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Abstract

We prove the existence of an arbitrarily large number of subharmonic solutions for a class of
weakly coupled Hamiltonian systems which includes the case when the Hamiltonian function
is periodic in all of its variables and its critical points are non-degenerate. Our results are
obtained through a careful analysis of the dynamics of the planar components, combined
with an application of a generalized version of the Poincaré—Birkhoff Theorem.
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1 Introduction

We consider a Hamiltonian system of the type

Jz=VH()+eVP(t,2), (D

where J = (1(1)v _éN
function H : RZY — R is twice continuously differentiable, P : R x RN 5 Risa
continuous function, 7-periodic in its first variable and continuously differentiable with
respect to its second variable (with V P(¢, z) denoting the gradient with respect to z), and ¢
is a small real parameter.

Writing z = (x, y), with x = (xq,...,xy) € RN andy = (y1,...,YN) € RY, we use
the notation z; = (xx, yx) € R2, and we assume that there are N functions Hy : RZ — R

) denotes the standard 2N x 2N symplectic matrix, the Hamiltonian
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such that
N
H(z) =) Hi(z). ©)
k=1

Under this assumption, system (1) is said to be weakly coupled, since ¢ is supposed to be a
small parameter.

We are looking for subharmonic solutions, i.e., periodic solutions z : R — R2N whose
minimal period is mT, for some integer m > 2. Clearly enough, under the sole above
assumptions the existence of these solutions is not guaranteed, as the simple example H =
P = 0 shows; this is why, for this kind of problem, some further assumptions are necessary.

In [4], Conley and Zehnder consider a general Hamiltonian system of the type

Jz=VH(,2), 3)

assuming the Hamiltonian function H to be T-periodic in ¢ and also periodic in all its
remaining variables, a setting already adopted by the same authors in [3]. They ask all the
iterates of the possible T -periodic solutions of the Hamiltonian system to be non-degenerate;
in other words, if z(¢) is a T-periodic solution of (3), denoting by Z(¢) the 2N x 2N matrix
solution of

JZ=H!(t,zt)Z, Z0)=1d,

the number 1 cannot be an eigenvalue of Z(mT), for any integer m > 1. Under these
assumptions, it is proved in [4] that for any sufficiently large prime number m there is a
periodic solution having minimal period mT. (See also [10,12,14,17] for similar results.)
Although their non-degeneracy assumption seems to be generically satisfied (see e.g. [15]),
it is very difficult to verify it in concrete examples.

We are looking here for some conditions which can be more easily checked in practice.
For instance, we will prove that if the function H of the form (2) is periodic in all its variables
and has only non-degenerate critical points, then for ¢ small enough system (1) has a large
number of subharmonic solutions, whose planar components perform a prescribed number
of rotations in their period time. (We recall that Q is a non-degenerate critical point of the
Hamiltonian function H if det H”(Q) # 0.)

In order to precisely state our results, let us first recall the definition of rotation number
associated with a planar curve, around a point Q. For 711 < 1, let ¢ : [11, 2] — R2
be continuously differentiable and such that ¢(¢) # Q, for every t € [11, T2]. Writing
() = Q + p(t)(cosB(t), sinO(t)), with p(¢) > 0 and 6(¢) continuous functions, one has

_0(r2) — 6(z1)
2 '

If Q is the origin, we will simply write Rot (¢; [t, 72]).
We can now present our first result.

Rot (¢; Q; [t1, ) =

Theorem 1.1 Assume that the Hamiltonian function H, of the form (2), has at least two critical

points, one of which is a non-degenerate local minimum point Q = (Qy, ..., Qy) € R?N.
In addition assume that, for ¢ = 0, the solutions of (1) are globally defined.
Let My, ..., My be arbitrary positive integers. Then, there is a positive integer m with the

Jfollowing property: for every integer m > m, there exists &, > 0 such that, if |e| < &y,
system (1) has at least N + 1 distinct m T -periodic solutions z(t), whose components satisfy

Rot (zi; Qk; [0, mT]) = My, foreveryk=1,...,N.
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Taking into account (2), in Theorem 1.1 we are assuming that all the functions Hy have
at least two critical points, one of which is a non-degenerate local minimum point. A similar
statement holds in the case when there is a non-degenerate local maximum point, taking
My, ..., My to be negative integers.

Let us clarify what we mean by distinct subharmonic solutions. Being the nonlinearities
T -periodic in ¢, once an mT -periodic solution z(¢) has been found, many others appear by
just making a shift in time, thus giving rise to the periodicity class

2(t), z¢+T), z¢+2T), ..., z(t+(m—1T).

We say that two m T -periodic solutions are distinct if they are not related to each other in
such a way.

As already noticed in [8], if at least one of the components of a solution z(¢) makes exactly
one rotation in its period time m T, then necessarily this solution has minimal period equal to
mT . As aconsequence, if N > 2, there will be a myriad of periodic solutions having minimal
period mT: when one of the components performs exactly one rotation, the others rotate an
arbitrary number of times. We thus have the following direct consequence of Theorem 1.1.

Corollary 1.2 Under the assumptions of Theorem 1.1, let N > 2 and fix an arbitrary positive
integer N. Then, there is a positive integer m with the following property: for every integer
m > m, there exists €, > 0 such that, if |e| < &, system (1) has at least X distinct periodic
solutions with minimal period mT.

We then easily deduce the following result.

Corollary 1.3 Let N > 2, and assume that the Hamiltonian function H is of the form (2), it is
periodic with respect to all variables x and yi, and all its critical points are non-degenerate.
Then, the same conclusion of Corollary 1.2 holds.

Indeed, by Weierstrass Theorem, there surely is a minimum point for H, and it is non-
degenerate, by assumption. Moreover, being V H periodic in all its variables, it is bounded,
so the solutions of (1) with ¢ = 0 are globally defined. Corollary 1.2 thus applies.

Let us compare this result with the above quoted one by Conley and Zehnder. Clearly,
we have a strong restriction in dealing here only with weakly coupled systems, while in
[4] the general Hamiltonian system (3) was studied. However, the non-degeneracy is now
assumed only on the critical points of H, a condition which is rather easy to verify in practice.
Moreover, we now have, for any sufficiently large integer m, an arbitrarily large number of
periodic solutions having minimal period mT, provided that ¢ is chosen sufficiently small.
Notice also that we do not require the function P (z, z) to be periodic in the space variables.

We also recall that a perturbation theory has been developed in the literature for nearly
integrable Hamiltonian systems (see, e.g. [1,5]). However, we emphasize that our results are
not of perturbative type, since the periodic solutions we find do not bifurcate from some
particular solution of the uncoupled system corresponding to ¢ = 0.

Let us also remark that the name subharmonic has been sometimes used in the literature
with a different meaning (see, e.g., [2]), i.e., to indicate a m T -periodic solution, with m > 2,
which is not kT -periodic, for any integer k € {1, ..., m — 1}. These solutions, however, need
not have minimal period mT .

The paper is organized as follows. The next three sections are devoted to the study of
planar Hamiltonian systems, providing some new existence results in this setting. In Sect. 2
we develop some preliminaries on autonomous Hamiltonian systems, which will be used in
the subsequent existence theorems. In Sect. 3 we prove our main result for planar Hamiltonian
systems, followed by some useful corollaries. In Sect. 4 we analyse in detail some more
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specific systems, and propose more explicit conditions so to get the existence of subharmonic
solutions. In particular, we obtain an existence result for scalar second order equations which
turns out to be optimal. Finally, in Sect. 5 we provide a generalization of Theorem 1.1 along
the lines developed in the previous sections.

2 Some Preliminaries on Autonomous Planar Hamiltonian Systems

In this section we concentrate on autonomous planar Hamiltonian systems of the type
JE=Vr©), “

where 7 : R — R is a twice continuously differentiable function. We are first interested in
the dynamics near a nonconstant periodic solution. We recall that the orbit I" of such a solution
is a Jordan curve, so that R*\T" is the disjoint union of two open connected sets, int(I"), the
“interior” set, which is bounded, and ext(I"), the “exterior” set, which is unbounded. As we
now recall, such a solution “generates” a period annulus, i.e., a connected set in the plane
(which may be unbounded) covered by orbits of nonconstant periodic solutions.

Proposition 2.1 Any nonconstant periodic orbit of (4) is contained in the interior of a period
annulus.

Proof Let ¢*(t) be a nonconstant periodic solution of (4), with minimal period t* > 0, and
set h* = J(¢*(¢)) (recall that the Hamiltonian is constant along the orbits). We know that
VA (¢*(t)) # 0 for every ¢t € [0, t*], hence, by continuity and compactness, there is an
open neighborhood U* of the orbit of £* on which V.# remains away from 0. O

Let us consider in U* the system
\Z 4
f= 2D )
VA (2)]

and for every s € R let z5(¢) be the solution of (5) satisfying z;(0) = ¢*(s). We can then fix
8 > 0 such that the set

U™ ={z,(t) : t € [=8,8]and s € [0, T*]}
is contained in U*. Let f, g : [0, T*] — R be the continuous functions defined by
f(s) =min{(z;(t)) : t € [=3,8]}, g(s) = max{H(z;(¢)) : t €[5, 3]}.

Since V.# # 0 on U*, the function t +— 7 (z5(t)) is strictly increasing on [—8, 8], for
every s € [0, 7*], hence f(s) < h* < g(s), for every s € [0, 7*]. Then, defining

h* =max{f(s):s €[0,7"]}, A} =min{g(s):s€[0,7"]},
we have that * < h* < h%, and
H(z5(=8)) < h*, H#(z:(8)) = h’, foreverys € [0, T*].

The set U** N 2~ 1(1h*, h% [) contains the orbit of ¢*, it is open and arcwise connected;
to conclude the proof, we need to show that every solution of (4) starting from this set is
periodic.

Fix any h* € 1h*, h* [, any P € U** N2~ (h"), and let { () be the solution of (4) such
that £(0) = P. Since (¢ (t)) = h* for every t € R and ¢(0) € U**, by the choice of h*
and A7, it has to be that {(¢) € U** for every t € R, hence ¢(¢) is bounded. Therefore, by
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the Poincaré—Bendixson Theorem, the w-limit of ¢ is a periodic orbit. Let us show that w (¢)
coincides with the orbit of ¢ itself. First notice that w(¢) € 52~ (h?). Next, let Q € w(¢).
By the Implicit Function Theorem, there is an » > 0 such that the set 7# “THNB(Q,r)is
the graph of a C'-function, hence it is an arc of the periodic orbit w (7). On the other hand,
being Q in w(¢), by definition there is a sequence (Q,), in the orbit of ¢ which belongs to
27" (h*) N B(Q, r). Then Q, belongs both to the orbit of ¢ and to @ (¢), which is also an
orbit of (4). Therefore, the orbit of ¢ must coincide with w (¢). We have thus shown that ¢ (¢)
is periodic. O

In the following, we will denote by A(T") the maximal period annulus determined by
a nonconstant periodic orbit I', i.e., the maximal connected set covered by the orbits of
nonconstant periodic solutions containing I". By Proposition 2.1, A(I") is an open set. Clearly,
it may be unbounded, but it cannot coincide with the whole space R2, since it is well-known
that, when there is a nonconstant periodic orbit I', there must exist an equilibrium point in
int(I"). By Hopf’s Theorem (the Umlaufsatz [13]), we can associate a direction of rotation to
the nonconstant periodic solution ¢*(¢), according to whether the degree of its derivative is
+1 or —1; in the first case, we say that the solution rotates clockwise, while in the second case
it rotates counter-clockwise. Since the period annulus is connected, all the periodic solutions
contained in it have the same direction of rotation.

We denote by 7 (o) the period of the solution with initial position ¢y = ¢(0) in A(T") (in
the following, the “period” of a solution of an autonomous system is always meant to be its
minimal period). It is well-known that, since ¢ is a C 2_function, the function Zo > 7T(o)
is continuously differentiable on A(I"). The periods of all the orbits in A(I") thus determine
what we will call the associated period interval Z(T").

Proposition 2.2 LetT" be anonconstant periodic orbit of (4), and assume that A(I')Uint(I") #
R2. If the solutions of (4) are globally defined, then I(T") is unbounded. More precisely, the
periods of the orbits of (4) in A(I") Next(I") cover an unbounded interval.

Proof Let P be a point belonging to I', and v be a vector such that P + v ¢ A(T") U int(T").
Consider the set of points p, = P + Av, with A € [0, 1], i.e., the segment joining P with
P + v, and set

a=max{L €[0,1]: py €'}, A=sup{rela,1]:p; € AD)}.

By Proposition 2.1, we know that A > . O

For A € [a, 1], let &, (¢) be the solution of (4) sat_isfying the initial condition &, (0) = p;.
Denoting by 7(}) the period of ¢, (¢), with A € [«, A[, we want to prove that

lim t(A) = +o0.
A=A~

By contradiction, assume that there is an increasing sequence (A,), such that 1, — X and
(7 (X)), remains bounded. Then, for a subsequence, keeping the same notation, 7 (1,) — 7,
for some 7 € [0, +o00[ . Since the solutions of (4) are globally defined, the set

K={G@:rela 1], 1€[0,T+1]}

is compact in R2. Forn large enough, the orbit of ¢, (¢) is contained in the set K. Moreover,
there is a constant ¢ > 0 such that

VA ()| <c, forevery¢ € K. (6)
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Let Q # P be another point belonging to I'. Observing that, when A varies in Ja, A[, the
orbit of ¢, (¢) belongs to the period annulus associated to I" and is contained in ext(I"), it is
easy to see, using (6), that

210-P

—

T>
So, T cannot be equal to zero.

By (6), the sequence (¢3,,),, is equi-uniformly continuous on [0, T 4 1], and we know that
it is uniformly bounded. By the Ascoli-Arzela Theorem, there is a subsequence, for which
we maintain the same notation, and a continuous function ¢ : [0, T + 1] — R? such that
&x, (1) — c(@), uniformly on [0, T 4 1]. By a standard argument, C(r)isa T-periodic solution
of (4), and £ (0) = p3.- By Proposition 2.1, the orbit of (1) is contained in the interior of a
period annulus, contradicting the definition of A. O

Remark 2.3 The assumption A(I") U int(I") # R2 is verified if, e.g., (4) has an equilibrium
point in ext(I"). This situation surely occurs if V.7 : R* — R? is periodic along some vector
v e R2\{0}, ie.,

VA +v) = VA (), forevery ¢ € R2. @)

Indeed, in this case, for a sufficiently large integer n, the curve I';, = I + nv is a periodic
orbit of (4), with int(I';,) < ext(I"), and we know that there is an equilibrium point in int(I",,).

In order to provide the existence of a nonconstant periodic solution of (4), we will need
the following result.

Proposition 2.4 Let 2 be a bounded connected open subset of R? such that, either

min 7 > min J7 , (8)
Q Q
or
max ¢ < max J¢ . )
0Q Q

Then, there exists a nonconstant periodic solution of (4) whose orbit is contained in Q.

Proof Let us assume (8). By Sard’s Lemma, there exists a ¢ € R such that

min .27 < ¢ < min ., (10)
kol Q2
and
V# () #0, forevery ¢ € j‘f_l(c). (11)

Fix &y € QN 7 (c) and let £(r) be the solution of (4) such that £(0) = . Since
(L (t)) = c for every t € R, by (10) it has to be that {(t) € Q, for every t € R. By
the Poincaré—Bendixson Theorem, the w-limit of ¢ is either a nonconstant periodic orbit, or
contains an equilibrium point. But the second possibility is excluded, because of (11). Hence,
it is a nonconstant periodic orbit which, by (10), is contained in €.

The case when (9) holds can be treated in a similar way. m]

Remark 2.5 Condition (8) is surely verified if d€2 is smooth and
(VA (), v(¢)) >0, forevery ¢ € 0L2,

where v(¢) denotes the outward unit normal to €2 at £. A similar observation holds for (9),
reversing the inequality.
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In the following, we say that a critical point ¢y € R? of J# is non-degenerate if
det " (£o) # 0.

Proposition 2.6 Let (o be a non-degenerate local minimum point of 7. Then, in any neigh-
bourhood of ¢o there exists a nonconstant periodic solution of (4), rotating in clockwise
sense. Similarly if ¢ is a non-degenerate local maximum point of 7, the nonconstant peri-
odic solutions rotating in counter-clockwise sense in this case.

Proof Being V.77 (¢o) = 0, we can write
H&) = A (Go) + (A" (G0 +EC — 50) (& —20), & — o)

for some £ €]0, I[. The conclusion easily follows from Proposition 2.4, taking Q =
B (%o, p), with p > 0 sufficiently small. ]

3 Subharmonic Solutions in the Plane

We consider the time-dependent planar Hamiltonian system
JE=VAHC)+eVP(1, ). (12)

Here, the Hamiltonian function 7 : R?2 — R is twice continuously differentiable, & :
R x R? — R is a continuous function, T-periodic in its first variable and continuously
differentiable with respect to ¢ = (x, y), and ¢ is a small real parameter. We denote by
VZ(t, ¢) the gradient with respect to .

Theorem 3.1 Let the solutions of (4) be globally defined, and assume that there exists a
nonconstant periodic orbit T of (4) such that A(I') U int(I") # R2. Then, there exists an
integer m > 2 such that, for every integer m > m, there is a &, > 0 with the following
property: if |e| < &y, then system (12) has at least two periodic solutions having minimal
period mT.

Proof We first concentrate on the autonomous system (4), corresponding to (12) with e = 0.
To fix the ideas, assume for instance that the orbit I" rotates clockwise. By Propositions 2.1
and 2.2, I generates a period annulus .A(I"), and the periods of the orbits of (4) in A(I") N
ext(T") cover an interval [, +00[. Let T be an orbit in A(T) N ext(I") with period 7. Let
m be the minimal positive integer such that m7 > 7, and take m > m. Let I[';;, be an orbit
in A(T) N ext(ﬁ) with period mT . Finally, let T be an orbit in A(T") Next(I',,) with period
7 > mT. The orbits T and T* determine a bounded open annulus ¢ in the plane.

We can now proceed as in [7, Lemma 4.3] and construct a symplectic diffeomorphism
A o — P, where A is an open annulus of the type {v € R? : r; < |v| < 1o}, such that the
change of variables v(¢) = A (¢ (¢)) transforms the orbits of the autonomous system (4) in .o/
into the orbits in 4 of a Hamiltonian system with Hamiltonian function £(v) = 5 (A~ L)),
with VL(v) = ﬁ v, while preserving their periods. Notice that £ : 2 — R is a C>-
function. We thus have the new system

2

All the orbits of this system are circular, and the periods vary in an interval containing |7, 7| .
In particular, the periods of those lying near the circle of radius r; are close to 7, while the
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periods of those lying near the circle of radius r, are close to 7. The orbit I, is transformed
into a circle of radius r,, € ]r;, r.[, whose period is still equal to mT .

The same change of variables translates the solutions of the perturbed system (12) lying
in <7 into solutions of a Hamiltonian system with Hamiltonian function

Le(t,v) = L) +e2(, A" V),

defined on R x . We now modify and extend from 2 to the whole plane R? this Hamiltonian
function. We fix some numbers r/, r,, /', v, , with

/ " " /
rp <r; <r; <rm <r, <r, <Te,

and in such a way that, denoting by 7(r"), 7(r,) the periods of the circular orbits of (13)
with radius r/, r//, respectively, we have that

i*lte>

t(r!)y <mT < t(r)). (14)

Consider a C*-function x : [0, +oo[ — [NO, 1], whose support is contained in ]r;, r,[,
such that x (r) = 1 whenr € [r],r}], and let L, : R x R? — R be defined as

- x(vDLe(t,v) ifv e B,
Le(t,v) =
0 if v e R\ .

This is a continuous function, 7 -periodic in its first variable, and continuously differentiable
in its second variable. We can then consider the Hamiltonian system

JU = VL(t,v). (15)

Notice that all the points in R?\ % are equilibria for (15). Moreover, if & = 0, system (15)
coincides with (13) on

! 2./ /
B ={veR :r, < v <r,}.

Let us see how the solutions of (15) behave when starting from the set
B" = eR*: 1 <|v<rl}.

If ¢ = 0, we know from (14) that the solutions v(¢) of (13) starting with |v(0)| = ri” rotate
clockwise more than once in the time interval [0, mT'], while those starting with [v(0)| = r)
make less than one clockwise rotation in the same time interval. In symbols we thus have,
for the solutions of (15),

[¢=0 and [v(©0)|=r]] = Rot(v;[0,mT]) >1,

16
[e=0 and |v(©O)|=r)] = Rot(v;[0,mT]) <1. (16)

We claim that, for & small enough, the solutions of (15) starting with v(0) € 2" will be such
that
v(t) € B’', foreveryt e[0,mT]. (17

Indeed, since £ is twice continuously differentiable on %, and P$'isa compact subset of A,
there are two constants C > 0 and L > 0 such that

IVL(v1) — VL(v2)| < L|vy — vy, forevery vy, vy € B’, (18)
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and
IV(2(t,) o A" (v)| < C, forevery (r,v) € R x B’ (19)

Fix € > 0 such that

g min{r] —r/,r, —r)}, (20)

-
CmTelmT

and assume that |¢| < £. Let v(¢) be a solution of (15) with v(0) € @L let w(¢) be a solution
of (13) with w(0) = v(0), and let ¢ € [0, mT] be such that v(s) € £’ for every s € [0, t].
Then, by (18) and (19),

t
lv(t) —w()| = ‘/ JVENE(S, v(s)) — JVL(w(s))ds
0
t
< / IVL((s)) — VL(w(s))|ds +
0
t
+s/ IV(2(s. ) 0 A~ (0(5)] ds
0

t
< L/ lv(s) —w(s)|ds +eCmT .
0

By Gronwall Lemma,
lv(t) — w(r)| < eCmTel <ECmTe T,

showing that v(r) ¢ 9.4’, by (20). This proves that, if |¢| < &, the solution v(¢) remains in

P’ forevery t € [0, mT].
Then, by (16) and (19), there exists € € ]0, & ] such that

[lel <& and |v(0)|=r]] = Rot(v;[0,mT]) > 1,
[|£|§§ and |v(0)|=ré’] = Rot(v;[0,mT]) < 1.

Hence, we can apply the generalized version of the Poincaré—Birkhoff Theorem in [9, The-
orem 1.2] (which does not require the uniqueness for initial value problems), providing the
existence of two distinct m T -periodic solutions vl (1), v2(r) of (15), with v1 (0), v2(0) € B",
such that

Rot (v/; [0,mT]) =1, forevery j =1,2.
The minimal period of these solutions is mT and, by the above considerations,
v/ (1) € B', foreveryt e [0,mT].

Hence, since Za (t,v) = Lo(t,v) whenv € B/, by the inverse change of variables we obtain
two distinct periodic solutions of the original system (12),

iy =A""w (1), withj=1,2,
both having minimal period mT . O

Remark 3.2 In the above proof, assuming that the orbit " rotates clockwise, we could fix
an arbitrary positive integer M and choose 7 to be the minimal positive integer such that
mT > M7T. Then, taking m > m, it is possible to find r/" < r, < r] such that the orbit
of (13) with radius r;" has a smaller period than mT /M, while the period of the orbit with
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radius r/ is greater than mT . The corresponding annulus %" is such that the solutions v(t)
starting with [v(0)] = ri” rotate clockwise more than M times in the time interval [0, mT1],
while those starting with |v(0)| = r. make less than one clockwise rotation in the same time
interval. We thus eventually find two m T -periodic solutions of (15) such that

Rot (v/; [0, mT]) = M, forevery j =1,2.

A similar argument holds when the orbit I" rotates counter-clockwise, provided that M is
negative. This remark will be useful in the proof of Theorem 1.1.

We now provide some useful corollaries of Theorem 3.1.

Corollary 3.3 Let the solutions of (4) be globally defined, assume that there exists a bounded
connected open subset Q2 of R2 such that either (8) or (9) is satisfied, and that there is a o
in the unbounded connected component of R\ such that V.3 (Zo) = 0. Then, the same
conclusion of Theorem 3.1 holds.

Proof 1In this case, by Proposition 2.4, there is a nonconstant periodic orbit I" of (4) contained
in €. Since ¢ is an equilibrium point which belongs to the unbounded connected component
of R?\, it surely does not belong to A(I") U int(I"), so that Theorem 3.1 applies. O

Corollary 3.4 Let the solutions of (4) be globally defined, and assume that V 7 is periodic
along some vector v € Rz\{O} (i.e., that (7) holds). If there exists a bounded connected open
subset Q2 of R2 such that either (8) or (9) is satisfied, then the same conclusion of Theorem 3.1
holds.

Proof By Proposition 2.4 there is a nonconstant periodic orbit I of (4) contained in €2, and
hence there is an equilibrium point in ¢* € int(I"). By the periodicity assumption, all points
¢* + kv, with k € Z, are still equilibria, hence the conclusion follows from Corollary 3.3. O

Corollary 3.5 Let the solutions of (4) be globally defined, and assume that ¢ has at least two
critical points, one of which is a non-degenerate local minimum or maximum point. Then,
the same conclusion of Theorem 3.1 holds.

Proof We use Proposition 2.6 to find a sufficiently small nonconstant orbit I" surrounding the
non-degenerate local minimum or maximum point, so that the second critical point belongs
to ext(I"). Hence, Theorem 3.1 applies, in view of Remark 2.3. O

Corollary 3.6 Let the solutions of (4) be globally defined, and assume that V 7 is periodic
along some vector v € R*\{0}. If there exists a non-degenerate local minimum or maximum
point &y of H, then the same conclusion of Theorem 3.1 holds.

Proof Tt is a direct consequence of Corollary 3.5. O

‘We now consider the case when the Hamiltonian function .77 is periodic in two different
directions.

Corollary 3.7 Let % be periodic along two linearly independent vectors v, w € R>\{0},
and assume that all its critical points are non-degenerate. Then, the same conclusion of
Theorem 3.1 holds.

Proof By Weierstrass Theorem, there surely are a minimum and a maximum point for .57,
and they are non-degenerate, by assumption. Moreover, V.5 is periodic along the same
vectors v, w, hence bounded, so the solutions of (4) are globally defined. Corollary 3.6 thus
applies. O
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We end this section dealing with the case when the gradient of .# is periodic in two
different directions.

Corollary 3.8 Let V.57 be periodic along two linearly independent vectors v, w € R*\{0}.
Assume that there exist a, B € R such that

o 0
— (v +Aw) - — (Bv+ Aw) <0, forevery A € R,
dv v
and that there exist a, b € R such that

0 0
a—(kv +aw) - —()Lv 4+ bw) <0, forevery: e R.

Then, the same conclusion of Theorem 3.1 holds.

Proof By the periodicity assumptions, V.Z is bounded, so the solutions of (4) are globally
defined. Moreover we can always assume, without loss of generality, that ¢ < 8,a < b,

07 0
— (v +iw) <0< —(Bv+ Aw),
av av
and
o 0
—@Av+aw) <0 < — Qv+ bw),
ow ow
for every A € R. Defining the bounded connected open set

Q={yiwv+nw:a<y <p,a<y <b},
we see that (8) holds, and Corollary 3.4 applies. O

4 Further Existence Results

The aim of this section is to provide the existence of subharmonic solutions in a more specific
setting, which includes as a special case the planar systems generated by scalar second order
differential equations. The final result of the section will indeed be specifically stated for such
type of equations, involving a periodic nonlinearity, thus proving the existence of subharmonic
solutions for a periodically perturbed pendulum-type equation.

As in the previous section, we consider the planar system (12), with the same regularity
assumptions on the Hamiltonian function . : R> — Rand on & : R x R? — R.

Theorem 4.1 Let the solutions of (4) be globally defined, and assume that there exist three
real constants o < < y with the following properties:

Al either

max{%(a y), ()/ y)} <0< %(ﬂ, y), foreveryy R,

or
9 9 J‘f
W(ﬂ,y)<0<min{ (@, y), (V y)} , foreveryy e R;

A2 forx € [a, y], the function y +— S (x, y) is convex;
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A3 there exist two real constants a < b such that

W4 R4
—(x,a) <0< —(x,b), foreveryx € [a, y].
ay ay

Then the same conclusion of Theorem 3.1 holds.
Proof We first notice that, if A2 holds, then A3 is equivalent to

lim 5#(x,y) = +oo, uniformly for x € [«, y].
[yl—o00
Assume the first of the two conditions in A1 holds. We want to construct a bounded connected
open set 2 C Ja, B[ xR satisfying condition (8). Let us introduce the multivalued function
4 which associates to every x € [«, 8] the compact interval

ux)={yeR:2Zx,y) =minA(x,)}.

There exists a p > 0 such that (x) € [—p, p], for every x € [, B]. Indeed, assuming the
contrary, for every positive integer n there would exist a x, € [, f] and a y, € u(x,) with
|yn| > n. But, since 8’5”,(/ (X1, yn) = 0, we would find a contradiction with A2 and A3.

Let us show that p(x) is an upper semicontinuous multivalued function, i.e., that for every
x € [a, Bl and every € > O thereisad > O such that |§ — x| < § implies (§) € B (u(x)).
(Here B;(A) denotes the open e-neighbourhood of the set A.)

Indeed, assume by contradiction that there are x € [«, B], ¢ > 0, a sequence (x,), in
[, B] and a sequence (), in[—p, p]suchthatx, — x,y, € u(x,) anddist(y,, u(x)) > ¢.
Then, up to a subsequence, y, — y, for some y € [—p, p], and dist(y, u(x)) > €. Asa
consequence,

n:=(x,y) —min(x,-) >0.
Fix y € p(x); then, since
H(xn, y) = A (x,y) =minA(x,) and  H(xy, yp) > H(x,y),

for n large enough,
H (3, 3) S Min A (x) + 3 = A6 y) = 5 < H ).

contradicting the fact that 57 (x,,, y,) = min J¢ (x,, -).

By a compactness argument, for every ¢ > 0 there are a finite number of points xi in
[a, B] and corresponding constants §; > 0 such that the open intervals ]x; — 8, xx + k[,
withk =1, ..., n, cover [o, 8] and

X €lxx — O xk +0k[ = p(x) € Be(u(xg)) . 2D
Define

@ = (| 1ox = 631 + 86l < Be(x0) ) 0 (o, B <R).

k=1

This is a bounded connected open subset of R2 and, by Al and (21), condition (8) is satisfied.
By Al and A3, the Poincaré-Miranda Theorem (see, e.g., [6]) ensures the existence of a
point (xg, yo) in ]8, y[ x la, b[ such that Vo (x¢, yo) = (0, 0). The conclusion follows
from Corollary 3.3.

If the second condition in Al holds, one proceeds similarly, defining the multivalued
function w(x) on [B, y] and finding (xo, yo) in Je, B[ X la, b[. O
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As a particular case, let 57 (x, y) = F(x) + G(y), so that system (12) becomes
. 0y . 0
X=g00+83;OJaw, —y=f@0+83;0muw, (22)

where f(x) = F'(x) and g(y) = G' ().
We first assume both functions f, g to be periodic.

Corollary 4.2 Let f, g : R — R be periodic, and assume that

there exist a, B € R such that f(x)f(8) <0,
and that

there exist a, b € R such that g(a)g(b) < 0.
Then, the same conclusion of Theorem 3.1 holds for system (22).

Proof Tt is an immediate consequence of Corollary 3.8. O

We now enter into the framework of Theorem 4.1. We have the following two corollaries.

Corollary 4.3 Let g : R — R be increasing. Assume the existence of a constant C > 0 such
that

If I+ 1gWI = CA + |x[+|y]), foreveryx e Randy € R.
If there exist & < B < y and a < b such that
either max{f (), f(y)} <0 < f(B) or f(B) <0 <min{f(a), f(¥)},
and
gla) <0 < g(),

then the same conclusion of Theorem 3.1 holds for system (22).
Proof Tt is an immediate consequence of Theorem 4.1. O

Corollary 4.4 Let f : R — R be periodic, and assume that
there exist o, B € R such that f (o) f(B) < 0.
Let g : R — R be increasing, assume that

lim sup w < 400,
y|=o0 Y

and that
there exist a < b such that g(a) <0 < g(b).

Then, the same conclusion of Theorem 3.1 holds for system (22).

Proof If f is t-periodic, we can assume without loss of generality that o < 8 < @ + T
and f(a) < 0 < f(B). Moreover, the global existence is guaranteed by the fact that f is
bounded and g has an at most linear growth. Taking y = « + 7, the conclusion follows from
Corollary 4.3. O
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We end this section with an application of the above two corollaries to a scalar differential
equation of the type

F4 fO0) =eplt,x). (23)

Here, f : R — R is continuously differentiable and p : R x R — R is continuous, and
T -periodic in its first variable.

Corollary 4.5 Assume the existence of a constant C > 0 such that
IfI 18 = CA +|x[+ 1y, foreveryx e Randy e R.
If there exist & < B < y such that
either max{f (), f(y)} <0< f(B) or f(B) <0 <min{f(x), f(¥)},
then the same conclusion of Theorem 3.1 holds for system (22).
Proof Equation (23) can be written into the equivalent Hamiltonian system

X=y, —y=f&)—ep x),

whichis of the type (22), with g(y) = y. Corollary 4.3 then applies, yielding to the conclusion.
O

Corollary 4.6 Let f : R — R be periodic, and assume that
there exist a, B € R such that f(x)f(B8) <O0.

Then, the same conclusion of Theorem 3.1 holds for equation (23).

Proof 1t is an immediate consequence of Corollary 4.5, following the argument in the proof
of Corollary 4.4. O

Notice that the above result is optimal since, in the case when p(¢, x) is identically equal
to zero, if f(x) does not change sign, the only possible periodic solutions of (23) are constant.
As an illustrative example, we see that Corollary 4.6 directly applies to the perturbed

pendulum equation
. g .
X+ Zsmx:)\—i-ep(t,x),

when 22¢ < g, yielding the existence of an arbitrarily large number of subharmonic solutions
when |¢| is small enough. We remark that the existence of subharmonic solutions for such
kind of equations has been already considered, e.g., in [5,10,11,15,16,18].

The results of these last two sections can be extended to weakly coupled systems in R?V,
with N > 2. For example, for a system of the type

.. P
X1+ fiky) =6 — (@, x1,...,xN)
dx1

. oP
Iy + fnGey) = — @, x1, ..., xN),
3XN

assuming that the functions f; : R — R are periodic and change sign, we have an arbitrarily
large number of subharmonic solutions, as in the statement of Corollary 1.2.
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5 The Main Result

We are in the position of considering the general system (1) in R>Y. We recall that the
Hamiltonian function H : RZV — R is twice continuously differentiable and satisfies (2),
ie., H(z) = Z,ivzl Hj (zx). Hence, if ¢ = 0, we have the uncoupled planar systems

J¢ = VH(), (24)

withk=1,..., N.
Let us state the main result of this paper.

Theorem 5.1 Assume that the Hamiltonian function H is of the form (2) and that, for ¢ = 0,
the solutions of (1) are globally defined. For every k =1, ..., N, assume that there exists a
nonconstant periodic orbit Ty of (24) such that A(Ty) Uint(I'y) # R?, and let Qy € int(T')
be such that VHy(Qy) = 0.

Let My, ..., My be arbitrary positive integers. Then there is a positive integer m with the
following property: for every integer m > m, there exists e, > 0 such that, if |e| < &y,
system (1) has at least N + 1 distinct mT -periodic solutions z(t), whose components satisfy

Rot (zx; Q; [0, mT]) = My, foreveryk=1,...,N.

Proof Let us first assume that all the orbits 'y rotate clockwise. As seen in the proof of
Theorem 3.1, for each k = 1, ..., N there is a bounded open annulus % for (24) and a
symplectic diffeomorphism Ay : o — Pk, where % is an open annulus of the type
{v e R?: r,i < |v| < rg}, transforming the orbits of (24) in .o% into circular orbits in
Pr, without changing their periods. By the argument in Remark 3.2, we can then find a
positive integer mj with the property that for every m > niy there exists a smaller annulus
PBrkm = {v € R? : Te.m < |v| < Rk m} such that the solutions of the transformed planar
system starting from the interior boundary circle rotate clockwise more than My times in the
time interval [0, mT], while those starting from the exterior boundary circle make less than
one clockwise rotation in the same time interval. Setting

m =max{my,...,my},
for every m > m, we choose
B = eﬂl’m X e X e%’N,m .

We now consider system (1) with arbitrary &, and apply the change of variables v(t) =
A(z(1)) to the solutions lying in & X - - - X &y, where

A@) = (A1(z1), ..., An(zN)) .

Arguing as in the proof of Theorem 3.1, we can modify the transformed Hamiltonian function
and extend it to the whole space R?V, so that the twist properties of each component of the
solutions are preserved when || is small enough. We can thus apply [9, Theorem 1.2] to obtain
the existence of N + 1 distinct mT -periodic solutions v0(1), ..., v (¢) of the transformed
system, whose components satisfy

Rot(v,{;[O,mT]):Mk, forevery k=1,...,N and j =0,...,N.

Moreover, if |¢| is small enough, the orbits of these solutions lie in the region where the
transformed Hamiltonian function has not been modified.
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These solutions are distinct, according to the definition given in the Introduction, since they
are obtained as critical points of a suitable functional ¢ : TV x H — R, using a generalized
Lusternik—Schnirelmann Theorem (see the proof of [9, Theorem 1.2]). Here, TV is the N-
dimensional torus, and H is a suitable Hilbert space. Hence, either all the corresponding
N + 1 critical levels are different, or the set of critical points is not contractible in TV x H.
The claim then follows, since if two solutions v’ (¢) and v/ (¢) are not distinct according to
the definition given in the Introduction, then ¢ (v) = @(v/).

Going back to the original system with the inverse change of variables () = A I @),
we obtain N + 1 distinct m T -periodic solutions of (1), whose components satisfy

Rot(z,{;Qk;[O,mT]):Mk, foreveryk=1,...,N and j=0,...,N.

In the case when some of the orbits I'y rotate counter-clockwise the argument is similar,
the only difference being that the corresponding components of the solutions z/(¢) satisfy
Rot (z1: Qx: [0, mT]) = — M.

The proof is thus completed. O

Clearly enough, Theorem 1.1 follows directly from Theorem 5.1, by the same argument
in the proof of Corollary 3.5.
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