, x) = 0, for λ > 0 sufficiently small, with g(t, x) having a superlinear growth at
infinity, without requiring the existence of an equilibrium point.
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1 Introduction

In the search for periodic solutions to a differential system of ordinary differential equations, a
classical approach is to look for the existence of fixed points of the associated Poincaré map. It
is worth noting, however, that there is a less known alternative strategy for planar systems, i.e.,
searching for fixed points of the so-called successor map. This map already appears in [1], even if
the main idea may be traced back to Poincaré himself [19].

Consider, for instance, the planar system{
ẋ = f(t, x, y),

−ẏ = g(t, x, y),
(1.1)

where f, g : R×R2 → R are continuous functions. Assuming for the moment the uniqueness of the
solution for initial value problems, we recall that, given T > 0, the Poincaré map PT : R2 → R2

associates to every z0 = (x0, y0) the point z(T ), where z = (x, y) is the solution of (1.1) such that
z(0) = z0.

In order to introduce the successor map let us first recall the definition of rotation number.
Given a solution z = (x, y) of (1.1), defined on an interval [α, β] and satisfying z(t) ̸= 0 for every
t ∈ [α, β], we can introduce its modified polar coordinates

x =
√
2ρ sin θ, y =

√
2ρ cos θ, (1.2)

and set
Rot(z, [α, β]) = θ(β)− θ(α).
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Let us now assume that every solution z = (x, y) of (1.1), with initial conditions

x(t0) = 0, y(t0) = y0 > 0,

is unique and has the following properties: there exists t1 > t0 such that z is defined on the
whole interval [t0, t1] with z(t) ̸= 0 for every t ∈ [t0, t1], z(t1) = (0, y1) with y1 > 0, and
Rot(z, [t0, t1]) = 1. The successor map is defined as

S : R× ]0,+∞[ → R× ]0,+∞[, S(t0, y0) = (t1, y1).

Hence, denoting the components of S by (T ,Y), we have

T (t0, y0) = t1, Y(t0, y0) = y1. (1.3)

The successor map can thus be seen as a kind of first return map on the half-plane {(t, x, y) : t ∈
R, x = 0, y > 0}. Notice that the Poincaré map could also be seen as a first return map in the
case of T -periodic systems after identifying the sections {(t, x, y) : t = 0} and {(t, x, y) : t = T}.

It could happen, in some situations, that the successor map is well-defined, while the Poincaré
map is not. A typical example arises when dealing with scalar second order differential equations
with a nonlinearity having a superlinear growth, when the global existence of the solutions is not
guaranteed. Variants of the above described situation have been considered, e.g., in equations
with singularities or when dealing with bouncing solutions. We refer to [13, 14, 16, 17, 18, 20, 21],
where different applications of the successor map can be found.

In this paper we are mainly interested in Hamiltonian systems. Assuming the Hamiltonian
function to be of class C1 in all the three variables, we show how to deal with a possible multivalued
successor map. This situation arises when the uniqueness property of the solutions of initial value
problems associated with system (1.1) is not assumed.

In Section 2 we show that, thanks to a suitable symplectic change of variables, the successor
map can be interpreted as the Poincaré map of an equivalent Hamiltonian system. In this way,
in Section 3, we are able to apply a variant of the Poincaré–Birkhoff theorem [8] where the
above mentioned uniqueness property is not required. Whether the regularity hypothesis on
the Hamiltonian function could be weakened by assuming only the C1-smoothness in the (x, y)
variables remains an open question; in such a case, a different approach would probably be needed.
Section 4 is devoted to presenting a set of minimal hypotheses ensuring that the successor map
associated with a general planar system is well defined.

In Section 5 we provide an application of our version of the Poincaré–Birkhoff theorem to the
periodic problem associated with the scalar second order equation

ẍ+ λg(t, x) = 0,

where g is continuous, T -periodic in t, and satisfies the superlinear growth condition

lim
x→±∞

g(t, x)

x
= +∞, uniformly in t.

We show that the equation has an arbitrarily large number of periodic solutions provided that
λ > 0 is sufficiently small.

Let us recall that the existence of an infinite number of periodic solutions for the equation
ẍ + g(t, x) = 0, with the above superlinear growth, was first provided by Jacobowitz in [13] and
Hartman in [12], assuming that x = 0 is an equilibrium (see also [6] for a higher dimensional
generalization). In our Theorem 5.1 we do not need such an assumption. We also refer, e.g., to
[2, 3, 4, 5, 9, 10, 11, 15] for some related results.
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2 The successor map for Hamiltonian systems

Let us consider the planar Hamiltonian system

Jz′ = ∇zH(t, z), where J =

(
0 −1
1 0

)
,

ruled by a Hamiltonian function H : R× R2 → R of class C1, or equivalently, writing z = (x, y),{
x′ = ∂yH(t, x, y),

−y′ = ∂xH(t, x, y).
(2.1)

In addition, we assume the following two conditions

(H1) ⟨∇zH(t, z), z⟩ > 0, for every (t, z) ∈ R× (R2 \ {0}),

(H2) lim
|z|→+∞

H(t, z) = +∞, uniformly in t ∈ R.

From (H1) we deduce that
∇zH(t, 0) = 0, for every t ∈ R,

i.e., the origin is an equilibrium.

Remark 2.1. The hypothesis (H1) may appear too restrictive for the applications, where usually
the inequality holds only for large values of |z|. However, this difficulty can be often overcome in
practice. For instance, when looking for T -periodic solutions in such a situation, one could try to
modify the system in a neighborhood of the origin so to recover (H1). Then, once these T -periodic
solutions are found, it will be necessary to prove that they lie in the region where the system has
not been modified, so that they indeed solve the original system. This strategy will be used, for
instance, in Section 5. �

Remark 2.2. Assumption (H1) implies that, for every unit vector v ∈ R2 and every t ∈ R, the
function λ 7→ H(t, λν) is strictly increasing in λ ∈ [0,+∞[. �

Without loss of generality, we can assume

H(t, 0) = 0, for every t ∈ R. (2.2)

2.1 From times to angles

The change of variables (1.2) leads to the Hamiltonian system

Jζ̇ = ∇ζH(t, ζ),

that is, writing ζ = (θ, ρ), {
θ̇ = ∂ρH(t, θ, ρ),

−ρ̇ = ∂θH(t, θ, ρ).
(2.3)

It is ruled by the Hamiltonian H : U → R, with U = R× R× ]0,+∞[, defined as

H(t, θ, ρ) = H
(
t,
√
2ρ sin θ,

√
2ρ cos θ

)
. (2.4)

Notice that H is 2π-periodic in the variable θ. A simple computation gives

θ̇ =
ẋy − xẏ

x2 + y2
=
x∂xH + y∂yH

x2 + y2
=

⟨∇zH, z⟩
|z|2

,

ρ̇ = xẋ+ yẏ = x∂yH − y∂xH = ⟨∇zH,Jz⟩.

In order to perform another change of variables, we introduce the map Ψ.
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Proposition 2.3. There is a function Ψ = Ψ(ϑ, τ, h) : U → R of class C1, 2π-periodic in the
variable ϑ, such that

Ψ(θ, t,H(t, θ, ρ)) = ρ, for every (t, θ, ρ) ∈ U , (2.5)
H(τ, ϑ,Ψ(ϑ, τ, h)) = h, for every (ϑ, τ, h) ∈ U . (2.6)

Moreover, if the Hamiltonian function H is T -periodic in the variable t, then the function Ψ is
T -periodic in the variable τ .

Proof. By Remark 2.2, we get

∂ρH(t, θ, ρ) > 0, for every (t, θ, ρ) ∈ U .

Hence, the existence of Ψ follows by an application of the implicit function theorem. Since (H1),
(H2) and (2.2) hold, the function Ψ(θ, t, ·) : R → R is a bijection for every (θ, t) ∈ R2. Hence Ψ is
defined on U . Then, for every (ϑ, τ, h) ∈ U we can find ρ > 0 such that H(τ, ϑ, ρ) = h, so that

Ψ(ϑ, τ, h) = Ψ(ϑ, τ,H(τ, ϑ, ρ)) = ρ = Ψ(ϑ+ 2π, τ,H(τ, ϑ+ 2π, ρ))

= Ψ(ϑ+ 2π, τ,H(τ, ϑ, ρ)) = Ψ(ϑ+ 2π, τ, h),

and, if H is T -periodic in t (and so also H),

Ψ(ϑ, τ, h) = Ψ(ϑ, τ,H(τ, ϑ, ρ)) = ρ = Ψ(ϑ, τ + T,H(τ + T, ϑ, ρ))

= Ψ(ϑ, τ + T,H(τ, ϑ, ρ)) = Ψ(ϑ, τ + T, h).

The previous computations provide the periodicity properties in the statement.

Let Ψ be as in Proposition 2.3. We can introduce the Hamiltonian system

Jw′ = ∇wΨ(t, w),

that is, writing w = (τ, h), {
τ ′ = ∂hΨ(ϑ, τ, h),

−h′ = ∂τΨ(ϑ, τ, h).
(2.7)

Let us consider a solution ζ = (θ, ρ) : I → R× ]0,+∞[ of system (2.3). It is well-known that

d

dt
H(t, θ(t), ρ(t)) = ∂tH(t, θ(t), ρ(t)). (2.8)

By (H1), the function θ : I → J has an inverse function τ : J → I. We define h : J → R as

h(ϑ) = H(τ(ϑ), ϑ, ρ(τ(ϑ))) = [H(·, θ(·), ρ(·)) ◦ τ ](ϑ). (2.9)

We now prove that, if (θ, ρ) is a solution of (2.3), then the couple (τ, h) solves (2.7). Indeed,
deriving (2.6) with respect to the variable h we get

∂ρH(τ, ϑ,Ψ(ϑ, τ, h)) · ∂hΨ(ϑ, τ, h) = 1.

Hence, recalling (2.3),

τ ′(ϑ) =
1

θ̇(τ(ϑ))
=

1

∂ρH(τ(ϑ), ϑ,Ψ(ϑ, τ(ϑ), h(ϑ)))
= ∂hΨ(ϑ, τ(ϑ), h(ϑ)), (2.10)
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so that the first equation in (2.7) is satisfied. Moreover, differentiating in (2.5) with respect to
the variable t, we get

∂τΨ(θ, t,H(t, θ, ρ)) + ∂hΨ(θ, t,H(t, θ, ρ)) · ∂tH(t, θ, ρ) = 0. (2.11)

Then, recalling in the order (2.9), (2.10), (2.8), and (2.11), we deduce

h′(ϑ) =

[
1

θ̇(t)
· d

dt
H(t, θ(t), ρ(t))

]
t=τ(ϑ)

= ∂hΨ(ϑ, τ(ϑ), h(ϑ)) · ∂tH(τ(ϑ), ϑ, ρ(τ(ϑ)))

= ∂hΨ(ϑ, τ(ϑ),H(τ(ϑ), ϑ, ρ(τ(ϑ)))) · ∂tH(τ(ϑ), ϑ, ρ(τ(ϑ)))

= −∂τΨ(ϑ, τ(ϑ),H(τ(ϑ), ϑ, ρ(τ(ϑ)))) = −∂τΨ(ϑ, τ(ϑ), h(ϑ)),

thus proving the validity of the second equation in (2.7).
Analogously one can prove that, if w = (τ, h) is a solution of system (2.7), with h > 0, then

ζ = (θ, ρ) is a solution of (2.3), taking θ as the inverse of τ and ρ(t) = Ψ(θ(t), t, h(θ(t))).

2.2 Successor map vs. Poincaré map

We now assume that the successor map S for the Hamiltonian system (2.1) is well-defined and
show that it corresponds to the Poincaré map for system (2.7). To this aim, in order to avoid
cumbersome notation, we provisionally assume that for every (t0, x0, y0) ∈ R × R2 the Cauchy
problem {

ẋ = ∂yH(t, x, y), −ẏ = ∂xH(t, x, y),

x(t0) = x0, y(t0) = y0,

has a unique solution, denoted by

z(t; t0, x0, y0) =
(
x(t; t0, x0, y0), y(t; t0, x0, y0)

)
.

Let us also consider the Cauchy problem associated with system (2.7), i.e.,{
τ ′ = ∂hΨ(ϑ, τ, h), −h′ = ∂τΨ(ϑ, τ, h),

τ(ϑ0) = τ0, h(ϑ0) = h0,

and denote its solution by

w(ϑ;ϑ0, τ0, h0) =
(
h(ϑ;ϑ0, τ0, h0), τ(ϑ;ϑ0, τ0, h0)

)
.

The Poincaré map P2π : Ω → R2 is defined as

P2π(τ0, h0) = w(2π; 0, τ0, h0),

where Ω is the subset of R2 containing those points (τ0, h0) such that the solution w( · ; 0, τ0, h0)
is defined at least in the interval [0, 2π].

By the above arguments, we can verify that the trajectory w(ϑ; 0, τ0, h0) of system (2.7)
corresponds to the trajectory z(t; t0, 0, y0) of system (2.1) with

t0 = τ0 and y0 = Ψ(0, τ0, h0).

In particular, since we are assuming that the successor map S is well-defined, we have Ω = R2

and, recalling the notation in (1.3),

P2π(t0, h0) =
(
T
(
t0,Ψ(0, t0, h0)

)
,H

(
t1, 2π,Y(t0,Ψ(0, t0, h0))

))
.

Summing up, we have the following.
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Proposition 2.4. The equivalence

(t1, y1) = S(t0, y0) ⇐⇒ (t1, h1) = P2π(t0, h0)

holds, with h0 = H(t0, 0, y0) and h1 = H(t1, 0, y1).

Remark 2.5. The hypothesis (H2) is rather natural in the applications we have in mind. Notice
that it has been used only to simplify the choice of the domain of the function Ψ. �

To conclude this section, we emphasize that all the above discussion may be rephrased also in
the case when there is no uniqueness for initial value problems. Clearly enough, the notation will
be accordingly interpreted.

3 A Poincaré–Birkhoff theorem for multivalued successor maps

We now present a version of the Poincaré–Birkhoff theorem in the context of the successor map
S. Notice that we do not require uniqueness for the solutions of initial value problems.

Theorem 3.1 (Poincaré–Birkhoff theorem). Let H : R × R2 → R be a function of class C1, T -
periodic in t, satisfying (H1) and (H2). Assume that the successor map S = (T ,Y) is well-defined
on R × ]0,+∞[ and that there are two positive constants α < β and two positive integers m and
k such that

T m(t0, α)− t0 > kT, T m(t0, β)− t0 < kT, (3.1)

for every t0 ∈ [0, T ]. Then, there exist two distinct kT -periodic solutions z(i) = (x(i), y(i)) of (2.1),
with i = 1, 2, such that

Rot(z(i)(t), [0, kT ]) = m, (3.2)

and {
y(i)(t) : t ∈ [0, T [

}
∩ ]α, β[ ̸= ∅. (3.3)

Remark 3.2. In the statement of Theorem 3.1 we allow the successor map S = (T ,Y) to be
multivalued, and the iterates Sm = (T m,Ym) as well. In this case, condition (3.1) says that,
for every (ξ, υ) ∈ Sm(t0, α), one has ξ − t0 > kT , and for every (ξ, υ) ∈ Sm(t0, β), one has
ξ − t0 < kT . In the following, we will implicitly agree with such an interpretation, in order to
simplify the notation. �

Remark 3.3. The two solutions we find in Theorem 3.1 are indeed distinct since we will show
that z(1)(·) ̸= z(2)(·+ jT ) for every j ∈ Z. �

Proof of Theorem 3.1. We define

a(t) = H(t, 0, α) and b(t) = H(t, 0, β). (3.4)

From Remark 2.2 we get a(t) < b(t) for every t ∈ R.
Performing the change of variables described in Section 2.1 which leads to the Hamiltonian

system (2.7), we see that every solution (τ, h) of (2.7) with initial condition h(0) ∈ [a(τ(0)), b(τ(0))]
is defined in the interval [0, 2πm] and satisfies{

τ(2πm)− τ(0) > kT, if h(0) = a(τ(0)),
τ(2πm)− τ(0) < kT, if h(0) = b(τ(0)).
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By the periodicity properties of Ψ stated in Proposition 2.3, we can apply the Poincaré–Birkhoff
theorem in the version stated in [8, Theorem 6.2], obtaining two solutions w(i) = (τ (i), h(i)) of
(2.7) such that τ (i)(0) ∈ [0, T [, h(i)(0) ∈ ]a(τ (i)(0)), b(τ (i)(0))[ and

τ (i)(ϑ+ 2πm) = τ (i)(ϑ) + kT, h(i)(ϑ+ 2πm) = h(i)(ϑ), for every ϑ ∈ R.

Moreover,

τ (1)(·+ 2πℓ1) + j1T ̸= τ (2)(·+ 2πℓ2) + j2T, for every j1, j2, ℓ1, ℓ2 ∈ Z. (3.5)

This follows from the proof of the Poincaré–Birkhoff theorem in [8], as explained in [7, p. 2352].
Using Proposition 2.3 and the change of variables (1.2), we can recover two solutions z(i) =

(x(i), y(i)) of system (2.1) which are kT -periodic and satisfy (3.2). Writing z(i) in the generalized
polar coordinates (θ(i), ρ(i)), as in (1.2), we have that θ(i)(t) is the inverse of τ (i)(ϑ). So, passing
to the inverse functions, (3.5) reads as

θ(1)(· − j1T )− 2πℓ1 ̸= θ(2)(· − j2T )− 2πℓ2, for every j1, j2, ℓ1, ℓ2 ∈ Z.

We have thus proved that z(1)(·) ̸= z(2)(·+ jT ), for every j ∈ Z.
Recalling (2.4) and (3.4), we get

H(τ (i)(0), 0, 12α
2) ≤ h(i)(0) ≤ H(τ (i)(0), 0, 12β

2),

and so, by Proposition 2.3, we have

1
2α

2 ≤ Ψ(0, τ (i)(0), h(i)(0)) ≤ 1
2β

2.

Since
1
2 [y

(i)(τ (i)(0))]2 = ρ(τ (i)(0)) = Ψ(0, τ (i)(0), h(i)(0)),

we get (3.3). The proof is thus completed.

4 Sufficient conditions for the existence of the successor map

With the aim of well-defining the successor map S associated with a general planar system{
ẋ = f(t, x, y),

−ẏ = g(t, x, y),
(4.1)

where f, g : R× R2 → R are continuous functions, we introduce the following hypotheses.

(A1) g(t, x, y)x+ f(t, x, y)y > 0, for every (t, x, y) ∈ R× (R2 \ {0}).

Notice that (A1) corresponds to (H1) in the case of Hamiltonian systems. In particular, the origin
is an equilibrium. Recalling the modified polar coordinates introduced in (1.2), assumption (A1)
implies that, for any solution of system (4.1),

θ̇(t) =
g(t, x(t), y(t))x(t) + f(t, x(t), y(t))y(t)

x2(t) + y2(t)
> 0,

as long as the solution exists and remains away from the origin.
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(A2) There exist R > 0 and c1 > 0 such that

g(t, x, y)x+ f(t, x, y)y ≥ c1(x
2 + y2), (4.2)

for every (t, x, y) ∈ R× R2 with x2 + y2 ≥ R2.

We observe that hypothesis (A2) implies that the solutions of (4.1) rotate decisively when they
are far from the origin.

(A3) There exist two continuous functions ϕ, ψ : R → R such that

|f(t, x, y)| ≤ ϕ(|y|), |g(t, x, y)| ≤ ψ(|x|),

for every (t, x, y) ∈ R× R2.

Clearly, hypothesis (A3) is satisfied if f(t, x, y) does not depend on x and g(t, x, y) does not depend
on y. The next assumption describes the behaviour near the axes.

(A4) There exist δ > 0 such that, for every (t, x, y) ∈ R× R2,[
|x| ≤ δ, xy ≥ 0, y ̸= 0

]
⇒ f(t, x, y)y > 0, (4.3)[

|y| ≤ δ, xy ≤ 0, x ̸= 0
]

⇒ g(t, x, y)x > 0.

Finally, we need to control the vector field in some regions which are far from the origin.

(A5) There exist D > 0 such that, for every (t, x, y) ∈ R× R2,[
|x| ≥ D, |y| ≥ D, xy ≤ 0

]
⇒ f(t, x, y)y > 0,[

|x| ≥ D, |y| ≥ D, xy ≥ 0
]

⇒ g(t, x, y)x > 0. (4.4)

See Figure 1 for a graphical representation of the hypotheses (A4) and (A5).
Under the above assumptions, we will show that any (non-zero) solution of (4.1) performs a

complete rotation around the origin in finite time. More precisely, we have the following (cf. Fig-
ure 2).

Theorem 4.1. Let (A1)–(A5) hold true. Then, every solution (x, y) of (4.1) with initial conditions
x(t0) = 0, y(t0) = y0 > 0 is defined on an interval [t0, t1], and there exist t′0, t

′′
0, t

′′′
0 with

t0 < t′0 < t′′0 < t′′′0 < t1 such that

x(t) > 0, y(t) > 0, for every t ∈ ]t0, t
′
0[,

x(t′0) > 0, y(t′0) = 0,

x(t) > 0, y(t) < 0, for every t ∈ ]t′0, t
′′
0[,

x(t′′0) = 0, y(t′′0) < 0,

x(t) < 0, y(t) < 0, for every t ∈ ]t′′0, t
′′′
0 [,

x(t′′′0 ) < 0, y(t′′′0 ) = 0,

x(t) < 0, y(t) > 0 for every t ∈ ]t′′′0 , t1[,
x(t1) = 0, y(t1) > 0.
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Figure 1: Qualitative representation of hypotheses (A4) (concerning the area colored in light gray)
and (A5) (concerning the area colored in dark gray).

Proof. We focus our attention on the first quadrant [0,+∞[×[0,+∞[, as the situation is symmetric
in the other three quadrants.

Let us consider a solution (x, y) of (4.1) starting with x(t0) = 0, y(t0) = y0 > 0, and analyse
its behaviour for t > t0. It immediately moves away from the y-axis by going to the right, by
(A1) (or (4.3)). In a small positive time, (x, y) moves to a certain distance δ′ ∈ ]0, δ] (depending
on the solution) from the y-axis and cannot get closer anymore, by (4.3). In this time, it could
already reach the x-axis; in this case we are done.

If (x, y) continues its journey in the first quadrant without reaching the x-axis, it could explode
in finite time. However, this cannot happen while x remains bounded, since ẏ would be bounded
as well, by (A3). Moreover, it cannot happen while y remains bounded, since ẋ would be bounded,
again by (A3). Hence, it has to be that both x(t) → +∞ and y(t) → +∞ as t → +∞. Then,
there exists a t̄ > t0 such that x(t) ≥ D and y(t) ≥ D, for every t ≥ t̄. By (4.4), y is strictly
decreasing, hence y(t) ≤ y(t̄) for every t ≥ t̄, so y(t) remains bounded, which is impossible, by
the above considerations.

At last, we show that the solution cannot remain in the first quadrant for all t ∈ ]t0,+∞[. By
(A1), using compactness and continuity, there exists a constant c′1 ∈ ]0, c1] such that

g(t, x, y)x+ f(t, x, y)y ≥ c′1(x
2 + y2), for every (t, x, y) ∈ R× R2

with xy ≥ 0, x ≥ δ′ and x2 + y2 ≤ R2,

where c1 and R are the constants appearing in (A2). Hence, using also (A2),

g(t, x, y)x+ f(t, x, y)y ≥ c′1(x
2 + y2), for every (t, x, y) ∈ R× R2

with xy ≥ 0, x ≥ δ′.

Recalling that x(t) ≥ δ′ from some t onwards, this means that the solution must turn decisively
and therefore reach the x-axis in finite time. The proof is complete.
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x
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t = t0

t = t′0

t = t′′0

t = t′′′0

t = t1

Figure 2: Qualitative representation of the statement of Theorem 4.1.

Remark 4.2. We notice that condition (A2) can be rewritten using the modified polar coordinates
(1.2) as θ̇(t) ≥ c1 > 0. Moreover, we stress that this condition can be improved by assuming the
existence of a continuous function η : [0, 2π] → ]0,+∞[ such that θ̇(t) ≥ η(θ(t)) and∫ 2π

0

ds

η(s)
< +∞.

Indeed, assuming that the solution remains in the first quadrant for every t > t0, one has that

t− t0 ≤
∫ t

t0

θ̇(t)

η(θ(t))
dt =

∫ θ(t)

θ(t0)

ds

η(s)
≤

∫ 2π

0

ds

η(s)
,

leading to a contradiction. �

Remark 4.3. In the particular case of the scalar second order equation

ẍ+ g(t, x) = 0,

we can write it as system (4.1) with f(t, x, y) = y and g(t, x, y) = g(t, x). In this case condition
(A3) is clearly satisfied. Moreover, if we assume

g(t, x)x > 0, for every x ∈ R \ {0},

then also (A1), (A4) and (A5) hold. Furthermore, if

lim inf
x→±∞

g(t, x)

x
≥ c > 0, uniformly in t,

then also condition (A2) is fulfilled. �

5 A superlinear differential equation

In this section we focus our attention on the scalar second order differential equation

ẍ+ λg(t, x) = 0, (5.1)
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where λ > 0 is a parameter, the function g : R × R → R is continuous and T -periodic in the
variable t. We assume that

lim
x→±∞

g(t, x)

x
= +∞, uniformly in t. (5.2)

Let us state our multiplicity result.

Theorem 5.1. For any pair (m, k) of positive integers there exists λm,k > 0 such that, for every
λ ∈ ]0, λm,k], equation (5.1) has a kT -periodic solution having exactly 2m simple zeros in the
interval [0, kT [. Moreover, if ∂tg : R×R → R exists and is continuous, there are at least two such
solutions.

As an immediate consequence of the previous statement, we have the following.

Corollary 5.2. For any integer N , there exists λ̂N > 0 such that, for every λ ∈ ]0, λ̂N ], equation
(5.1) has at least N periodic solutions.

Proof of Theorem 5.1. We will first provide the proof when ∂tg exists and is continuous. Notice
that the differential equation (5.1) can be written as the planar system{

x′ =
√
λ y,

−y′ =
√
λ g(t, x).

(5.3)

This is a Hamiltonian system with Hamiltonian function

Hλ(t, x, y) =
√
λ
(
1
2y

2 +G(t, x)
)
,

where G(t, x) is such that ∂
∂xG(t, x) = g(t, x).

From Remark 4.3 we deduce that the successor map associated with (5.1) is well defined.
Recalling the modified polar coordinates in (1.2), the angular velocity is given by

θ̇(t) =
√
λ
y2(t) + x(t)g(t, x(t))

x2(t) + y2(t)
. (5.4)

Exploiting (5.2), we deduce that there exists r ≥ 1 such that

xg(t, x) ≥ x2, for every (t, x) ∈ R2 with |x| ≥ r. (5.5)

Then, since xg(t, x) is bounded when |x| ≤ r, we have the following.

Proposition 5.3. There exist c ∈ ]0, 1[ and r0 ≥ r such that

y2 + xg(t, x)

x2 + y2
≥ c, for every (t, x, y) ∈ R× R2 with x2 + y2 ≥ r20.

The remaining part of the proof is divided into two steps. In Step 1 we construct some guiding
curves in the phase plane, independently of λ, which will control the behaviour of the solutions
while rotating around the origin. In Step 2 we suitably modify the original system so to introduce
an equilibrium at the origin. Then, the Poincaré–Birkhoff theorem for the successor map applies
to this modified system, providing the multiplicity of periodic solutions. The proof is finally
completed by checking that these periodic solutions are indeed solutions of the original system.
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Step 1. The construction of some guiding curves. We define the continuous functions
g1, g2 : R → R as

g1(x) := min
t∈[0,T ]

g(t, x)− 1 < g(t, x) < g2(x) := max
t∈[0,T ]

g(t, x) + 1, (5.6)

and their primitives Gi(x) :=
∫ x
0 gi(s) ds, i = 1, 2. We set

Hi(x, y) =
1
2y

2 +Gi(x),

and note that
G1(x) > G2(x), for every x ∈ ]−∞, 0[,
G1(x) < G2(x), for every x ∈ ]0,+∞[.

(5.7)

By construction, there exists a positive constant E0 such that, for every E ≥ E0 and i = 1, 2, the
sublevel sets {Hi ≤ E} are star-shaped with respect to the origin and

{(x, y) : Hi(x, y) = E} ⊆ {(x, y) : x2 + y2 > r20 + 1}. (5.8)

Moreover, the set {Hi = E} intersects every semi-axis at a unique point.

Step 1a. Entering solution guiding curve. Let us construct a guiding curve pγ in the phase
plane having the shape of a spiral which performs m + 1 counterclockwise rotations around the
origin passing through some points pPj = (0, pyj), with

0 < py1 < · · · < pyj < pyj+1 < · · · < pym+2.

As a starting point we can consider any

pP1 = (0, py1), with py1 >
√

2E0, (5.9)

so that H2(0, py1) > E0. Once the value pyj is chosen, we can define the j-th rotation of the spiral
by gluing three different subsets pAj,1, pAj,2, and pAj,3 (see Figure 3a). The first part is

pAj,1 =
{
H2 =

1
2py2j

}
∩
{
x ≤ 0, y ≥ 0

}
,

and links the point pPj to the point pQj = (pxj , 0), with pxj < 0 satisfying G2(pxj) =
1
2py2j . The second

part is
pAj,2 = {H1 = H1(0, pxj)} ∩ {y ≤ 0},

and links the point pQj to the point pQ′
j = (px′j , 0), with px′j > 0 satisfying G1(px

′
j) = G1(pxj). Finally,

pAj,3 = {H2 = H2(px
′
j , 0)} ∩ {x ≥ 0, y ≥ 0}

links the point pQ′
j to the point pPj+1 = (0, pyj+1), with pyj+1 > 0 satisfying 1

2py2j+1 = G2(px
′
j).

By construction, recalling (5.7), we have

1
2py2j = G2(pxj) < G1(pxj) = G1(px

′
j) < G2(px

′
j) =

1
2py2j+1,

hence pyj+1 > pyj . Introducing the segment

pLj = {(0, y) : pyj ≤ y < pyj+1},

the set pCj = pAj,1 ∪ pAj,2 ∪ pAj,3 ∪ pLj is a Jordan curve separating an interior open bounded region
pIj and an exterior open unbounded region pEj . Note that, since we have assumed (5.9), by (5.8)
we have

{x2 + y2 ≤ r20 + 1} ⊆ pI1 ⊆ pI2 ⊆ . . . ⊆ pIm+1. (5.10)
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pQj
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pPj+1
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pAj,2

pAj,3
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b)

x

y

s1

τ1 = σ1

τ0 = σ2
s0

pI1

pE2

Figure 3: a) The set pCj delimiting the interior regions pIj and the exterior regions pEj . The arrows
suggest the direction of the vector field associated with (5.3), see Lemma 5.4. b) A sketch of
Proposition 5.5 in the case m = 1.

Lemma 5.4. Let z = (x, y) be a solution of (5.3) such that, for a certain t0, we have z(t) ∈ pEj in
a left neighborhood of t0 and z(t) ∈ pIj in a right neighborhood of t0. Then z(t0) ∈ pLj.

Proof. We can compute the derivative of the energy Hi along the trajectories of system (5.3)

d

dt
Hi(x(t), y(t)) =

√
λy(t)

(
gi(x)− g(t, x)

)
, (5.11)

so that
d

dt
H1(x(t), y(t)) > 0, if y(t) < 0,

d

dt
H2(x(t), y(t)) > 0, if y(t) > 0.

Then, by the properties of the sets pAj,κ we easily conclude.

Proposition 5.5. Let z = (x, y) be a solution of (5.3) and s0 < s1 be such that z(s0) ∈ pEm+1

and z(s1) ∈ pI1. Then, there are τ0 and τ1, with s0 ≤ τ0 < τ1 ≤ s1, with the following property:
z(τ0) ∈ pLm+1, z(τ1) ∈ pL1, and Rot(z, [τ0, τ1]) ≥ m.

Proof. From Lemma 5.4, we deduce the existence of some instants σj ∈ ]s0, s1[, with j ∈
{1, . . . ,m + 1}, and σj+1 < σj such that z(σj) ∈ pLj . Then, recalling Proposition 5.3 we con-
clude.

Step 1b. Exiting solution guiding curve. We now construct a spiral qγ which performs m+1
clockwise rotations around the origin passing through some points qPj = (0, qyj), with

0 < qy1 < · · · < qyj < qyj+1 < · · · < qym+2.

As a starting point, we can consider any

qP1 = (0, qy1), with qy1 >
√

2E0, (5.12)

so that H2(0, qy1) > E0. Once the value qyj is chosen, we can define the j-th rotation of the spiral
by gluing three different subsets qAj,1, qAj,2, and qAj,3 (see Figure 4a). The first one

qAj,1 = {H1 =
1
2qy2j } ∩ {x ≥ 0, y ≥ 0}
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a)

x

y

qPj

qQj
qQ′
j

qPj+1

qAj,1

qAj,2

qAj,3
qLj

b)

x

y

s1

τ0 = σ1

τ1 = σ2
s0

qI1

qE2

Figure 4: a) The set qCj delimiting the interior regions qIj and the exterior regions qEj . The arrows
suggest the direction of the vector field associated with (5.3), see Lemma 5.6. b) A sketch of
Proposition 5.7 in the case m = 1.

links the point qPj to qQj = (qxj , 0), with qxj > 0 satisfying G1(qxj) =
1
2qy2j . The second one is

qAj,2 = {H2 = H2(0, qxj)} ∩ {y ≤ 0},

and links qQj to qQ′
j = (qx′j , 0), with qx′j < 0 satisfying G2(qx

′
j) = G2(qxj). Finally,

qAj,3 = {H1 = H1(qx
′
j , 0)} ∩ {x ≤ 0, y ≥ 0}

links the point qQ′
j to qPj+1 = (0, qyj+1), with qyj+1 > 0 satisfying 1

2qy2j+1 = G1(qx
′
j).

By construction, recalling (5.7), we have

1
2qy2j = G1(qxj) < G2(qxj) = G2(qx

′
j) < G1(qx

′
j) =

1
2qy2j+1,

hence qyj+1 > qyj . Introducing the segment

qLj = {(0, y) : qyj < y ≤ qyj+1},

the set qCj = qAj,1 ∪ qAj,2 ∪ qAj,3 ∪ qLj is a Jordan curve separating an interior open bounded region
qIj and an exterior open unbounded region qEj . Note that, since we have assumed (5.12), by (5.8)
we have

{x2 + y2 ≤ r20 + 1} ⊆ qI1 ⊆ qI2 ⊆ . . . ⊆ qIm+1.

Lemma 5.6. Let z = (x, y) be a solution of (5.3) such that, for a certain t0, we have z(t) ∈ qIj in
a left neighborhood of t0 and z(t) ∈ qEj in a right neighborhood of t0. Then z(t0) ∈ qLj.

Proof. From (5.11) we get

d

dt
H1(x(t), y(t)) < 0, if y(t) > 0,

d

dt
H2(x(t), y(t)) < 0, if y(t) < 0.

Then, by the properties of the sets qAj,κ we easily conclude.

Proposition 5.7. Let z = (x, y) be a solution of (5.3) and s0 < s1 be such that z(s0) ∈ qI1 and
z(s1) ∈ qEm+1. Then, there are τ0 and τ1, with s0 ≤ τ0 < τ1 ≤ s1, with the following property:
z(τ0) ∈ qL1, z(τ1) ∈ qLm+1, and Rot(z, [τ0, τ1]) ≥ m.
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Proof. From Lemma 5.6, we deduce the existence of some instants σj ∈ ]s0, s1[, with j ∈
{1, . . . ,m + 1}, and σj+1 > σj such that z(σj) ∈ qLj . Then, recalling Proposition 5.3 we con-
clude.

Step 2. The modified problem. Recalling the definition of r0 in Proposition 5.3, we set
σ0 := r20 +

1
2 < σ1 := r20 + 1. Let φ : [0,+∞[ → [0, 1] be a function of class C∞ such that φ′ ≥ 0

and

φ(σ) =

{
0, if σ ≤ σ0,
1, if σ ≥ σ1.

Without loss of generality, we can assume that

G(t, x)− 1
2cx

2 ≥ 0, for every (t, x) ∈ [0, T ]× R, (5.13)

where c is the constant introduced in Proposition 5.3.
We consider the modified Hamiltonian function

H̃(t, x, y) =
√
λ
[
1
2(cx

2 + y2) +
(
G(t, x)− 1

2cx
2
)
φ(x2 + y2)

]
and the associated Hamiltonian system

ẋ =
√
λ y

[
1 + 2

(
G(t, x)− 1

2cx
2
)
φ′(x2 + y2)

]
,

−ẏ =
√
λ
[
cx+ (g(t, x)− cx)φ(x2 + y2)

+2x
(
G(t, x)− 1

2cx
2
)
φ′(x2 + y2)

]
.

(5.14)

We notice that (5.14) corresponds to (5.3) whenever x2+ y2 ≥ σ1 and reduces to the autonomous
linear system {

ẋ =
√
λ y,

−ẏ =
√
λ cx,

whenever x2 + y2 ≤ σ0.
In order to define the successor map associated with (5.14), we are going to verify that condi-

tions (A1)–(A5) are satisfied. We name the functions in (5.14) as

fλ(t, x, y) =
√
λ y

[
1 + 2

(
G(t, x)− 1

2cx
2
)
φ′(x2 + y2)

]
,

gλ(t, x, y) =
√
λ
[
cx+ (g(t, x)− cx)φ(x2 + y2) + 2x

(
G(t, x)− 1

2cx
2
)
φ′(x2 + y2)

]
.

To show that both (A1) and (A2) hold true we prove (4.2) for every (t, x, y) ∈ [0, T ]×R2. From
the properties of φ and Proposition 5.3, we deduce that (4.2) holds when x2+y2 ∈ [0, σ0]∪[σ1,+∞[.
It is sufficient to prove it for x2 + y2 ∈ ]σ0, σ1[. Using (5.13) and the fact that φ(σ) ∈ [0, 1] for
every σ, we have

gλ(t, x, y)x+ fλ(t, x, y)y =
√
λ
[
(g(t, x)x+ y2)φ(x2 + y2) + (cx2 + y2)(1− φ(x2 + y2))

+2
(
G(t, x)− 1

2cx
2
)
φ′(x2 + y2)(x2 + y2)

]
≥

√
λ c(x2 + y2).

Concerning condition (A3), it is easily verified noticing that φ′ = 0 outside a compact set. Finally,
(A4) and (A5) are satisfied choosing δ sufficiently small and D =

√
σ1, recalling (5.5), since

yfλ(t, x, y) ≥
√
λy2, xgλ(t, x, y) ≥

√
λ[cx2(1− φ(x2 + y2)) + xg(t, x)φ(x2 + y2)]
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hold everywhere. Having verified (A1)–(A5), Theorem 4.1 guarantees that the successor map Sλ

associated with system (5.14) and its iterates Sm
λ : R × ]0,+∞[ → R × ]0,+∞[ are well defined.

We will use the notation
Sm
λ (t0, y0) = (T m

λ (t0, y0),Ym
λ (t0, y0))

for their components.

Proposition 5.8. For any integer m ≥ 1, there exists Ym > 0 such that

Sm
λ (R× [Ym,+∞[) ⊆ R× [σ1,+∞[, for every λ > 0. (5.15)

Moreover, every solution (x, y) of (5.14), with x(t0) = 0, y(t0) = y0 ≥ Ym, satisfies

x(t)2 + y(t)2 > σ1, for every t ∈ [t0, T m
λ (t0, y0)],

hence it is also a solution of (5.3) there.

Proof. We construct a guiding curve pγ performing m+ 1 rotation around the origin as explained
in Step 1a by choosing py1 > σ1. We set Ym = pym+2. Then from Proposition 5.5, we get (5.15).
Recalling (5.8) and (5.10), by construction we get {x2 + y2 ≤ σ1} ⊆ pI1 ⊆ pEm+1 and the second
assertion holds, as well.

Proposition 5.9. For any pair (m, k) of positive integers there exists λm,k > 0 such that

T m
λ (t0, Ym)− t0 > kT, for every t0 ∈ R and λ ∈ ]0, λm,k[.

Proof. We first construct the guiding curve qγ performing m + 1 rotation around the origin as
explained in Step 1b, by choosing qy1 > Ym. Then, we consider the compact set Km = Im+1 ∩
{x2+y2 ≥ σ1}. From Proposition 5.7 we deduce that every solution (x, y) of (5.14), with x(t0) = 0,
y(t0) = Ym, satisfies (x(t), y(t)) ∈ Km for every t ∈ [t0, T m

λ (t0, Ym)]. So, introducing modified
polar coordinates as in (1.2), recalling the expression for the angular velocity (5.4), we deduce the
existence of Θm > 0 such that that

|θ′(t)| ≤
√
λΘm, for every t ∈ [t0, T m

λ (t0, Ym)].

Hence, T m
λ (t0, Ym)− t0 ≥ 2πm√

λΘm
, and we conclude by setting λm,k =

(
2πm
kTΘm

)2.
Proposition 5.10. For any pair (m, k) of positive integers and any λ > 0 there exists Zm,k,λ > Ym
such that

T m
λ (t0, y0)− t0 < kT, for every t0 ∈ R and y0 ≥ Zm,k,λ.

Proof. By the superlinear assumption (5.2), recalling the expression for the angular velocity (5.4),
for every M > 0 we can find a radius RM > 0 such that any solution (x, y) of (5.14) satisfies

θ′(t) ≥ 1

2

√
λ[cos2(θ(t)) +M sin2(θ(t))], when x2(t) + y2(t) ≥ R2

M .

Let us consider a solution z = (x, y) of (5.14) such that Rot(z, [t0, t1]) = m and x2(t)+y2(t) ≥ R2
M

for every t ∈ [t0, t1]. Then, integration in the above inequality gives

t1 − t0 ≤
1√
M

4mπ√
λ
< kT,

for M large enough. In order to well define the value Zm,k,λ we introduce a new spiral pγ as in
Step 1a, setting py1 > RM such that {x2+y2 ≤ R2

M} ⊆ pI1. Then, we fix Zm,k,λ > max{pym+2, Ym}.
The above reasoning concludes the proof.
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Summing up, we have proved that for every positive integers m and k, there exist Ym > 0 and
λm,k > 0, such that for every λ ∈ ]0, λm,k[ there is Zm,k,λ > Ym satisfying

T m
λ (t0, Ym)− t0 > kT > T m

λ (t0, Zm,k,λ)− t0, for every t0 ∈ R.

Hence, applying Theorem 3.1, for every couple of positive integers m, k and λ ∈ ]0, λm,k[ there are
two distinct kT -periodic solutions of (5.14) satisfying Rot(z, [0, kT ]) = m. By Proposition 5.8,
such solutions are indeed solutions of (5.3), hence the corresponding x-components solve (5.1) and
have exactly 2m simple zeros in the period interval [0, kT [. The proof of Theorem 5.1 is thus
completed under the assumption that ∂tg exists and is continuous.

Let us now treat the general case. We first need the following estimate.

Proposition 5.11. For any pair (m, k) of positive integers and any λ > 0 there exists Σ1 > 0
such that, for every t0 ∈ R and every y0 ∈ [Ym, Zm,k,λ], all the solutions z = (x, y) of (5.14) with
x(t0) = 0 and y(t0) = y0 satisfy

x2(t) + y2(t) < Σ1, for every t ∈ [t0, T m
λ (t0, y0)].

Proof. We need to construct a new spiral qγ as in Step 1b performing m + 1 clockwise rotations
around the origin, choosing qy1 > Zm,k,λ. Then, we select Σ1 so that qEm+1 ⊆ {x2 + y2 < Σ1}.

Now, we consider a sequence of mollifiers ρn : R → R and define hn : R× R → R as

hn(t, x) =

∫
R
g(s, x)ρn(t− s) ds =

∫
R
g(t− σ, x)ρn(σ) dσ,

which converges uniformly on [0, T ] × {x2 + y2 ≤ Σ1} to g(t, x). Notice that these functions
hn(t, x) are T -periodic in t and ∂thn exist and are continuous. In particular, for n large enough,
(5.6) holds replacing g(t, x) with hn(t, x), provided that |x| ≤

√
Σ1. Therefore, all the above

construction can be replicated for system{
x′ =

√
λ y,

−y′ =
√
λhn(t, x),

(5.16)

thus finding the same constants in the above propositions, independently of n. Given any pair
(m, k) of positive integers, we so find two kT -periodic solutions for (5.16), for every λ ∈ ]0, λm,k],
having rotation number m. By a standard argument, involving the use of the Ascoli–Arzelà
theorem, we recover the existence of a kT -periodic solution for (5.3) having exactly 2m simple
zeros in the interval [0, kT [ as the limit of a subsequence of the kT -periodic solutions found for
(5.16). Notice that the multiplicity might get lost in the limiting process.

The proof of Theorem 5.1 is thus completed.
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