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Abstract
Dealing with a forced system ruled by a positively-(p, q)-homogeneous Hamiltonian function
and a friction term, we propose a nonresonance condition in order to generalize a classical
result by Frederickson and Lazer. We are thus able to treat both the periodic problem and the
boundedness problem. In particular, our results apply to scalar p-Laplacian equations with
asymmetric nonlinearities.

Keywords Hamiltonian systems · Positively-(p, q)-homogeneous systems · Periodic
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1 Introduction andmain results

We start considering the scalar equation

d

dt

(|ẋ |p−2 ẋ
)+ h(ẋ) + μ(x+)p−1 − ν(x−)p−1 = e(t) , (1.1)

where x+ = max{x, 0}, x− = max{−x, 0}. Here p, μ and ν are positive constants, with
p > 1, while h and e are continuous and uniformly bounded functions.

In [9], Frederickson and Lazer have studied the above problem with p = 2 and μ = ν,
i.e., dealing with the equation

ẍ + h(ẋ) + μx = e(t).
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In the case when the function e(t) is 2π -periodic and μ = N 2 for some N ∈ N, the equation
can be seen as a perturbation of a resonant oscillator. Hence, in order to get the existence
of a 2π-periodic solution, some additional conditions have to be required. In that paper (see
also [11]), the authors provide an existence result under the assumption

2
[
h(+∞) − h(−∞)

]
>

∫ 2π

0
e(t) cos(Nt + θ) dt , for every θ ∈ [0, 2π] ,

where h(±∞) denote the limits of the function h at ±∞. They also proved that, when h is
assumed to be strictly increasing, this condition is indeed necessary and sufficient for the
existence of a 2π-periodic solution. Note that here and in the sequel we choose T = 2π

as the value of the period just in order to simplify the notations. Should the period T be
different, we can reduce to this case by a simple change of variable.

Our first aim in this paper is to generalize the above result by Frederickson and Lazer
to equation (1.1) by introducing a suitable nonresonance condition. We will also deal with
the problem of existence of bounded solutions when the function e(t) is not assumed to
be periodic. In this case we will need to accordingly modify the Frederickson–Lazer-type
nonresonance condition.

In order to explain our results in a more precise way, we remold equation (1.1) to the
equivalent planar system

{
−ẏ = μ(x+)p−1 − ν(x−)p−1 + h(|y|q−2y) − e(t) ,

ẋ = |y|q−2y ,
(1.2)

where (1/p) + (1/q) = 1. We are thus led to study a more general system,

J ż = ∇H(z) + G(t, z) , (1.3)

where J =
(

0 −1
1 0

)
denotes the standard symplectic matrix. We assume the function H :

R
2 → R to be continuously differentiable, and the function G : R × R

2 → R
2 to be

continuous. Notice that in (1.2) we have

H(x, y) = 1

q
|y|q + 1

p

(
μ[x+]p + ν [x−]p) .

Here are the main hypotheses for our results.

(A1) The function H : R2 → R is positively-(p, q)-homogeneous and positive, meaning
that, for some p > 1 and q > 1 with (1/p) + (1/q) = 1, we have

H(γ q x, γ p y) = γ p+q H(x, y) > 0 , for every (x, y) ∈ R
2 \ {0} and γ > 0.

In this setting, the origin (0, 0) is an isochronous center for the planar autonomous system

J ż = ∇H(z) , (1.4)

i.e., besides the origin, all solutions of system (1.4) are periodic and have the same minimal
period, which we denote by T . This fact is a consequence of [4, Lemma 2.1], since one can
see that the area a(E) of the set {z ∈ R

2 : H(z) ≤ E} is linear in E .

(A2) One has

lim
γ→+∞ γ − p+q

2 G(t, γ q x, γ p y) = 0 ,

uniformly for x2 + y2 = 1 and t ∈ R.
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It can be easily seen that in the above condition one could equivalently ask that the limit is
uniform for (x, y) belonging to compact subsets of R2 \ {0}.

Let us first focus our attention on the periodic problem. We then need to introduce the
following assumption.

(A3) Denoting by ψ(t) = (ψ1(t), ψ2(t)) a nontrivial solution of the autonomous sys-
tem (1.4), we assume that there exist d > −1 and C > 0 such that, for every τ ∈ R,
α ∈ [0, T ], and γ ≥ 1,

γ
p+q

2 d
〈
G(τ, γ qψ1(α), γ pψ2(α)),

(
γ

q−p
2 ψ̇1(α), γ

p−q
2 ψ̇2(α)

)〉
≥ −C , (1.5)

and, for every θ ∈ [0, T ],
∫ 2π

0
lim inf
γ→+∞
s→θ

γ
p+q

2 d 〈G(t, γ qψ1(t + s), γ pψ2(t + s)),

(γ
q−p

2 ψ̇1(t + s), γ
p−q

2 ψ̇2(t + s))
〉
dt > 0. (1.6)

Here is our main existence result for the periodic problem.

Theorem 1.1 Assume the function G to be 2π -periodic in t , and that (A1)− (A3) hold true,
with

T = 2π

N
, for some N ∈ Z \ {0}.

Then system (1.3) has a 2π -periodic solution.

There is a large literature for the periodic problem associated with scalar second order dif-
ferential equations approaching resonance (see, e.g., [5, 14] and the references therein). Fewer
results are available when dealing with scalar equations ruled by the p-Laplacian. We refer,
e.g., to [3, 10], where some kind of Landesman–Lazer conditions have been implemented in
order to get existence results.

When no periodicity is assumed on the function G(t, z), we can still look for the existence
of bounded solutions for (1.3), i.e., solutions z(t) for which

sup{|z(t)| : t ∈ R} < +∞.

To this aim, instead of (A3), we need the following condition.

(A4) Denoting by ψ(t) = (ψ1(t), ψ2(t)) a nontrivial solution of the autonomous sys-
tem (1.4), we assume that there exist d > −1 and C > 0 such that (1.5) holds,
and

∫ T

0
lim inf
γ→+∞
s→θ

inf
τ∈R γ

p+q
2 d 〈G(τ, γ qψ1(t + s), γ pψ2(t + s)) ,

(γ
q−p

2 ψ̇1(t + s), γ
p−q

2 ψ̇2(t + s))
〉
dt > 0 , (1.7)

for every θ ∈ [0, T ].
Here is our existence result for bounded solutions.

Theorem 1.2 Assume that (A1), (A2), and (A4) hold true. Then system (1.3) has a bounded
solution.
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The search of bounded solutions for scalar equations or systems is an ancient problem
dating back to the beginning of the theory of dynamical systems. We just mention Lagrange
stability, KAM theory, and Conley–Ważewski theory as classical research line sources. Our
approach is somewhat related to the one in [12, § II.8], where some techniques involving
the so-called bound sets and guiding functions are exploited in order to prove the existence
of compact invariant sets. Some results more related to Theorem 1.2 can be found in [1, 8,
15–17, 19].

The paper is organized as follows. In Sect. 2 we prove our results for a particular class
of perturbed linear systems. In Sect. 3 we introduce a symplectic change of variables which
permits us to transform a (p, q)-homogeneous Hamiltonian system into a linear one. The
proof of the main results in the general setting is then provided in Sect. 4. Examples of
applications are given in Sect. 5, and we conclude with some remarks in Sect. 6.

2 A perturbed linear system

In this section, we provide the proof of Theorems 1.1 and 1.2 in the simpler case when

H(z) = 1

2
N |z|2.

We are thus considering a Hamiltonian satisfying (A1) with p = q = 2.

2.1 Periodic solutions

We are dealing with the 2π -periodic problem associated with

J ż = Nz + G(t, z) , (2.1)

where N ∈ N \ {0}, and the function G : R × R
2 → R

2 is continuous and 2π-periodic in t .
Let us introduce the function

φ(t) = (
sin(Nt), cos(Nt)

)
.

Notice that it is a nontrivial solution of the autonomous system J ż = Nz.
Assumptions (A2) and (A3) can be rephrased as follow.

(A2′) One has

lim
λ→+∞ λ−1G(t, λz) = 0 ,

uniformly for |z| = 1 and t ∈ R.

As already remarked above, in condition (A2′) one could equivalently ask that the limit is
uniform for z belonging to compact subsets of R2 \ {0}.
(A3′) There exist d > −1 and C > 0 such that, for every τ ∈ R, α ∈ [0, 2π/N ], and λ ≥ 1,

λd
〈
G(τ, λφ(α)), φ̇(α)

〉 ≥ n − C , (2.2)

and, for every θ ∈ [0, 2π/N ],
∫ 2π

0
lim inf
λ→+∞
s→θ

λd
〈
G(t, λφ(t + s)), φ̇(t + s)

〉
dt > 0.
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Now Theorem 1.1, in this setting, can be rephrased as follows.

Theorem 2.1 Assume that conditions (A2′) and (A3′) hold true. Then system (2.1) has a
2π-periodic solution.

Proof We need to prove the following a priori bound for the family of problems
⎧
⎨

⎩
J ż = σ [Nz + G(t, z)] + (1 − σ)

2N + 1

2
z ,

z(0) = z(2π) ,
(2.3)

parameterized by σ ∈ [0, 1].
Claim. There exists a r̄ > 0 such that every solution z of (2.3) satisfies ‖z‖∞ ≤ r̄ .

Proof of the Claim. Assume by contradiction that for every positive integer n there exist
σn ∈ [0, 1] and a solution zn of (2.3), with σ = σn , such that ‖zn‖∞ > n. Passing to a
subsequence we can assume that (σn)n converges to some σ ∈ [0, 1]. Set wn = zn||zn ||∞ .
Then,

⎧
⎨

⎩
J ẇn = σn

[
Nwn + G(t, ‖zn‖∞wn)

‖zn‖∞

]
+ (1 − σn)

2N + 1

2
wn ,

wn(0) = wn(2π).

(2.4)

Since (wn)n is uniformly bounded, the differential equation in (2.4) implies that (wn)n is
bounded in H1(0, 2π), and so there exists a 2π -periodic function w ∈ H1(0, 2π) such that
(up to a subsequence) wn → w uniformly and wn⇀w weakly in H1(0, 2π). Therefore,
‖w‖∞ = 1 and passing to the weak limit in (2.4), by using (A2′) we see that w solves

⎧
⎨

⎩
J ẇ = σNw + (1 − σ)

2N + 1

2
w ,

w(0) = w(2π).

Hence, it has to be σ = 1, and J ẇ = Nw. In particular, w(t) 
= 0 for every t ∈ [0, 2π], and
we can write w(t) = φ(t + θ) for some θ ∈ [0, 2π/N ]. Let us also write

zn(t) = rn(t) φ(t + χn(t)) ,

where rn : [0, 2π] → R and χn : [0, 2π ] → R are continuous functions. Then, recalling
that zn is a solution of (2.3),

ṙn(t) = 〈żn(t), zn(t)〉
rn(t)

= −σn

〈
JG(t, rn(t)φ(t + χn(t))) , φ(t + χn(t))

〉

= −σn

N

〈
G(t, rn(t)φ(t + χn(t))), φ̇(t + χn(t))

〉
.

Multiplying both sides by [rn(t)]d and integrating the above equation between 0 and 2π ,
since ∫ 2π

0
[rn(t)]d ṙn(t) dt = 0 ,

recalling that σn 
= 0 for n large enough, we have that
∫ 2π

0
[rn(t)]d

〈
G(t, rn(t)φ(t + χn(t))), φ̇(t + χn(t))

〉
dt = 0.
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Now, thanks to (2.2), we can apply Fatou’s Lemma to obtain
∫ 2π

0
lim inf

n
[rn(t)]d

〈
G(t, rn(t)φ(t + χn(t))), φ̇(t + χn(t))

〉
dt ≤ 0.

Since wn → w uniformly, we have that rn(t) → +∞ and χn(t) → θ for some θ ∈ R, both
limits being uniform in t . Without loss of generality we can assume that θ ∈ [0, 2π/N ].
Hence,

lim inf
n

[rn(t)]d
〈
G(t, rn(t)φ(t + χn(t)), φ̇(t + χn(t))

〉

≥ lim inf
λ→+∞
s→θ

λd
〈
G(t, λφ(t + s)), φ̇(t + s)

〉
,

and integrating we get a contradiction with (A3′), thus ending the proof of the claim.
The proof of the theorem can be now completed by a standard application of the Leray–

Schauder topological degree theory. �

2.2 Bounded solutions

We now consider system (2.1) without assuming G(t, z) to be periodic in t . Instead of (A3′),
we consider the following assumption.

(A4′) There exist d > −1 and C > 0 such that (2.2) holds, and
∫ 2π/N

0
lim inf
λ→+∞
s→θ

inf
τ∈R λd

〈
G(τ, λφ(t + s)), φ̇(t + s)

〉
dt > 0 ,

for every θ ∈ [0, 2π/N ].
Theorem 2.2 Assume that conditions (A2′) and (A4′) hold true. Then system (2.1) has a
bounded solution.

Proof We first need to prove the following a priori bound.

Claim. There exists R > 0 such that every solution z of system (2.1) satisfying z(t0) = 0 for
some t0 is such that |z(t)| ≤ R, for every t ≥ t0.

Proof of the Claim. Assume by contradiction that for every positive integer n there is a
solution zn of system (2.1) satisfying zn(t0

n ) = 0 for a certain t0
n ∈ R and there is tn > t0

n
such that |zn(tn)| = n and |zn(t)| < n, for all t ∈ [t0

n , tn[ . Let t̄0
n ≥ t0

n be such that zn(t̄0
n ) = 0

and zn(t) 
= 0 for every t ∈ ]t̄0
n , tn]. For those values of t we introduce the polar coordinates

zn(t) = ρn(t)φ(θn(t)), where ρ and θ are continuous functions. Then, since zn solves (2.1),
we have

θ̇n(t) = 1 + 1

Nρn(t)

〈
G
(
t, ρn(t)φ(θn(t))

)
, φ(θn(t))

〉
. (2.5)

By (A2′), for every ε ∈ ]0, 1[ , we can find a sufficiently large R(ε) > 1 such that, if
|zn(t)| ≥ R(ε), then

1 − ε ≤ θ̇n(t) ≤ 1 + ε.

In particular, we can find R1 > 0 such that, if |zn(t)| ≥ R1, then θ̇n(t) > 1/2. So, zn rotates
clockwise around the origin when |zn(t)| ≥ R1. Moreover, since J φ̇ = Nφ, for the radial

123
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speed we have

ρ̇n(t) = − 1

N

〈
G
(
t, ρn(t)φ(θn(t))

)
, φ̇(θn(t))

〉
. (2.6)

For n > R1, we can select a time t1
n with the following property: ρn(t1

n ) = R1 and R1 <

ρn(t) < n for every t ∈ ]t1
n , tn[ .

We now show that tn − t1
n → +∞. Indeed, from (2.6), using (A2′), we can find a positive

constant c such that |ρ̇n(t)| ≤ cρn(t) for every t ∈ [t1
n , tn], and so

ρn(t) ≥ ρn(tn)e
−c(tn−t) = ne−c(tn−t). (2.7)

In particular, we get ec(tn−t1n ) ≥ n/R1, whence tn − t1
n → +∞.

As a consequence, for n large, tn − t1
n > 4π/N and since θ̇n > 1/2 in the interval

[t1
n , tn], the solution zn performs more than one complete rotation there. So, there exists

sn ∈ ]tn − 4π/N , tn[ such that zn performs exactly one rotation around the origin in the time
interval [sn, tn]. Let αn ∈ [0, 2π/N ] be such that θn(sn) = αn . So, zn(sn) = ρn(sn)φ(αn)

and consequently we have zn(tn) = ρn(tn)φ(αn + 2π/N ) = nφ(αn + 2π/N ).
By (2.7), we have

lim
n

min{ρn(t) : t ∈ [sn, tn]} = +∞ ,

hence, from (2.5) and (A2′), we deduce that θ̇n → 1 uniformly.
By letting η = θn(t), for n large enough, we get

0 ≥ [ρn(sn)]d+1

d + 1
− [ρn(tn)]d+1

d + 1

= −
∫ tn

sn
[ρn(t)]d ρ̇n(t) dt

= 1

N

∫ αn+2π/N

αn

[ρn(θ−1
n (η))]d

θ̇n(θ
−1
n (η))

〈
G
(
θ−1
n (η), ρn(θ

−1
n (η))φ(η)

)
, φ̇(η)

〉
dη

≥ 1

N

∫ αn+2π/N

αn

[ρn(θ−1
n (η))]d

θ̇n(θ
−1
n (η))

inf
τ∈R

〈
G
(
τ, ρn(θ

−1
n (η))φ(η)

)
, φ̇(η)

〉
dη.

Hence, by the change of variable ω = η − αn , setting λn(ω) = ρn(θ
−1
n (ω + αn)) and

bn(ω) = θ̇n(θ
−1
n (ω + αn)),

0 ≥
∫ 2π/N

0

[λn(ω)]d
bn(ω)

inf
τ∈R

〈
G
(
τ, λn(ω)φ(ω + αn)

)
, φ̇(ω + αn)

〉
dω.

Since, by (A4′), assumption (2.2) holds, we can apply Fatou’s Lemma so to get
∫ 2π/N

0
lim inf

n

[λn(ω)]d
bn(ω)

inf
τ∈R

〈
G
(
τ, λn(ω)φ(ω + αn)

)
, φ̇(ω + αn)

〉
dω ≤ 0.

Being (αn)n in [0, 2π/N ], we can assume that, up to a subsequence, αn → α ∈ [0, 2π/N ].
Recalling that θ̇n(t) → 1 uniformly in t , we see that bn(ω) → 1 uniformly in ω, hence

∫ 2π/N

0
lim inf
λ→+∞
s→α

λd inf
τ∈R

〈
G
(
τ, λφ(ω + s)

)
, φ̇(ω + s)

〉
dω ≤ 0 ,

thus contradicting (A4′). The claim is thus proved.
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Now, let us prove the existence of the bounded solution we are looking for. To this purpose,
let zn be a solution of (2.1) such that zn(−n) = 0. By the above argument, we have that
|zn(t)| ≤ R for all t ≥ −n, and from (2.1) we see that the sequence (zn)n is equibounded
and equicontinuous. So by the Ascoli–Arzelà Theorem there exists a subsequence (z(1)

n )n≥1

which converges uniformly on [−1, 1] to some function z, which is a solution of (2.1) on that
interval. Consider now the sequence (z(1)

n )n≥2. Again, there exists a subsequence (z(2)
n )n≥2

converging uniformly on [−2, 2] to some solution of (2.1), which we still denote by z. Indeed,
by the uniqueness of the limit, it is the extension of the previously found function z. In the
similar way, we define on each interval [− j, j] a subsequence (z( j)n )n≥ j which converges
uniformly to a solution of (2.1) on [− j, j], which we still denote by z since it coincides with
the previously found functions on the domains [−k, k], with k < j . Hence, the diagonal
sequence (z( j)j ) j≥1 converges to a solution z of (2.1), uniformly on every compact subset of
R. Clearly enough, we have that |z(t)| ≤ R for all t ∈ R, thus completing the proof. �

3 A symplectic change of variables

For the reader’s convenience, we report in this section the main ideas discussed in [7]. By
using (A1), we have that H(0, 0) = 0 and the generalized Euler Identity holds true, i.e.,

〈
∇H(x, y),

(
x

p
,
y

q

)〉
= H(x, y). (3.1)

Choose the positive constant

ϒ = min

{
1

|z|2 H(z) : 1 ≤ |z| ≤ 2

}
, (3.2)

and let η : R → R be a C∞-function such that η′(s) ≤ 0 for all s ∈ R and

η(s) =
{

1 , if s ≤ 1 ,

0 , if s ≥ 2.

For z = (x, y), set

Ĥ(z) = η(|z|)ϒ |z|2 + (1 − η(|z|))H(z) ,

and consider the new system

J ż = ∇ Ĥ(z). (3.3)

Notice that Ĥ(0) = 0, and Ĥ(z) 
= 0 for every z 
= 0. This implies that every non-zero
solution of system (3.3) does not pass through the origin. Moreover, for every z 
= 0, we
have

∇ Ĥ(z) =
(
ϒη′(|z|)|z| + 2ϒη(|z|) − η′(|z|)

|z| H(z)
)
z + (1 − η(|z|))∇H(z).

Then, using (3.1) and (3.2), if z = (x, y) is such that 1 ≤ |z| ≤ 2, we have
〈
∇ Ĥ(z),

(
x

p
,
y

q

)〉
= η′(|z|)|z|

(
x2

p
+ y2

q

)(
ϒ − 1

|z|2 H(z)
)

+2η(|z|)ϒ

(
x2

p
+ y2

q

)
+ (1 − η(|z|))H(z) > 0. (3.4)

123
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This implies that ∇ Ĥ(z) 
= 0, for 1 ≤ |z| ≤ 2. On the other hand, for 0 < |z| ≤ 1 the
Hamiltonian function Ĥ is quadratic, so that ∇ Ĥ(z) 
= 0. Lastly, for |z| ≥ 2, we have
∇ Ĥ(z) = ∇H(z), and it is clear from (3.1) that ∇H(z) 
= 0. Hence ∇ Ĥ(z) 
= 0 for every
z 
= 0, and the Poincaré–Bendixson theory guarantees that all the solutions of system (3.3)
are periodic. Thus, the origin is still a global center for system (3.3).

Now for any z0 ∈ R
2 \{0}, we denote by T̂ (z0) the minimal period of the solution of (3.3)

passing through z0. We notice here that this solution is unique, even if we are not assuming
∇H to be locally Lipschitz continuous, cf. [18]. The function T̂ : R2 \ {0} → R thus defined
is continuously differentiable (see [2]).

Define
δ� = [0,+∞[×{0} ,

and a function ξ : ]0,+∞[→ ]0,+∞[ as follows: for every E > 0, the level line {z ∈ R
2 :

Ĥ(z) = E} intersects δ� at the point (ξ(E), 0). Such a point is unique, since by (3.4) we
have that ∂ Ĥ

∂x (ξ, 0) > 0 when ξ > 0.
Now, choose E0 > max{H(z) : |z| ≤ 2} and define K̂ : R2 → R as

K̂ (z) = 1

T

∫ Ĥ(z)

E0

T̂ (ξ(E), 0) dE + E0.

In particular, setting

E0 = {z ∈ R
2 : H(z) ≥ E0} , (3.5)

we have

K̂ (z) = Ĥ(z) = H(z) , for every z ∈ E0. (3.6)

The function K̂ is continuously differentiable, and

∇ K̂ (z) = T̂ (z)

T
∇ Ĥ(z).

Hence, the origin is an isochronous center for the system

J ż = ∇ K̂ (z) , (3.7)

since all solutions except the equilibrium 0 are periodic with minimal period T . Moreover,

K̂ (z) = π

T
|z|2, if |z| ≤ 1.

Now, for every z0 ∈ R
2\{0}, let ζ(t ; z0) be the solution of system (3.7) satisfying ζ(0 ; z0) =

z0, and define θ(z0) ∈ [0, 2π [ as the minimum time for which

ζ
(

− T
2π

θ(z0) ; z0

)
∈ δ�.

As shown in [2], the restricted function θ : R2 \ δ� → ]0, 2π[ is continuously differentiable,
and its gradient ∇θ can be continuously extended to R

2 \ {0}. We will still denote this
extension by ∇θ : R2 \ {0} → R

2.
Hence, by [2, Proposition 2.2], there exists a symplectic diffeomorphism � : R2 → R

2

defined by

�(z) =
⎧
⎨

⎩

√
T
π
K̂ (z)

(
cos θ(z), − sin θ(z)

)
, if z 
= 0 ,

0 , if z = 0 ,

(3.8)
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such that, by the change of variable w = �(z), system (3.7) is changed to

J ẇ = 2π

T
w ,

i.e., to J ẇ = Nw. The function � satisfies the following relation

[�′(z)]T J�′(z) = J , (3.9)

for every z ∈ R
2, where �′(z) represents the Jacobian matrix of �. Thus, we see that

∇ K̂ (z) = N [�′(z)]T�(z), (3.10)

for every z ∈ R
2.

4 Proofs of themain results

Let �−1 = (�1, �2) and set F0 = �(E0), where E0 was introduced in (3.5).

Proposition 4.1 If (u, v) ∈ F0, then

�1(λu, λv) = λ
2
p �1(u, v), �2(λu, λv) = λ

2
q �2(u, v) ,

for every λ ≥ 1.

Proof Since H is (p, q)-homogeneous, for γ = λ
2
pq , we have

H(λ
2
p x, λ

2
q y) = H(γ q x, γ p y) = γ pq H(x, y) = λ2H(x, y).

Recalling (3.6) for λ ≥ 1, we have

K̂ (λ
2
p x, λ

2
q y) = λ2 K̂ (x, y) ,

when z = (x, y) ∈ E0. It has been proved in [7, Sect. 3.2] that the function θ satisfies

θ(γ q x, γ p y) = θ(x, y). (4.1)

Thus (3.8) implies that

�(λ
2
p x, λ

2
q y) =

√
T
π

λ2 K̂ (x, y)
(

cos(θ(x, y)), − sin(θ(x, y))
)

= λ�(x, y).

Hence, writing � = (�1,�2), for every λ ≥ 1 we have

�1(λ
2
p x, λ

2
q y) = λ�1(x, y), �2(λ

2
p x, λ

2
q y) = λ�2(x, y).

Setting u = �1(x, y) and v = �2(x, y), this implies (u, v) ∈ F0 and

(λ
2
p x, λ

2
q y) = �−1(λu, λv) = (

�1(λu, λv) , �2(λu, λv)
)
,

and the proof is easily completed. �
Let us consider a solution z of (1.3) and define w(t) = �(z(t)). If z(t) ∈ E0 for t in

a certain interval I , then w(t) ∈ F0, so using (3.9) and recalling (3.6) and (3.10), in that
interval we have

J ẇ = J�′(z)ż
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= [(�′(z))T ]−1 J ż

= [(�′(z))T ]−1[∇H(z) + G(t, z)]
= Nw + [(�′(z))T ]−1G(t, z)

= Nw + [(�−1)′(w)]T G(t,�−1(w)).

Define
G̃(t, w) = [(�−1)′(w)]T G(t,�−1(w)) ,

and consider the following modified system

J ẇ = Nw + G̃(t, w). (4.2)

Given a nontrivial solution ψ of the autonomous system (1.4) satisfying ψ(t) ∈ E0,
cf. (3.5), let φ = �(ψ). Then φ 
= 0 and J φ̇ = Nφ. Now we need the following result
concerning G and G̃.

Lemma 4.1 If ψ(α) ∈ E0 for some α, then, for every γ > 1 and τ ∈ R,

〈G(τ, γ qψ1(α), γ pψ2(α)), (γ
q−p

2 ψ̇1(α), γ
p−q

2 ψ̇2(α))〉
= 〈G̃(τ, γ

p+q
2 φ(α)), φ̇(α)〉.

Proof Recalling (3.6), the computations in [7, Sect. 3.2] show that for every z = (x, y) ∈ E0

we have

�′(z) =
[
a11(z) a12(z)
a21(z) a22(z)

]
,

where, by denoting c(z) = cos θ(z) and s(z) = sin θ(z),

a11(z) =
√

T
π

(
∂x H(z)

2
√
H(z)

c(z) −√
H(z)∂xθ(z)s(z)

)
,

a12(z) =
√

T
π

(
∂y H(z)

2
√
H(z)

c(z) −√
H(z)∂yθ(z)s(z)

)
,

a21(z) =
√

T
π

(
− ∂x H(z)

2
√
H(z)

s(z) −√
H(z)∂xθ(z)c(z)

)
,

a22(z) =
√

T
π

(
− ∂y H(z)

2
√
H(z)

s(z) −√
H(z)∂yθ(z)c(z)

)
.

Recalling that � is symplectic, so det �′(z) = 1, the inverse matrix is

(�′(z))−1 =
[
a22(z) −a12(z)

−a21(z) a11(z)

]
.

The following identities have been proved in [6]:

∂H

∂x
(γ q x, γ p y) = γ p ∂H

∂x
(x, y) ,

∂H

∂ y
(γ q x, γ p y) = γ q ∂H

∂ y
(x, y).

In addition, it has been proved in [7, Sect. 3.2] that the function θ satisfies

∂xθ(γ q x, γ p y)γ q = ∂xθ(x, y) , ∂yθ(γ q x, γ p y)γ p = ∂yθ(x, y).
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Thus, by using all the above together with (4.1), we have

a11(γ
q x, γ p y) = γ

p−q
2 a11(x, y) , a12(γ

q x, γ p y) = γ
q−p

2 a12(x, y) ,

a21(γ
q x, γ p y) = γ

p−q
2 a21(x, y) , a22(γ

q x, γ p y) = γ
q−p

2 a22(x, y).

Now, for every λ > 1,

〈G̃(τ, λφ(α)), φ̇(α)〉
=
〈
[(�−1)′(λφ(α))]T G(τ,�−1(λφ(α))), φ̇(α)

〉

=
〈
G(τ,�−1(λφ(α))), [(�−1)′(λφ(α))]φ̇(α)

〉

=
〈
G(τ,�−1(λφ(α))), [�′(�−1(λφ(α)))]−1φ̇(α)

〉
. (4.3)

Setting γ = λ
2
pq > 1, by Proposition 4.1, we have

�−1
(
λφ(α)

)
=
(
�1(λφ(α)),�2(λφ(α))

)

=
(
λ

2
p ψ1(α), λ

2
q ψ2(α)

)

=
(
γ qψ1(α), γ pψ2(α)

)
.

This implies that

[
�′(�−1(λφ(α))

)]−1 =
[
�′(γ qψ1(α), γ pψ2(α)

)]−1

=
[

γ
q−p

2 a22(ψ(α)) −γ
q−p

2 a12(ψ(α))

−γ
p−q

2 a21(ψ(α)) γ
p−q

2 a11(ψ(α))

]

,

hence
[
�′(�−1(λφ(α))

)]−1
φ̇(α) =

(
γ

q−p
2 ψ̇1(α), γ

p−q
2 ψ̇2(α)

)T
,

where we use the fact that ψ̇ = [�′(ψ)]−1φ̇. This, together with (4.3), implies that

〈
G̃
(
τ, λφ(α)

)
, φ̇(α)

〉 =
〈
G
(
τ, γ qψ1(α), γ pψ2(α)

)
,
(
γ

q−p
2 ψ̇1(α), γ

p−q
2 ψ̇2(α)

)〉
.

The observation
γ = λ

2
pq ⇔ λ = γ

pq
2 = γ

p+q
2

completes the proof of the lemma. �
After these preliminary considerations, we now complete the proof of Theorems 1.1

and 1.2. Let us focus on the first one.
We prove that (A2) implies (A2′) with G replaced by G̃. It has been proved in [7, Sect.

3.2] that (�−1)′(w) is bounded for every w ∈ R
2, i.e., there exists C1 > 0 such that for

every w ∈ R
2, we have

‖(�−1)′(w)‖ ≤ C1.

Let w belong to a compact subset K of R2 \ {0} and let (x, y) = �−1(w). Since �(0) = 0,
also the image �(K) is a compact subset of R

2 \ {0}. Recalling Proposition 4.1, we get
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�−1(λw) = (λ
2
p x, λ

2
q y), when λ is sufficiently large. So, by using the definition of G̃, for

λ = γ
p+q

2 ≥ 1 we have

λ−1|G̃(t, λw)| ≤ γ − p+q
2

∥
∥
∥[(�−1)′(λw)]T

∥
∥
∥|G(t,�−1(λw))|

≤ C1γ
− p+q

2 |G(t, γ q x, γ p y)|.
Hence, (A2′) follows from (A2).

Now, we show that (A3) implies (A3′) with G replaced by G̃. Indeed, taking λ = γ
p+q

2

large enough, by Lemma 4.1, we have

γ
p+q

2 d〈G(τ, γ qψ1(t + s), γ pψ2(t + s)), (γ
q−p

2 ψ̇1(t + s), γ
p−q

2 ψ̇2(t + s))〉
= λd〈G̃(τ, λφ(t + s)), φ̇(t + s)〉.

Hence, we can apply Theorem 2.1, so problem (4.2) has a 2π-periodic solution w. Since �

is a diffeomorphism, by the inverse change of variables z = �−1(w) we obtain a 2π-periodic
solution of system (1.3), as desired. The proof of Theorem 1.1 is thus completed.

Concerning Theorem 1.2, proceeding as above we see that (A4) implies (A4′) with G
replaced by G̃. We can then apply Theorem 2.2, so to obtain a bounded solution w of
system (4.2). By the inverse change of variables z = �−1(w), we obtain a bounded solution
z of system (1.3). The proof of Theorem 1.2 is thus completed, as well. �

5 Some possible examples

Concerning an application of Theorem 1.1, we propose a periodic problem associated with
the following asymmetric scalar equation

d

dt

(|ẋ |p−2 ẋ
)+ h(ẋ) + μ(x+)p−1 − ν(x−)p−1 = e(t) , (5.1)

with p > 1, where x+ = max{x, 0}, x− = max{−x, 0}, h : R → R and e : R → R are
continuous. We assume that the positive constants μ, ν satisfy

πp(μ
−1/p + ν−1/p) = 2π

N
, (5.2)

for a certain positive integer N , where

πp = 2(p − 1)
1
p

p sin( π
p )

π.

The scalar equation (5.1) corresponds to the system (1.3), where

H(z) = |y|q
q

+ 1

p

(
μ[x+]p + ν[x−]p) , G(t, z) =

(
h(|y|q−2y) − e(t)

0

)
,

with (1/p) + (1/q) = 1. The function H is positively-(p, q)-homogeneous and positive.
The nontrivial solutions of the equation

d

dt

(|ẋ |p−2 ẋ
)+ μ(x+)p−1 − ν(x−)p−1 = 0
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are of the form x(t) = cψ1(t − θ), with c > 0, θ ∈ [0, 2π/N ], and ψ1 is the function, with
minimal period 2π/N , defined on the interval [0, 2π/N ] as

ψ1(t) =
{

μ−1/p sinp(μ
−1/pt) if t ∈ [

0, πpμ
−1/p

]
,

ν−1/p sinp

(
ν−1/p

(
t − πp

μ1/p

) )
if t ∈ [

πpμ
−1/p, 2π/N

]
,

extended by periodicity to the whole real line. Concerning the behaviour of sinp(t), we refer
the reader to [13]. So, all the solutions of system J ż = ∇H(z) are periodic with the same
minimal period T = 2π/N (see [13, 20]).

We assume the existence of the finite limits

h(±∞) = lim
u→±∞ h(u).

The following corollary generalizes the result in [9]; it is a consequence of Theorem 1.1.

Corollary 5.1 In the above setting, assume moreover that e(t) is 2π-periodic and

p sin

(
π

p

)
[
h(+∞) − h(−∞)

]
>

∫ 2π

0
e(t)ψ̇1(t + θ) dt , (5.3)

for every θ ∈ [0, 2π/N ]. Then (5.1) has a 2π -periodic solution.

Proof We need to prove that (A2) and (A3) hold so to be able to apply Theorem 1.1. From
the boundedness of G, it is easy to see that assumption (A2) holds. Let us set ψ = (ψ1, ψ2)

with ψ2 = |ψ̇1|p−2ψ̇1 and take d = (p − q)/(p + q) = −1 + 2
q > −1.

We see that

γ
p+q

2 d 〈G
(
τ, γ qψ1(α), γ pψ2(α)

)
,
(
γ

q−p
2 ψ̇1(α), γ

p−q
2 ψ̇2(α)

)〉

= [
h
(
γ q ψ̇1(α)

)− e(τ )
]
ψ̇1(α). (5.4)

This quantity is bounded, hence (1.5) holds. Moreover, recalling (5.2),
∫

{ψ̇1>0}
ψ̇1(t) dt = N

∫ 1
2 πpμ

−1/p

− 1
2 πpν−1/p

ψ̇1(t) dt

= N
(
p − 1

) 1
p
(
μ−1/p + ν−1/p) = p sin

(
π

p

)
,

and similarly
∫

{ψ̇1<0}
ψ̇1(t) dt = N

∫ T − 1
2 πpν

−1/p

1
2 πpμ−1/p

ψ̇1(t) dt = −p sin

(
π

p

)
.

From the above computations we can deduce that (1.6) is equivalent to (5.3). Hence (A3)

holds and the proof is completed. �
Concerning an application of Theorem 1.2, we propose the asymmetric scalar equa-

tion (5.1), where h : R → R and e : R → R are continuous and uniformly bounded.
The positive constants μ, ν satisfy (5.2). Proceeding as in the first example, we have the
following result.

Corollary 5.2 In the above setting, assume moreover that e(t) is bounded and

h(+∞) − h(−∞) > sup
t∈R

e(t) − inf
t∈R e(t). (5.5)

Then (5.1) has a bounded solution.
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Proof Without loss of generality we can assume supt∈R e(t) = − inf t∈R e(t), simply replac-
ing h by h− 1

2 (supt∈R e(t)+inf t∈R e(t)). Following the lines of the previous proof, it remains
to verify the validity of (1.7) in order to successfully apply Theorem 1.2. Once θ ∈ [0, 2π/N ]
is fixed, by (5.4) we have

∫ 2π/N

0
lim inf
λ→+∞
s→θ

inf
τ∈R

[
h(γ q ψ̇1(t + s))ψ̇1(t + s) − e(τ )ψ̇1(t + s)

]
dt

=
∫

{ψ̇1(· +θ)>0}
lim inf
λ→+∞
s→θ

[
h(γ q ψ̇1(t + s))ψ̇1(t + s) − ‖e‖∞ψ̇1(t + s)

]
dt

+
∫

{ψ̇1(· +θ)<0}
lim inf
λ→+∞
s→θ

[
h(γ q ψ̇1(t + s))ψ̇1(t + s) + ‖e‖∞ψ̇1(t + s)

]
dt

=
∫

{ψ̇1(· +θ)>0}

[
h(+∞)ψ̇1(t + θ) − ‖e‖∞ψ̇1(t + θ)

]
dt

+
∫

{ψ̇1(· +θ)<0}

[
h(−∞)ψ̇1(t + θ) + ‖e‖∞ψ̇1(t + θ)

]
dt

= 1

N
p sin

(
π

p

)[
h(+∞) − h(−∞) − 2‖e‖∞

]
.

So, we deduce (1.7) from (5.5). �

6 Final remarks

We conclude the paper with some remarks, and suggesting some open problems.
1. Concerning the statement of Theorem 1.1, in assumption (A3) we can replace (1.5)
and (1.6) respectively by

γ
p+q

2 d 〈G(τ, γ qψ1(α), γ pψ2(α)), (γ
q−p

2 ψ̇1(α), γ
p−q

2 ψ̇2(α))
〉 ≤ C , (6.1)

and
∫ 2π

0
lim sup
γ→+∞
s→θ

γ
p+q

2 d 〈G(t, γ qψ1(t + s), γ pψ2(t + s)),

(γ
q−p

2 ψ̇1(t + s), γ
p−q

2 ψ̇2(t + s))
〉
dt < 0.

2. Correspondingly, concerning Theorem 1.2, in assumption (A4) we can replace (1.5)
and (1.7) respectively by (6.1) and

∫ T

0
lim sup
γ→+∞
s→θ

sup
τ∈R

γ
p+q

2 d 〈G(τ, γ qψ1(t + s), γ pψ2(t + s)) ,

(γ
q−p

2 ψ̇1(t + s), γ
p−q

2 ψ̇2(t + s))
〉
dt < 0.

3. In [9], the existence of almost periodic solutions was also considered. It would be interesting
to prove an analogue result in the setting of this paper.
4. It would be desirable to extend the results by Yang [20] to our setting, by introducing some
kind of generalized Landesman–Lazer conditions.
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5. Theorems 1.1 and 1.2 could possibly be adapted to systems in higher dimensions, coupling
planar systems ruled by some positively-(p, q)-homogeneous and positive Hamiltonians.
6. The possible interaction of Frederickson–Lazer-type conditions with a Landesman–Lazer-
type condition remains a field for further investigation.

Acknowledgements This paper has been partly supported by the Italian PRIN Project 2022ZXZTN2 Non-
linear differential problems with applications to real phenomena. The authors A. Fonda and A. Sfecci also
acknowledge INdAM, the Istituto Nazionale di Alta Matematica.

References

1. Ahmad, S.: A nonstandard resonance problem for ordinary differential equations. Trans. Am. Math. Soc.
323, 857–875 (1991)

2. Boscaggin, A., Garrione, M.: Planar Hamiltonian systems at resonance: the Ahmad–Lazer–Paul condition.
NoDEA Nonlinear Differen. Equations Appl. 20, 825–843 (2013)

3. Fabry, C., Fayyad, D.: Periodic solutions of second order differential equations with a p-Laplacian and
asymmetric nonlinearities. Rend. Istit. Mat. Univ. Trieste 24, 207–227 (1992)

4. Fabry, C., Fonda, A.: A systematic approach to nonresonance conditions for periodically forced planar
Hamiltonian systems. Ann. Mat. Pura Appl. 201, 1033–1074 (2022)

5. Fonda, A.: Playing around resonance. An invitation to the search of periodic solutions for second order
ordinary differential equations. Springer, Basel (2016)

6. Fonda, A., Klun, G., Obersnel, F., Sfecci, A.: On the Dirichlet problem associated with bounded pertur-
bations of positively-(p, q)-homogeneous Hamiltonian systems. J. Fixed Point Theory Appl. 24, Paper
No. 66 (2022)

7. Fonda, A., Ullah, W.: Boundary value problems associated with Hamiltonian systems coupled with
positively-(p, q)-homogeneous systems. NoDEA Nonlinear Differ. Equ. Appl. 31, 41 (2024)

8. Fonda, A., Zanolin, F.: Bounded solutions of nonlinear second order ordinary differential equations.
Discrete Cont. Dyn. Syst. 4, 91–98 (1998)

9. Frederickson, P.O., Lazer, A.C.: Necessary and sufficient damping in a second-order oscillator. J. Differ.
Equ. 5, 262–270 (1969)

10. Jiang, M.Y.: A Landesman-Lazer type theorem for periodic solutions of the resonant asymmetric-
Laplacian equation. Acta Math. Sin. 21(5), 1219–1228 (2005)

11. Korman, P., Li, Y.: Harmonic oscillators at resonance, perturbed by a non-linear friction force. Acta Math.
Sci. 34, 1025–1028 (2014)

12. Krasnosel’skiı̆, M.A.: The operator of translation along the Trajectories of differential equations. Amer.
Math. Soc, Providence, RI (1968)

13. Lindqvist, P.: Some remarkable sine and cosine function. Ricerche Mat. 44, 269–290 (1995)
14. Mawhin, J.: Resonance and nonlinearity: a survey. Ukranian Math. J. 59, 197–214 (2007)
15. Mawhin, J., Ward, J.R.: Guiding-like functions for periodic or bounded solutions of ordinary differential

equations. Discrete Contin. Dyn. Syst. 8, 39–54 (2002)
16. Ortega, R.: A boundedness result of Landesman–Lazer type. Differ. Integral Equ. 8, 729–734 (1995)
17. Ortega, R., Tineo, A.: Resonance and non-resonance in a problem of boundedness. Proc. Am. Math. Soc.

124, 2089–2096 (1996)
18. Rebelo, C.: A note on uniqueness of Cauchy problems associated to planar Hamiltonian systems. Port.

Math. 57, 415–419 (2000)
19. Sanchez, L., Silva, J.G.: Remarks on periodic resonant problems with nonlinear dissipation. Electron. J.

Differ. Equ. 1, 203–212 (2021)
20. Yang, X.: Existence of periodic solutions of a class of planar systems. Z. Anal. Anwend. 25, 237–248

(2006)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123


	Perturbed positively-(p,q)-homogeneous Hamiltonian systems with Frederickson–Lazer conditions
	Abstract
	1 Introduction and main results
	2 A perturbed linear system
	2.1 Periodic solutions
	2.2 Bounded solutions

	3 A symplectic change of variables
	4 Proofs of the main results
	5 Some possible examples
	6 Final remarks
	Acknowledgements
	References


