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Abstract
We prove the existence of an arbitrarily large number of subharmonic solutions for a class of
weakly coupledHamiltonian systemswhich includes the casewhen theHamiltonian function
is periodic in all of its variables and its critical points are non-degenerate. Our results are
obtained through a careful analysis of the dynamics of the planar components, combined
with an application of a generalized version of the Poincaré–Birkhoff Theorem.
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1 Introduction

We consider a Hamiltonian system of the type

J ż = ∇H(z) + ε∇P(t, z) , (1)

where J =
(

0 − IN
IN 0

)
denotes the standard 2N × 2N symplectic matrix, the Hamiltonian

function H : R
2N → R is twice continuously differentiable, P : R × R

2N → R is a
continuous function, T -periodic in its first variable and continuously differentiable with
respect to its second variable (with ∇P(t, z) denoting the gradient with respect to z), and ε

is a small real parameter.
Writing z = (x, y), with x = (x1, . . . , xN ) ∈ R

N and y = (y1, . . . , yN ) ∈ R
N , we use

the notation zk = (xk, yk) ∈ R
2, and we assume that there are N functions Hk : R2 → R
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such that

H(z) =
N∑

k=1

Hk(zk) . (2)

Under this assumption, system (1) is said to be weakly coupled, since ε is supposed to be a
small parameter.

We are looking for subharmonic solutions, i.e., periodic solutions z : R → R
2N whose

minimal period is mT , for some integer m ≥ 2. Clearly enough, under the sole above
assumptions the existence of these solutions is not guaranteed, as the simple example H =
P = 0 shows; this is why, for this kind of problem, some further assumptions are necessary.

In [4], Conley and Zehnder consider a general Hamiltonian system of the type

J ż = ∇H(t, z) , (3)

assuming the Hamiltonian function H to be T -periodic in t and also periodic in all its
remaining variables, a setting already adopted by the same authors in [3]. They ask all the
iterates of the possible T -periodic solutions of the Hamiltonian system to be non-degenerate;
in other words, if z(t) is a T -periodic solution of (3), denoting by Z(t) the 2N × 2N matrix
solution of

J Ż = H ′′
z (t, z(t)) Z , Z(0) = Id ,

the number 1 cannot be an eigenvalue of Z(mT ), for any integer m ≥ 1. Under these
assumptions, it is proved in [4] that for any sufficiently large prime number m there is a
periodic solution having minimal period mT . (See also [10,12,14,17] for similar results.)
Although their non-degeneracy assumption seems to be generically satisfied (see e.g. [15]),
it is very difficult to verify it in concrete examples.

We are looking here for some conditions which can be more easily checked in practice.
For instance, we will prove that if the function H of the form (2) is periodic in all its variables
and has only non-degenerate critical points, then for ε small enough system (1) has a large
number of subharmonic solutions, whose planar components perform a prescribed number
of rotations in their period time. (We recall that Q is a non-degenerate critical point of the
Hamiltonian function H if det H ′′(Q) �= 0.)

In order to precisely state our results, let us first recall the definition of rotation number
associated with a planar curve, around a point Q. For τ1 < τ2, let ζ : [τ1, τ2] → R

2

be continuously differentiable and such that ζ(t) �= Q, for every t ∈ [τ1, τ2]. Writing
ζ(t) = Q + ρ(t)(cos θ(t), sin θ(t)), with ρ(t) > 0 and θ(t) continuous functions, one has

Rot (ζ ; Q; [τ1, τ2]) = −θ(τ2) − θ(τ1)

2π
.

If Q is the origin, we will simply write Rot (ζ ; [τ1, τ2]).
We can now present our first result.

Theorem 1.1 Assume that theHamiltonian function H, of the form (2), has at least two critical
points, one of which is a non-degenerate local minimum point Q = (Q1, . . . ,QN ) ∈ R

2N .
In addition assume that, for ε = 0, the solutions of (1) are globally defined.
Let M1, . . . , MN be arbitrary positive integers. Then, there is a positive integer m with the
following property: for every integer m ≥ m, there exists εm > 0 such that, if |ε| ≤ εm,
system (1) has at least N + 1 distinct mT -periodic solutions z(t), whose components satisfy

Rot (zk;Qk; [0,mT ]) = Mk , for every k = 1, . . . , N .
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Taking into account (2), in Theorem 1.1 we are assuming that all the functions Hk have
at least two critical points, one of which is a non-degenerate local minimum point. A similar
statement holds in the case when there is a non-degenerate local maximum point, taking
M1, . . . , MN to be negative integers.

Let us clarify what we mean by distinct subharmonic solutions. Being the nonlinearities
T -periodic in t , once an mT -periodic solution z(t) has been found, many others appear by
just making a shift in time, thus giving rise to the periodicity class

z(t), z(t + T ), z(t + 2T ) , . . . , z(t + (m − 1)T ) .

We say that two mT -periodic solutions are distinct if they are not related to each other in
such a way.

As already noticed in [8], if at least one of the components of a solution z(t)makes exactly
one rotation in its period timemT , then necessarily this solution hasminimal period equal to
mT . As a consequence, if N ≥ 2, there will be a myriad of periodic solutions havingminimal
period mT : when one of the components performs exactly one rotation, the others rotate an
arbitrary number of times. We thus have the following direct consequence of Theorem 1.1.

Corollary 1.2 Under the assumptions of Theorem 1.1, let N ≥ 2 and fix an arbitrary positive
integer ℵ. Then, there is a positive integer m with the following property: for every integer
m ≥ m, there exists εm > 0 such that, if |ε| ≤ εm, system (1) has at least ℵ distinct periodic
solutions with minimal period mT .

We then easily deduce the following result.

Corollary 1.3 Let N ≥ 2, and assume that the Hamiltonian function H is of the form (2), it is
periodic with respect to all variables xk and yk , and all its critical points are non-degenerate.
Then, the same conclusion of Corollary 1.2 holds.

Indeed, by Weierstrass Theorem, there surely is a minimum point for H , and it is non-
degenerate, by assumption. Moreover, being ∇H periodic in all its variables, it is bounded,
so the solutions of (1) with ε = 0 are globally defined. Corollary 1.2 thus applies.

Let us compare this result with the above quoted one by Conley and Zehnder. Clearly,
we have a strong restriction in dealing here only with weakly coupled systems, while in
[4] the general Hamiltonian system (3) was studied. However, the non-degeneracy is now
assumed only on the critical points of H , a condition which is rather easy to verify in practice.
Moreover, we now have, for any sufficiently large integer m, an arbitrarily large number of
periodic solutions having minimal period mT , provided that ε is chosen sufficiently small.
Notice also that we do not require the function P(t, z) to be periodic in the space variables.

We also recall that a perturbation theory has been developed in the literature for nearly
integrable Hamiltonian systems (see, e.g. [1,5]). However, we emphasize that our results are
not of perturbative type, since the periodic solutions we find do not bifurcate from some
particular solution of the uncoupled system corresponding to ε = 0.

Let us also remark that the name subharmonic has been sometimes used in the literature
with a different meaning (see, e.g., [2]), i.e., to indicate a mT -periodic solution, with m ≥ 2,
which is not kT -periodic, for any integer k ∈ {1, . . . ,m−1}. These solutions, however, need
not have minimal period mT .

The paper is organized as follows. The next three sections are devoted to the study of
planar Hamiltonian systems, providing some new existence results in this setting. In Sect. 2
we develop some preliminaries on autonomous Hamiltonian systems, which will be used in
the subsequent existence theorems. In Sect. 3we prove ourmain result for planarHamiltonian
systems, followed by some useful corollaries. In Sect. 4 we analyse in detail some more
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specific systems, and propose more explicit conditions so to get the existence of subharmonic
solutions. In particular, we obtain an existence result for scalar second order equations which
turns out to be optimal. Finally, in Sect. 5 we provide a generalization of Theorem 1.1 along
the lines developed in the previous sections.

2 Some Preliminaries on Autonomous Planar Hamiltonian Systems

In this section we concentrate on autonomous planar Hamiltonian systems of the type

J ζ̇ = ∇H (ζ ) , (4)

whereH : R2 → R is a twice continuously differentiable function. We are first interested in
the dynamics near a nonconstant periodic solution.We recall that the orbit� of such a solution
is a Jordan curve, so that R2\� is the disjoint union of two open connected sets, int(�), the
“interior” set, which is bounded, and ext(�), the “exterior” set, which is unbounded. As we
now recall, such a solution “generates” a period annulus, i.e., a connected set in the plane
(which may be unbounded) covered by orbits of nonconstant periodic solutions.

Proposition 2.1 Any nonconstant periodic orbit of (4) is contained in the interior of a period
annulus.

Proof Let ζ ∗(t) be a nonconstant periodic solution of (4), with minimal period τ ∗ > 0, and
set h∗ = H (ζ ∗(t)) (recall that the Hamiltonian is constant along the orbits). We know that
∇H (ζ ∗(t)) �= 0 for every t ∈ [0, τ ∗], hence, by continuity and compactness, there is an
open neighborhood U∗ of the orbit of ζ ∗ on which ∇H remains away from 0. ��

Let us consider in U∗ the system

ż = ∇H (z)

|∇H (z)| , (5)

and for every s ∈ R let zs(t) be the solution of (5) satisfying zs(0) = ζ ∗(s). We can then fix
δ > 0 such that the set

U∗∗ = {zs(t) : t ∈ [−δ, δ] and s ∈ [0, τ ∗]}
is contained in U∗. Let f , g : [0, τ ∗] → R be the continuous functions defined by

f (s) = min{H (zs(t)) : t ∈ [−δ, δ]} , g(s) = max{H (zs(t)) : t ∈ [−δ, δ]} .

Since ∇H �= 0 on U∗, the function t 
→ H (zs(t)) is strictly increasing on [−δ, δ], for
every s ∈ [0, τ ∗], hence f (s) < h∗ < g(s), for every s ∈ [0, τ ∗]. Then, defining

h∗− = max{ f (s) : s ∈ [0, τ ∗]} , h∗+ = min{g(s) : s ∈ [0, τ ∗]} ,

we have that h∗− < h∗ < h∗+, and

H (zs(−δ)) ≤ h∗− , H (zs(δ)) ≥ h∗+ , for every s ∈ [0, τ ∗] .
The set U∗∗ ∩ H −1( ]h∗−, h∗+[ ) contains the orbit of ζ ∗, it is open and arcwise connected;
to conclude the proof, we need to show that every solution of (4) starting from this set is
periodic.

Fix any h
 ∈ ]h∗−, h∗+[ , any P ∈ U∗∗ ∩H −1(h
), and let ζ(t) be the solution of (4) such
that ζ(0) = P . Since H (ζ(t)) = h
 for every t ∈ R and ζ(0) ∈ U∗∗, by the choice of h∗−
and h∗+, it has to be that ζ(t) ∈ U∗∗ for every t ∈ R, hence ζ(t) is bounded. Therefore, by
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the Poincaré–Bendixson Theorem, the ω-limit of ζ is a periodic orbit. Let us show that ω(ζ )

coincides with the orbit of ζ itself. First notice that ω(ζ ) ⊆ H −1(h
). Next, let Q ∈ ω(ζ ).
By the Implicit Function Theorem, there is an r > 0 such that the setH −1(h
)∩ B(Q, r) is
the graph of a C1-function, hence it is an arc of the periodic orbit ω(ζ ). On the other hand,
being Q in ω(ζ ), by definition there is a sequence (Qn)n in the orbit of ζ which belongs to
H −1(h
) ∩ B(Q, r). Then Qn belongs both to the orbit of ζ and to ω(ζ ), which is also an
orbit of (4). Therefore, the orbit of ζ must coincide with ω(ζ ). We have thus shown that ζ(t)
is periodic. ��

In the following, we will denote by A(�) the maximal period annulus determined by
a nonconstant periodic orbit �, i.e., the maximal connected set covered by the orbits of
nonconstant periodic solutions containing�. By Proposition 2.1,A(�) is an open set. Clearly,
it may be unbounded, but it cannot coincide with the whole space R2, since it is well-known
that, when there is a nonconstant periodic orbit �, there must exist an equilibrium point in
int(�). By Hopf’s Theorem (theUmlaufsatz [13]), we can associate a direction of rotation to
the nonconstant periodic solution ζ ∗(t), according to whether the degree of its derivative is
+1 or−1; in the first case, we say that the solution rotates clockwise, while in the second case
it rotates counter-clockwise. Since the period annulus is connected, all the periodic solutions
contained in it have the same direction of rotation.

We denote by T (ζ0) the period of the solution with initial position ζ0 = ζ(0) in A(�) (in
the following, the “period” of a solution of an autonomous system is always meant to be its
minimal period). It is well-known that, since H is a C2-function, the function ζ0 
→ T (ζ0)

is continuously differentiable on A(�). The periods of all the orbits in A(�) thus determine
what we will call the associated period interval I(�).

Proposition 2.2 Let� beanonconstant periodic orbit of (4), andassume thatA(�)∪int(�) �=
R
2. If the solutions of (4) are globally defined, then I(�) is unbounded. More precisely, the

periods of the orbits of (4) in A(�) ∩ ext(�) cover an unbounded interval.

Proof Let P be a point belonging to �, and v be a vector such that P + v /∈ A(�) ∪ int(�).
Consider the set of points pλ = P + λv, with λ ∈ [0, 1], i.e., the segment joining P with
P + v, and set

α = max{λ ∈ [0, 1] : pλ ∈ �} , λ̄ = sup{λ ∈ [α, 1] : pλ ∈ A(�)} .

By Proposition 2.1, we know that λ̄ > α. ��
For λ ∈ [α, 1], let ζλ(t) be the solution of (4) satisfying the initial condition ζλ(0) = pλ.

Denoting by τ(λ) the period of ζλ(t), with λ ∈ [α, λ̄[ , we want to prove that

lim
λ→λ̄−

τ(λ) = +∞ .

By contradiction, assume that there is an increasing sequence (λn)n such that λn → λ̄ and
(τ (λn))n remains bounded. Then, for a subsequence, keeping the same notation, τ(λn) → τ̄ ,
for some τ̄ ∈ [0,+∞[ . Since the solutions of (4) are globally defined, the set

K = {ζλ(t) : λ ∈ [α, 1], t ∈ [0, τ̄ + 1]}
is compact in R2. For n large enough, the orbit of ζλn (t) is contained in the set K . Moreover,
there is a constant c̄ > 0 such that

|∇H (ζ )| ≤ c̄ , for every ζ ∈ K . (6)
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Let Q �= P be another point belonging to �. Observing that, when λ varies in ]α, λ̄[ , the
orbit of ζλ(t) belongs to the period annulus associated to � and is contained in ext(�), it is
easy to see, using (6), that

τ̄ ≥ 2|Q − P|
c̄

.

So, τ̄ cannot be equal to zero.
By (6), the sequence (ζλn )n is equi-uniformly continuous on [0, τ̄ + 1], and we know that

it is uniformly bounded. By the Ascoli–Arzelà Theorem, there is a subsequence, for which
we maintain the same notation, and a continuous function ζ̄ : [0, τ̄ + 1] → R

2 such that
ζλn (t) → ζ̄ (t), uniformly on [0, τ̄ +1]. By a standard argument, ζ̄ (t) is a τ̄ -periodic solution
of (4), and ζ̄ (0) = pλ̄. By Proposition 2.1, the orbit of ζ̄ (t) is contained in the interior of a
period annulus, contradicting the definition of λ̄. ��
Remark 2.3 The assumption A(�) ∪ int(�) �= R

2 is verified if, e.g., (4) has an equilibrium
point in ext(�). This situation surely occurs if∇H : R2 → R

2 is periodic along some vector
v ∈ R

2\{0}, i.e.,
∇H (ζ + v) = ∇H (ζ ) , for every ζ ∈ R

2. (7)

Indeed, in this case, for a sufficiently large integer n, the curve �n = � + nv is a periodic
orbit of (4), with int(�n) ⊆ ext(�), and we know that there is an equilibrium point in int(�n).

In order to provide the existence of a nonconstant periodic solution of (4), we will need
the following result.

Proposition 2.4 Let � be a bounded connected open subset of R2 such that, either

min
∂�

H > min
�

H , (8)

or

max
∂�

H < max
�

H . (9)

Then, there exists a nonconstant periodic solution of (4) whose orbit is contained in �.

Proof Let us assume (8). By Sard’s Lemma, there exists a c ∈ R such that

min
�

H < c < min
∂�

H , (10)

and

∇H (ζ ) �= 0 , for every ζ ∈ H −1(c) . (11)

Fix ζ0 ∈ � ∩ H −1(c) and let ζ(t) be the solution of (4) such that ζ(0) = ζ0. Since
H (ζ(t)) = c for every t ∈ R, by (10) it has to be that ζ(t) ∈ �, for every t ∈ R. By
the Poincaré–Bendixson Theorem, the ω-limit of ζ is either a nonconstant periodic orbit, or
contains an equilibrium point. But the second possibility is excluded, because of (11). Hence,
it is a nonconstant periodic orbit which, by (10), is contained in �.

The case when (9) holds can be treated in a similar way. ��
Remark 2.5 Condition (8) is surely verified if ∂� is smooth and

〈∇H (ζ ), ν(ζ )〉 > 0 , for every ζ ∈ ∂� ,

where ν(ζ ) denotes the outward unit normal to ∂� at ζ . A similar observation holds for (9),
reversing the inequality.
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In the following, we say that a critical point ζ0 ∈ R
2 of H is non-degenerate if

detH ′′(ζ0) �= 0.

Proposition 2.6 Let ζ0 be a non-degenerate local minimum point ofH . Then, in any neigh-
bourhood of ζ0 there exists a nonconstant periodic solution of (4), rotating in clockwise
sense. Similarly if ζ0 is a non-degenerate local maximum point of H , the nonconstant peri-
odic solutions rotating in counter-clockwise sense in this case.

Proof Being ∇H (ζ0) = 0, we can write

H (ζ ) = H (ζ0) + 〈H ′′(ζ0 + ξ(ζ − ζ0))(ζ − ζ0), ζ − ζ0〉 ,

for some ξ ∈ ]0, 1[ . The conclusion easily follows from Proposition 2.4, taking � =
B(ζ0, ρ), with ρ > 0 sufficiently small. ��

3 Subharmonic Solutions in the Plane

We consider the time-dependent planar Hamiltonian system

J ζ̇ = ∇H (ζ ) + ε∇P(t, ζ ) . (12)

Here, the Hamiltonian function H : R
2 → R is twice continuously differentiable, P :

R × R
2 → R is a continuous function, T -periodic in its first variable and continuously

differentiable with respect to ζ = (x, y), and ε is a small real parameter. We denote by
∇P(t, ζ ) the gradient with respect to ζ .

Theorem 3.1 Let the solutions of (4) be globally defined, and assume that there exists a
nonconstant periodic orbit � of (4) such that A(�) ∪ int(�) �= R

2. Then, there exists an
integer m ≥ 2 such that, for every integer m ≥ m, there is a ε̄m > 0 with the following
property: if |ε| ≤ ε̄m, then system (12) has at least two periodic solutions having minimal
period mT .

Proof We first concentrate on the autonomous system (4), corresponding to (12) with ε = 0.
To fix the ideas, assume for instance that the orbit � rotates clockwise. By Propositions 2.1
and 2.2, � generates a period annulus A(�), and the periods of the orbits of (4) in A(�) ∩
ext(�) cover an interval [τ̂ ,+∞[ . Let �̂ be an orbit in A(�) ∩ ext(�) with period τ̂ . Let
m be the minimal positive integer such that mT > τ̂ , and take m ≥ m. Let �m be an orbit
in A(�) ∩ ext(�̂) with period mT . Finally, let �̃ be an orbit in A(�) ∩ ext(�m) with period
τ̃ > mT . The orbits �̂ and �̃ determine a bounded open annulus A in the plane.

We can now proceed as in [7, Lemma 4.3] and construct a symplectic diffeomorphism
� : A → B, whereB is an open annulus of the type {v ∈ R

2 : ri < |v| < re}, such that the
change of variables v(t) = �(ζ(t)) transforms the orbits of the autonomous system (4) inA
into the orbits inB of a Hamiltonian systemwith Hamiltonian functionL(v) = H (�−1(v)),
with ∇L(v) = 2π

T (�−1(v))
v, while preserving their periods. Notice that L : B → R is a C2-

function. We thus have the new system

J v̇ = 2π

T (�−1(v))
v . (13)

All the orbits of this system are circular, and the periods vary in an interval containing ]τ̂ , τ̃ [ .
In particular, the periods of those lying near the circle of radius ri are close to τ̂ , while the
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periods of those lying near the circle of radius re are close to τ̃ . The orbit �m is transformed
into a circle of radius rm ∈ ]ri , re[ , whose period is still equal to mT .

The same change of variables translates the solutions of the perturbed system (12) lying
in A into solutions of a Hamiltonian system with Hamiltonian function

Lε(t, v) = L(v) + εP(t,�−1(v)) ,

defined onR×B.We nowmodify and extend fromB to the whole planeR2 this Hamiltonian
function. We fix some numbers r ′

i , r
′
e, r

′′
i , r ′′

e , with

ri < r ′
i < r ′′

i < rm < r ′′
e < r ′

e < re ,

and in such a way that, denoting by τ(r ′′
i ), τ(r ′′

e ) the periods of the circular orbits of (13)
with radius r ′′

i , r
′′
e , respectively, we have that

τ(r ′′
i ) < mT < τ(r ′′

e ) . (14)

Consider a C∞-function χ : [0,+∞[→ [0, 1] , whose support is contained in ]ri , re[ ,
such that χ(r) = 1 when r ∈ [r ′

i , r
′
e], and let L̃ε : R × R

2 → R be defined as

L̃ε(t, v) =
⎧⎨
⎩

χ(|v|)Lε(t, v) if v ∈ B,

0 if v ∈ R
2\B.

This is a continuous function, T -periodic in its first variable, and continuously differentiable
in its second variable. We can then consider the Hamiltonian system

J v̇ = ∇L̃ε(t, v) . (15)

Notice that all the points in R
2\B are equilibria for (15). Moreover, if ε = 0, system (15)

coincides with (13) on

B ′ = {v ∈ R
2 : r ′

i ≤ |v| ≤ r ′
e} .

Let us see how the solutions of (15) behave when starting from the set

B ′′ = {v ∈ R
2 : r ′′

i ≤ |v| ≤ r ′′
e } .

If ε = 0, we know from (14) that the solutions v(t) of (13) starting with |v(0)| = r ′′
i rotate

clockwise more than once in the time interval [0,mT ], while those starting with |v(0)| = r ′′
e

make less than one clockwise rotation in the same time interval. In symbols we thus have,
for the solutions of (15),

[
ε = 0 and |v(0)| = r ′′

i

] ⇒ Rot (v; [0,mT ]) > 1 ,[
ε = 0 and |v(0)| = r ′′

e

] ⇒ Rot (v; [0,mT ]) < 1 .
(16)

We claim that, for ε small enough, the solutions of (15) starting with v(0) ∈ B ′′ will be such
that

v(t) ∈ B ′, for every t ∈ [0,mT ] . (17)

Indeed, since L is twice continuously differentiable onB, andB ′ is a compact subset ofB,
there are two constants C > 0 and L > 0 such that

|∇L(v1) − ∇L(v2)| ≤ L|v1 − v2| , for every v1, v2 ∈ B ′, (18)
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and

|∇(P(t, ·) ◦ �−1)(v)| ≤ C , for every (t, v) ∈ R × B ′. (19)

Fix ε̃ > 0 such that

ε̃ <
1

CmTeLmT
min{r ′′

i − r ′
i , r

′
e − r ′′

e } , (20)

and assume that |ε| ≤ ε̃. Let v(t) be a solution of (15) with v(0) ∈ B ′′, letw(t) be a solution
of (13) with w(0) = v(0), and let t ∈ [0,mT ] be such that v(s) ∈ B ′ for every s ∈ [0, t].
Then, by (18) and (19),

|v(t) − w(t)| =
∣∣∣∣
∫ t

0
J∇L̃ε(s, v(s)) − J∇L(w(s)) ds

∣∣∣∣

≤
∫ t

0
|∇L(v(s)) − ∇L(w(s))| ds +

+ε

∫ t

0
|∇(P(s, ·) ◦ �−1)(v(s))| ds

≤ L
∫ t

0
|v(s) − w(s)| ds + εCmT .

By Gronwall Lemma,

|v(t) − w(t)| ≤ εCmTeLt ≤ ε̃CmTeLmT ,

showing that v(t) /∈ ∂B ′, by (20). This proves that, if |ε| ≤ ε̃, the solution v(t) remains in
B ′ for every t ∈ [0,mT ].

Then, by (16) and (19), there exists ε̄ ∈ ]0, ε̃ ] such that
[ |ε| ≤ ε̄ and |v(0)| = r ′′

i

] ⇒ Rot (v; [0,mT ]) > 1 ,[ |ε| ≤ ε̄ and |v(0)| = r ′′
e

] ⇒ Rot (v; [0,mT ]) < 1 .

Hence, we can apply the generalized version of the Poincaré–Birkhoff Theorem in [9, The-
orem 1.2] (which does not require the uniqueness for initial value problems), providing the
existence of two distinctmT -periodic solutions v1(t), v2(t) of (15), with v1(0), v2(0) ∈ B ′′,
such that

Rot (v j ; [0,mT ]) = 1 , for every j = 1, 2 .

The minimal period of these solutions is mT and, by the above considerations,

v j (t) ∈ B ′, for every t ∈ [0,mT ] .
Hence, since L̃ε(t, v) = Lε(t, v)when v ∈ B ′, by the inverse change of variables we obtain
two distinct periodic solutions of the original system (12),

ζ j (t) = �−1(v j (t)) , with j = 1, 2 ,

both having minimal period mT . ��
Remark 3.2 In the above proof, assuming that the orbit � rotates clockwise, we could fix
an arbitrary positive integer M and choose m to be the minimal positive integer such that
mT > M τ̂ . Then, taking m ≥ m, it is possible to find r ′′

i < rm < r ′′
e such that the orbit

of (13) with radius r ′′
i has a smaller period than mT /M , while the period of the orbit with
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radius r ′′
e is greater than mT . The corresponding annulus B ′′ is such that the solutions v(t)

starting with |v(0)| = r ′′
i rotate clockwise more than M times in the time interval [0,mT ],

while those starting with |v(0)| = r ′′
e make less than one clockwise rotation in the same time

interval. We thus eventually find two mT -periodic solutions of (15) such that

Rot (v j ; [0,mT ]) = M , for every j = 1, 2 .

A similar argument holds when the orbit � rotates counter-clockwise, provided that M is
negative. This remark will be useful in the proof of Theorem 1.1.

We now provide some useful corollaries of Theorem 3.1.

Corollary 3.3 Let the solutions of (4) be globally defined, assume that there exists a bounded
connected open subset � of R2 such that either (8) or (9) is satisfied, and that there is a ζ0
in the unbounded connected component of R2\� such that ∇H (ζ0) = 0. Then, the same
conclusion of Theorem 3.1 holds.

Proof In this case, by Proposition 2.4, there is a nonconstant periodic orbit� of (4) contained
in�. Since ζ0 is an equilibrium point which belongs to the unbounded connected component
of R2\�, it surely does not belong to A(�) ∪ int(�), so that Theorem 3.1 applies. ��
Corollary 3.4 Let the solutions of (4) be globally defined, and assume that ∇H is periodic
along some vector v ∈ R

2\{0} (i.e., that (7) holds). If there exists a bounded connected open
subset� ofR2 such that either (8) or (9) is satisfied, then the same conclusion of Theorem 3.1
holds.

Proof By Proposition 2.4 there is a nonconstant periodic orbit � of (4) contained in �, and
hence there is an equilibrium point in ζ ∗ ∈ int(�). By the periodicity assumption, all points
ζ ∗ + kv, with k ∈ Z, are still equilibria, hence the conclusion follows from Corollary 3.3. ��
Corollary 3.5 Let the solutions of (4) be globally defined, and assume thatH has at least two
critical points, one of which is a non-degenerate local minimum or maximum point. Then,
the same conclusion of Theorem 3.1 holds.

Proof We use Proposition 2.6 to find a sufficiently small nonconstant orbit � surrounding the
non-degenerate local minimum or maximum point, so that the second critical point belongs
to ext(�). Hence, Theorem 3.1 applies, in view of Remark 2.3. ��
Corollary 3.6 Let the solutions of (4) be globally defined, and assume that ∇H is periodic
along some vector v ∈ R

2\{0}. If there exists a non-degenerate local minimum or maximum
point ζ0 of H , then the same conclusion of Theorem 3.1 holds.

Proof It is a direct consequence of Corollary 3.5. ��
We now consider the case when the Hamiltonian function H is periodic in two different

directions.

Corollary 3.7 Let H be periodic along two linearly independent vectors v,w ∈ R
2\{0},

and assume that all its critical points are non-degenerate. Then, the same conclusion of
Theorem 3.1 holds.

Proof By Weierstrass Theorem, there surely are a minimum and a maximum point for H ,
and they are non-degenerate, by assumption. Moreover, ∇H is periodic along the same
vectors v,w, hence bounded, so the solutions of (4) are globally defined. Corollary 3.6 thus
applies. ��
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We end this section dealing with the case when the gradient of H is periodic in two
different directions.

Corollary 3.8 Let ∇H be periodic along two linearly independent vectors v,w ∈ R
2\{0}.

Assume that there exist α, β ∈ R such that

∂H

∂v
(αv + λw) · ∂H

∂v
(βv + λw) < 0 , for every λ ∈ R ,

and that there exist a, b ∈ R such that

∂H

∂w
(λv + aw) · ∂H

∂w
(λv + bw) < 0 , for every λ ∈ R .

Then, the same conclusion of Theorem 3.1 holds.

Proof By the periodicity assumptions, ∇H is bounded, so the solutions of (4) are globally
defined. Moreover we can always assume, without loss of generality, that α < β, a < b,

∂H

∂v
(αv + λw) < 0 <

∂H

∂v
(βv + λw) ,

and

∂H

∂w
(λv + aw) < 0 <

∂H

∂w
(λv + bw) ,

for every λ ∈ R. Defining the bounded connected open set

� = {γ1v + γ2w : α < γ1 < β, a < γ2 < b} ,

we see that (8) holds, and Corollary 3.4 applies. ��

4 Further Existence Results

The aim of this section is to provide the existence of subharmonic solutions in a more specific
setting, which includes as a special case the planar systems generated by scalar second order
differential equations. The final result of the section will indeed be specifically stated for such
typeof equations, involving aperiodic nonlinearity, thus proving the existence of subharmonic
solutions for a periodically perturbed pendulum-type equation.

As in the previous section, we consider the planar system (12), with the same regularity
assumptions on the Hamiltonian function H : R2 → R and on P : R × R

2 → R.

Theorem 4.1 Let the solutions of (4) be globally defined, and assume that there exist three
real constants α < β < γ with the following properties:

A1 either

max

{
∂H

∂x
(α, y),

∂H

∂x
(γ, y)

}
< 0 <

∂H

∂x
(β, y) , for every y ∈ R ,

or

∂H

∂x
(β, y) < 0 < min

{
∂H

∂x
(α, y),

∂H

∂x
(γ, y)

}
, for every y ∈ R ;

A2 for x ∈ [α, γ ], the function y 
→ H (x, y) is convex;
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A3 there exist two real constants a < b such that

∂H

∂ y
(x, a) < 0 <

∂H

∂ y
(x, b) , for every x ∈ [α, γ ] .

Then the same conclusion of Theorem 3.1 holds.

Proof We first notice that, if A2 holds, then A3 is equivalent to

lim|y|→∞H (x, y) = +∞ , uniformly for x ∈ [α, γ ] .

Assume the first of the two conditions in A1 holds.Wewant to construct a bounded connected
open set � ⊂]α, β[×R satisfying condition (8). Let us introduce the multivalued function
μ which associates to every x ∈ [α, β] the compact interval

μ(x) = {y ∈ R : H (x, y) = minH (x, ·)} .

There exists a ρ > 0 such that μ(x) ⊆ [−ρ, ρ], for every x ∈ [α, β]. Indeed, assuming the
contrary, for every positive integer n there would exist a xn ∈ [α, β] and a yn ∈ μ(xn) with
|yn | > n. But, since ∂H

∂ y (xn, yn) = 0, we would find a contradiction with A2 and A3.
Let us show thatμ(x) is an upper semicontinuous multivalued function, i.e., that for every

x ∈ [α, β] and every ε > 0 there is a δ > 0 such that |ξ − x | < δ implies μ(ξ) ⊆ Bε(μ(x)).
(Here Bε(A) denotes the open ε-neighbourhood of the set A.)

Indeed, assume by contradiction that there are x ∈ [α, β], ε > 0, a sequence (xn)n in
[α, β] and a sequence (yn)n in [−ρ, ρ] such that xn → x , yn ∈ μ(xn) and dist(yn, μ(x)) ≥ ε.
Then, up to a subsequence, yn → y, for some y ∈ [−ρ, ρ], and dist(y, μ(x)) ≥ ε. As a
consequence,

η := H (x, y) − minH (x, ·) > 0 .

Fix ȳ ∈ μ(x); then, since

H (xn, ȳ) → H (x, ȳ) = minH (x, ·) and H (xn, yn) → H (x, y) ,

for n large enough,

H (xn, ȳ) ≤ minH (x, ·) + η

2
= H (x, y) − η

2
< H (xn, yn) ,

contradicting the fact that H (xn, yn) = minH (xn, ·).
By a compactness argument, for every ε > 0 there are a finite number of points xk in

[α, β] and corresponding constants δk > 0 such that the open intervals ]xk − δk, xk + δk[ ,
with k = 1, . . . , n, cover [α, β] and

x ∈ ]xk − δk, xk + δk[ ⇒ μ(x) ⊆ Bε(μ(xk)) . (21)

Define

� =
( n⋃
k=1

]xk − δk, xk + δk[×Bε(μ(xk))
)

∩ ( ]α, β[×R
)
.

This is a bounded connected open subset ofR2 and, by A1 and (21), condition (8) is satisfied.
By A1 and A3, the Poincaré–Miranda Theorem (see, e.g., [6]) ensures the existence of a
point (x0, y0) in ]β, γ [× ]a, b[ such that ∇H (x0, y0) = (0, 0). The conclusion follows
from Corollary 3.3.

If the second condition in A1 holds, one proceeds similarly, defining the multivalued
function μ(x) on [β, γ ] and finding (x0, y0) in ]α, β[× ]a, b[ . ��
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As a particular case, let H (x, y) = F(x) + G(y), so that system (12) becomes

ẋ = g(y) + ε
∂P

∂ y
(t, x, y) , −ẏ = f (x) + ε

∂P

∂x
(t, x, y) , (22)

where f (x) = F ′(x) and g(y) = G ′(y).
We first assume both functions f , g to be periodic.

Corollary 4.2 Let f , g : R → R be periodic, and assume that

there exist α, β ∈ R such that f (α) f (β) < 0 ,

and that

there exist a, b ∈ R such that g(a)g(b) < 0 .

Then, the same conclusion of Theorem 3.1 holds for system (22).

Proof It is an immediate consequence of Corollary 3.8. ��
We now enter into the framework of Theorem 4.1. We have the following two corollaries.

Corollary 4.3 Let g : R → R be increasing. Assume the existence of a constant C > 0 such
that

| f (x)| + |g(y)| ≤ C(1 + |x | + |y|) , for every x ∈ R and y ∈ R .

If there exist α < β < γ and a < b such that

either max{ f (α), f (γ )} < 0 < f (β) or f (β) < 0 < min{ f (α), f (γ )} ,

and

g(a) < 0 < g(b) ,

then the same conclusion of Theorem 3.1 holds for system (22).

Proof It is an immediate consequence of Theorem 4.1. ��
Corollary 4.4 Let f : R → R be periodic, and assume that

there exist α, β ∈ R such that f (α) f (β) < 0 .

Let g : R → R be increasing, assume that

lim sup
|y|→∞

g(y)

y
< +∞ ,

and that

there exist a < b such that g(a) < 0 < g(b) .

Then, the same conclusion of Theorem 3.1 holds for system (22).

Proof If f is τ -periodic, we can assume without loss of generality that α < β < α + τ

and f (α) < 0 < f (β). Moreover, the global existence is guaranteed by the fact that f is
bounded and g has an at most linear growth. Taking γ = α + τ , the conclusion follows from
Corollary 4.3. ��
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We end this section with an application of the above two corollaries to a scalar differential
equation of the type

ẍ + f (x) = εp(t, x) . (23)

Here, f : R → R is continuously differentiable and p : R × R → R is continuous, and
T -periodic in its first variable.

Corollary 4.5 Assume the existence of a constant C > 0 such that

| f (x)| + |g(y)| ≤ C(1 + |x | + |y|) , for every x ∈ R and y ∈ R .

If there exist α < β < γ such that

either max{ f (α), f (γ )} < 0 < f (β) or f (β) < 0 < min{ f (α), f (γ )} ,

then the same conclusion of Theorem 3.1 holds for system (22).

Proof Equation (23) can be written into the equivalent Hamiltonian system

ẋ = y , −ẏ = f (x) − εp(t, x) ,

which is of the type (22),with g(y) = y. Corollary 4.3 then applies, yielding to the conclusion.
��

Corollary 4.6 Let f : R → R be periodic, and assume that

there exist α, β ∈ R such that f (α) f (β) < 0 .

Then, the same conclusion of Theorem 3.1 holds for equation (23).

Proof It is an immediate consequence of Corollary 4.5, following the argument in the proof
of Corollary 4.4. ��

Notice that the above result is optimal since, in the case when p(t, x) is identically equal
to zero, if f (x) does not change sign, the only possible periodic solutions of (23) are constant.

As an illustrative example, we see that Corollary 4.6 directly applies to the perturbed
pendulum equation

ẍ +
√
g

�
sin x = λ + εp(t, x) ,

when λ2� < g, yielding the existence of an arbitrarily large number of subharmonic solutions
when |ε| is small enough. We remark that the existence of subharmonic solutions for such
kind of equations has been already considered, e.g., in [5,10,11,15,16,18].

The results of these last two sections can be extended to weakly coupled systems in R2N ,
with N ≥ 2. For example, for a system of the type

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẍ1 + f1(x1) = ε
∂P

∂x1
(t, x1, . . . , xN )

· · ·
ẍN + fN (xN ) = ε

∂P

∂xN
(t, x1, . . . , xN ) ,

assuming that the functions fi : R → R are periodic and change sign, we have an arbitrarily
large number of subharmonic solutions, as in the statement of Corollary 1.2.
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5 TheMain Result

We are in the position of considering the general system (1) in R
2N . We recall that the

Hamiltonian function H : R2N → R is twice continuously differentiable and satisfies (2),
i.e., H(z) = ∑N

k=1 Hk(zk). Hence, if ε = 0, we have the uncoupled planar systems

J ζ̇ = ∇Hk(ζ ) , (24)

with k = 1, . . . , N .
Let us state the main result of this paper.

Theorem 5.1 Assume that the Hamiltonian function H is of the form (2) and that, for ε = 0,
the solutions of (1) are globally defined. For every k = 1, . . . , N, assume that there exists a
nonconstant periodic orbit �k of (24) such thatA(�k)∪ int(�k) �= R

2, and letQk ∈ int(�k)

be such that ∇Hk(Qk) = 0.
Let M1, . . . , MN be arbitrary positive integers. Then there is a positive integer m with the
following property: for every integer m ≥ m, there exists εm > 0 such that, if |ε| ≤ εm,
system (1) has at least N + 1 distinct mT -periodic solutions z(t), whose components satisfy

Rot (zk;Qk; [0,mT ]) = Mk , for every k = 1, . . . , N .

Proof Let us first assume that all the orbits �k rotate clockwise. As seen in the proof of
Theorem 3.1, for each k = 1, . . . , N there is a bounded open annulus Ak for (24) and a
symplectic diffeomorphism �k : Ak → Bk , where Bk is an open annulus of the type
{v ∈ R

2 : r ik < |v| < rek }, transforming the orbits of (24) in Ak into circular orbits in
Bk , without changing their periods. By the argument in Remark 3.2, we can then find a
positive integer mk with the property that for every m ≥ mk there exists a smaller annulus
Bk,m = {υ ∈ R

2 : rk,m ≤ |υ| ≤ Rk,m} such that the solutions of the transformed planar
system starting from the interior boundary circle rotate clockwise more than Mk times in the
time interval [0,mT ], while those starting from the exterior boundary circle make less than
one clockwise rotation in the same time interval. Setting

m = max{m1, . . . ,mN } ,

for every m ≥ m, we choose

B = B1,m × · · · × BN ,m .

We now consider system (1) with arbitrary ε, and apply the change of variables v(t) =
�(z(t)) to the solutions lying in A1 × · · · × AN , where

�(z) = (�1(z1), . . . , �N (zN )) .

Arguing as in the proof of Theorem 3.1, we canmodify the transformedHamiltonian function
and extend it to the whole space R2N , so that the twist properties of each component of the
solutions are preservedwhen |ε| is small enough.We can thus apply [9, Theorem1.2] to obtain
the existence of N + 1 distinct mT -periodic solutions v0(t), . . . , vN (t) of the transformed
system, whose components satisfy

Rot (v j
k ; [0,mT ]) = Mk , for every k = 1, . . . , N and j = 0, . . . , N .

Moreover, if |ε| is small enough, the orbits of these solutions lie in the region where the
transformed Hamiltonian function has not been modified.
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These solutions are distinct, according to the definition given in the Introduction, since they
are obtained as critical points of a suitable functional ϕ : TN ×H → R, using a generalized
Lusternik–Schnirelmann Theorem (see the proof of [9, Theorem 1.2]). Here, TN is the N -
dimensional torus, and H is a suitable Hilbert space. Hence, either all the corresponding
N + 1 critical levels are different, or the set of critical points is not contractible in TN × H.
The claim then follows, since if two solutions vi (t) and v j (t) are not distinct according to
the definition given in the Introduction, then ϕ(vi ) = ϕ(v j ).

Goingback to the original systemwith the inverse changeof variables z j (t) = �−1(v j (t)),
we obtain N + 1 distinct mT -periodic solutions of (1), whose components satisfy

Rot (z jk ;Qk; [0,mT ]) = Mk , for every k = 1, . . . , N and j = 0, . . . , N .

In the case when some of the orbits �k rotate counter-clockwise the argument is similar,
the only difference being that the corresponding components of the solutions z j (t) satisfy
Rot (z jk ;Qk; [0,mT ]) = −Mk .

The proof is thus completed. ��
Clearly enough, Theorem 1.1 follows directly from Theorem 5.1, by the same argument

in the proof of Corollary 3.5.
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