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Abstract

We construct a mathematical model in order to study the so called
porpoising effect in racing cars, and prove that, when adding a small
periodic perturbation, large-amplitude subharmonic solutions may arise.

1 Introduction
Due to the fundamental role of the effect of vibrations in the stability of mechan-
ical structures, its study is one of the main branches of Mechanical Engineering.
In general, an elastic body may experience a vibration when it is displaced from
the equilibrium point by the effect of an external force. A famous example is
given by the nonlinear oscillations experienced by suspension bridges, which
may lead to a total collapse of the structure. In fact, dynamics of suspension
bridges models has become an intensively studied topic by applied mathemati-
cians and engineers, and there is a whole body of literature devoted to it (see for
instance [8] and the references therein). In comparison, other known nonlinear
effects have been less studied, as for example the phenomenon of porpoising,
which is the main motivation of this paper.

Porpoising is a bouncing effect classically observed in motorboats that above
a critical speed start an oscillatory motion leaping out and striking the water
alternatively. More recently, this term has become familiar among the Formula 1
racing fans, after the impressive images during the first races of the 2022 season
of most of the cars subject to some rather violent periodic bounces. It is clear
that not only the car mechanics is compromised, but also the driver’s safety.

In a racing car, porpoising is closely related with the downforce produced
by the ground effect: the small gap between the bottom of the car and the floor
creates this force, which increases as long as the gap decreases until, if the gap
reaches a certain critical level, the air flow stalls and the downforce disappears
suddenly. The car then goes back to its initial height and the process starts
again, thus producing a rocking motion.

As a side note, let us comment that porpoising is not new at all in Formula 1
races. In fact, it was rather common in the racing cars of the 1970’s and early
1980’s. (It seems that the term “porpoising” was first coined in the 1970’s by
the famous racer Mario Andretti.) At some moment the ground effect was
considered too dangerous and banned for many years, but in 2022 a change of
regulation in the cars design has brought porpoising back in the limelight.
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In view of the relevance of the described problems, there is a large body of
engineering-oriented work dedicated to ground effect (see the review [17] and
its bibliography) and porpoising [9, 11, 14, 16]. Our aim here is different.

We will construct a mathematical model to describe oscillations under the
following basic assumptions:
- the suspension system of the car provides a repulsive force against the floor,
opposing gravity;
- the ground force must be discontinuous at a certain threshold value α;
- dissipative forces are neglected;
- small external periodic forces are present (whose origin will be discussed at
the end of the paper).

In order to describe our model more precisely, let x > 0 denote the distance
of the bottom of the car from the ground. We assume that the following forces
are acting on the car:
- the gravitational force, −mg, which is a negative constant;
- the shock-absorber force, modeled by a nonnegative function fS(x), which is
equal to zero when x is sufficiently large, and tends to +∞ as x tends to 0;
- the ground force, modeled by a nonpositive function fG(x), which is negligible
when x is large, say x > β, it becomes large and negative on the interval ]α, β[ ,
and it is equal to 0 when x ≤ α;
- a small T -periodic external forcing e(t).

Newton’s second law of motion thus provides us the differential equation

mx′′(t) = −mg + fS(x(t)) + fG(x(t)) + e(t) .

Hence, defining

g(x) =
1

m

(
mg − fS(x)− fG(x)

)
,

and writing the forcing term as e(t) = mεp(t), we get the equation

x′′ + g(x) = ε p(t) .

We will prove that, if ε is a small parameter, there exist large-amplitude
periodic solutions of the above differential equation whose minimal period is
an integer multiple of T . These are called subharmonic solutions. The precise
statement of our result will be given in Section 2. The proof, provided in
Section 3, involves some careful estimates of the solutions in the phase plane,
together with the use of a fruitful mathematical tool for the detection of periodic
solutions of Hamiltonian systems, the so called Poincaré–Birkhoff Theorem. In
Section 4 we will argue about the possible origin of the small periodic forcing
and provide some other remarks.

Let us point out that, from the mathematical point of view, this seems to
be the first time when the Poincaré–Birkhoff Theorem is applied to this kind
of problems. Equations with discontinuities have been studied from different
perspectives. We know that jump discontinuities may generate complex dy-
namics and bifurcations [2, 10, 12]. On the other hand, nonlinearities with an
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essential discontinuity (i.e. a singularity) appear profusely in many mathemat-
ical models [15] and have been studied by different methods, including the use
of Poincaré-Birkhoff Theorem (see for instance [1, 4]). In this paper, for the
first time in the literature, we are considering a nonlinearity with both a jump
discontinuity and an essential discontinuity.

2 Main result
We study the equation

x′′ + g(x) = εp(t) , (1)

where p : R → R is continuous and T -periodic, while g : ]a,+∞[→ R is con-
tinuous except for a discontinuity point at some α ∈ ]a,+∞[ . In the model
described in the Introduction, a is a real number; here, for pure mathematical
reasons, we will also treat the case when a could be equal to −∞.

Here is our assumption concerning the behaviour of g at α.

A1. (Limits condition at α) The left and right limits

`− = lim
x→α−

g(x) , `+ = lim
x→α+

g(x)

exist and are finite, and
`− < 0 < `+ .

We now need to define what kind of solution we are looking for.

Definition 1. We say that x : R → R is a regular solution of (1) if it is
continuously differentiable and there exists a strictly increasing double sequence
(tj)j∈Z, with no accumulation points, such that x(tj) = α and the restriction of
x on each interval ]tj−1, tj [ is twice continuously differentiable. Moreover, the
limits

lim
t→t−j

x′′(t) and lim
t→t+j

x′′(t)

exist and are finite.

Let us state our further assumptions on g.

A2. (Sign condition) There are d1 and d2, with a < d1 < α < d2, such that

x ≤ d1 ⇒ g(x) < 0 , x ≥ d2 ⇒ g(x) > 0 .

A3. (Coercivity of the potential) Let G(x) be a primitive of g(x); then,

lim
x→a+

G(x) = lim
x→+∞

G(x) = +∞ .

A4. (Behaviour at +∞) The asymptotic growth of g is controlled by

lim sup
x→+∞

g(x)

x
= ` < +∞ .

Here is our main result.
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Theorem 2. Under assumptions A1–A4, for any positive integers m and k
such that

mT
√
` < kπ , (2)

there exists ε̄ > 0 such that, if |ε| ≤ ε̄, then equation (1) has a mT -periodic
regular solution x such that x(·)− α has exactly 2k simple zeros in [0,mT [ .

Notice that, taking k = 1, the regular solutions thus found have minimal
period mT . Notice moreover that condition (2) surely holds if ` = 0, for every
positive integers m and k. We can thus state the following.

Corollary 3. Under assumptions A1–A4, with ` = 0, for any positive integer
m there exists ε̄ > 0 such that, if |ε| ≤ ε̄, equation (1) has a periodic regular
solution x with minimal period mT , such that x(·) − α has exactly two simple
zeros in [0,mT [ .

This corollary indeed applies to the model described in the Introduction.

3 Proof of Theorem 2
For any function z = (x, y) : [0, T ] → ]a,+∞[×R such that z(t) 6= (α, 0) for
every t ∈ [0, T ], passing to polar coordinates

x(t) = (α+ ρ(t)) cos θ(t) , y(t) = ρ(t) sin θ(t) , (3)

where ρ : [0, T ] → [0,+∞[ and θ : [0, T ] → R are continuous functions, we can
define the rotation number

Rot(z, [0, T ]) =
θ(0)− θ(T )

2π
.

For simplicity, we will take m = 1 and k = 1. The general case can be treated
similarly.

3.1 The autonomous equation
Let us study the autonomous equation

x′′ + g(x) = 0 , (4)

which is equivalent to the system

x′ = y , −y′ = g(x) . (5)

By A3, we can assume without loss of generality that

G(x) ≥ 0 , for every x ∈ ]a,+∞[ . (6)

We have a Hamiltonian function H : ]a,+∞[×R→ R defined as

H(x, y) = 1
2y

2 +G(x) .

Notice however that H is differentiable but not of class C1. The orbits of the
regular solutions are symmetric with respect to the horizontal axis, and they lie
on the level sets of the Hamiltonian function, i.e.,

Lc = {(x, y) ∈ ]a,+∞[×R : H(x, y) = c} .

By A3, the level sets Lc are compact. As a consequence, the regular solutions
of (4) are globally defined.
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Notice that all the solutions of the associated initial value problems

(x(0), y(0)) = (x0, y0) ∈ ]a,+∞[×R

are regular, with the only exception for (x0, y0) = (α, 0), in which case the
solution is not defined. In this case, we agree that this point (α, 0) will be
considered as an equilibrium.

Let us concentrate on the dynamics both near the point (α, 0), and for large-
amplitude regular solutions.

Proposition 4. The point (α, 0) is a local center for system (5); if c > G(α)
and (c−G(α)) is small enough, the level sets Lc are closed curves, star-shaped
with respect to (α, 0), corresponding to periodic regular solutions of (5). The
same is true if c > 0 is large enough.

Proof. First of all, we can assume without loss of generality that α = 0, just
by a translating the problem in the spatial variable x. Then, from now on the
center is assumed to be at the origin.

By A1, there exists a δ > 0 such that

xg(x) > x2 , for every x ∈ ]− δ, δ[ \ {0} .

If (x, y) is a regular solution of (5) with x(t) ∈ ] − δ, δ[ \ {0} for some t ∈ R,
passing to polar coordinates (3) we have that

−θ′(t) =
x(t)y′(t)− x′(t)y(t)

x(t)2 + y(t)2
=
x(t)g(x(t)) + y(t)2

x(t)2 + y(t)2
≥ 1 . (7)

To prove that the orbit is closed, first observe that

x ∈ ]− δ, δ[ \ {0} ⇒ ∇H(x, y) · (x, y) = xg(x) + y2 > 0 .

Hence, near the origin, H(x, y) is strictly increasing along the rays emanating
from the origin, at least in a small neighbourhood of it. Then, a solution starting
with initial point (x(0), y(0)) 6= (0, 0) sufficiently near the origin, on a given ray,
will remain in the strip {(x, y) : |x| < δ} for every t ∈ [0, 2π], and during this
time it will perform an entire rotation, returning to the initial ray, by (7). Since
H(x, y) is constant along the orbit, it must indeed return to the same initial
point. This proves that the small-amplitude regular solutions of (5) are periodic
and, by (7) again, they have star-shaped orbits with respect to the origin.

Let us now consider a large-amplitude regular solution. Recall A2 and set
M = max{|xg(x)| : x ∈ [d1, d2]}. Then, if (x, y) is a regular solution of (5) with
(x(t), y(t)) /∈ [d1, d2] × [−

√
M,
√
M ] and x(t) 6= 0 for some t ∈ R, passing to

polar coordinates (3) we have that

−θ′(t)


≥ −M + y(t)2

x(t)2 + y(t)2
> 0 if x(t) ∈ [d1, d2] ,

>
y(t)2

x(t)2 + y(t)2
≥ 0 if x(t) /∈ [d1, d2] .

The same argument shows that, far from the origin, H(x, y) is strictly increasing
along the rays emanating from the origin. Now, let

S = max{H(x, y) : (x, y) ∈ [d1, d2]× [−
√
M,
√
M ] ,
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and set K =
√

2S. By A3, there exist d̂1 and d̂2, with a < d̂1 ≤ d1 < 0 < d2 ≤
d̂2, such that

x /∈ [d̂1, d̂2] ⇒ G(x) > S .

We need the following.

Claim. If (x, y) is a solution of (5) with (x(0), y(0)) /∈ [d̂1, d̂2] × [−K,K], then
(x(t), y(t)) /∈ [d1, d2]× [−

√
M,
√
M ] for every t ∈ R.

Once the Claim is proved, the same argument used above for the small-
amplitude solutions apply, thus proving that also the large-amplitude regular
solutions of (5) are periodic and have star-shaped orbits with respect to the
origin.

To prove the Claim, let (x, y) be a solution of (5) such that (x(0), y(0)) /∈
[d̂1, d̂2] × [−K,K]. We have two cases. Either x(0) /∈ [d̂1, d̂2], in which case
G(x(0)) > S, hence

H(x(t), y(t)) = H(x(0), y(0)) ≥ G(x(0)) > S , for every t ∈ R ;

or, x(0) ∈ [d̂1, d̂2] and y(0) /∈ [−K,K], in which case 1
2y(0)2 > S, hence, by (6),

H(x(t), y(t)) = H(x(0), y(0)) ≥ 1
2y(0)2 > S , for every t ∈ R .

By the definition of S, in both cases it has to be (x(t), y(t)) /∈ [d1, d2] ×
[−
√
M,
√
M ] for every t ∈ R. The Claim is thus proved.

Remark 5. The above proof could have been considerably simplified if we could
have used the Poincaré–Bendixson Theorem. The presence of the jump disconti-
nuity in the function g(x) prevents its use, at least in its classical version, where
regularity is needed. We are not aware of a version of this theorem in this more
general setting.

In order to study the periodic regular solutions of (5) whose orbits contain
in their interior the point (α, 0), we need to introduce the so called time-map.
Let (x, y) be such a regular solution, and assume that x(0) = D > α, y(0) = 0.
Then,

1
2x
′(t)2 +G(x(t)) = 1

2x
′(0)2 +G(x(0)) = G(D) , for every t ∈ R .

This regular solution will reach the line `α = {(x, y) ∈ R2 : x = α} at some time
t = τD > 0. If G(u) < G(D) for every u ∈ [α,D[ , we can write

τD =
1√
2

∫ D

α

du√
G(D)−G(u)

.

The above regular solution (x(t), y(t)), once reached the line `α at time t =
τD, will continue its trajectory until it reaches the horizontal axis {(x, y) ∈
]a,+∞[×R : y = 0} at some point (D̂, 0), with D̂ < α, and at some time
τD + σD̂. If G(u) < G(D̂) for every u ∈ ]D̂, α], we can write

σD̂ =
1√
2

∫ α

D̂

du√
G(D̂)−G(u)

.
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We have that D̂ < α < D and G(D̂) = G(D). Since D̂ is uniquely determined
by D, we can write D̂ = ψ(D), thus defining a function ψ. By A2 and A3, this
function is well defined on ]α, α + δ[ , for some sufficiently small δ > 0, and on
]µ,+∞[ , for some sufficiently large µ > α. Using the symmetry of the orbit
with respect to the horizontal axis, we can thus write the period of this regular
solution as T (D) = 2(τD + σψ(D)), i.e.,

T (D) = 2

(
1√
2

∫ D

α

du√
G(D)−G(u)

+
1√
2

∫ α

ψ(D)

du√
G(ψ(D))−G(u)

)
=
√

2

∫ D

ψ(D)

du√
G(D)−G(u)

.

By the above considerations, this expression is well defined for D ∈ ]α, α +
δ[∪ ]µ,+∞[ .

Proposition 6. We have that

lim
D→α+

T (D) = 0 , lim inf
D→+∞

T (D) > T .

Proof. By A1, there exists a δ > 0 such that

x ∈ ]α, α+ δ[ ⇒ g(x) ≥ 1
2`+ .

Let (x(t), y(t)) be a regular solution such that (x(0), y(0)) = (D, 0), for some
D ∈ ]α, α+ δ[ . For every t ∈ [0, τD[ , we have that x(t) ∈ ]α,D], hence

x′(t) = x′(0) +

∫ t

0

(−g(x(s)) ds ≤ − 1
2`+t ,

whence

x(t)− x(0) =

∫ t

0

x′(s) ds ≤ − 1
4`+t

2.

Taking t = τD, we get

τD ≤

√
4(D − α)

`+
,

hence
lim

D→α+
τD = 0 .

A similar estimate can be performed to the left of α, showing that

lim
D→α+

σψ(D) = 0 .

The first limit is thus established.
The second limit follows from the results in [7, 13], where it was proved that

A2 and A3 (with m = 1 and k = 1) imply

lim inf
D→+∞

T (D) ≥ π√
`
.

The conclusion follows, since we are assuming that T
√
` < π.
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For every positive numbers c1 < c2, we define the set

A(c1, c2) = {(x, y) ∈ R2 : c1 ≤ 1
2y

2 +G(x) ≤ c2} .

Proposition 7. If c1 > 0 is small enough and c2 > c1 is large enough, the
set A(c1, c2) is an annulus with strictly star-shaped boundary curves and, if
z(t) = (x(t), y(t)) is a regular solution of (5), then

1
2y(0)2 +G(x(0)) = c1 ⇒ Rot(z, [0, T ]) > 1 ,
1
2y(0)2 +G(x(0)) = c2 ⇒ Rot(z, [0, T ]) < 1 .

Proof. By Proposition 6, the time-map is very small when the regular solution
z(t) is near (α, 0). Hence, the regular solution will rotate more than once around
the point (α, 0) in the time interval [0, T ]. This proves the first implication.

By the same Proposition 6, the time-map is greater than T when the regular
solutions have a large amplitude. This implies that in the time interval [0, T ]
the regular solutions will not have enough time to complete a whole rotation
around the point (α, 0). The second implication is thus also proved.

From now on, we consider c1 and c2 satisfying the above properties as fixed.

It will be useful to define the function N : ]a,+∞[×R → R as follows: if
a = −∞, then

N (x, y) = (x− α)2 + y2,

while, if a ∈ R, then

N (x, y) =

 (x− α)2 + y2 if x ≥ α ,
1

(x− a)2
+

1

(x− 2α+ a)2
− 2

(α− a)2
+ y2 if x ∈ ]a, α[ .

Notice that N is continuously differentiable, N (x, y) ≥ 0 for every (x, y) ∈
]a,+∞[×R, and

N (x, y) = 0 ⇔ (x, y) = (α, 0) .

It is easy to see that we can choose a constant % > 1 such that, for every
(x, y) ∈ ]a,+∞[×R,

1
2y

2 +G(x) ≥ c1 ⇒ N (x, y) > %−1 , (8)

and
1
2y

2 +G(x) ≤ c2 ⇒ N (x, y) < % . (9)

Moreover, there is a ρ̄ > 0 such that

N (x, y) ≥ %−1 ⇒ (x, y) /∈ [α− ρ̄, α+ ρ̄]× [−ρ̄, ρ̄] , (10)

and there are r̄ ∈ ]a, α[ and R̄ > α such that

N (x, y) ≤ % ⇒ (x, y) ∈ [r̄, R̄]× [−R̄, R̄] . (11)
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3.2 The perturbed equation
Let us write the planar system associated with equation (1),

x′ = y , −y′ = g(x)− εp(t) . (12)

We consider the approximating functions gn : ]a,+∞[→ R, defined for n ≥ 1
sufficiently large as

gn(x) = g(x) , when |x− α| ≥ 1
n ,

while, if |x− α| < 1
n , then

gn(x) =

(
1− n(x− α) + 1

2

)
g
(
α− 1

n

)
+
n(x− α) + 1

2
g
(
α+ 1

n

)
.

Precisely, if a ∈ R, we need to take n > 1/(α − a). We can then deal with the
equation

x′′ + gn(x) = εp(t) , (13)

with associated system

x′ = y , −y′ = gn(x)− εp(t) . (14)

Note that for any n the approximating function gn is continuous in its domain
of definition, hence any solution of (13) and (14) will be a classical solution.

Define Gn(x) =
∫ x
α
gn(s) ds, and notice that

lim
n→∞

Gn(x) = G(x) , uniformly on ]a,+∞[ . (15)

Moreover, define the function Vn : ]a,+∞[×R→ R as

Vn(x, y) = 1
2y

2 +Gn(x)−Gmin + 1 ,

where
Gmin = min{G(x) : x ∈ ]a,+∞[ } .

Taking n large enough, we can assume that

Vn(x, y) > 1
2 , for every (x, y) ∈ R2.

Proposition 8. The solutions of (13) are globally defined.

Proof. See, e.g., [3, 4].

Proposition 9. There exist n̄ ≥ 1 and ε̄ > 0 such that, if n ≥ n̄, |ε| ≤ ε̄ and
(x(t), y(t)) is a solution of system (14), then

(x(0), y(0)) ∈ A(c1, c2) ⇒ %−1 < N (x(t), y(t)) < % , for every t ∈ [0, T ] ,

and, moreover,

1
2y(0)2 +G(x(0)) = c1 ⇒ Rot((x, y), [0, T ]) > 1 ,
1
2y(0)2 +G(x(0)) = c2 ⇒ Rot((x, y), [0, T ]) < 1 .
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Proof. Let us prove the first assertion. By contradiction, assume there is a
sequence of positive integers (nk)k and a sequence (εk)k in [−1, 1] for which
there exists a solution zk(t) = (xk(t), yk(t)) of (14) with n = nk and ε = εk
such that, for some (tk)k in [0, T ],

(xk(0), yk(0)) ∈ A(c1, c2) and N (xk(tk), yk(tk)) ≤ %−1 .

Setting
fk(t) = Vnk

(xk(t), yk(t)) ,

we have that
f ′k(t) = εp(t)yk(t) ,

hence there exists a constant c′ > 0 for which

|f ′k(t)| ≤ c′
(
1
2 yk(t)2 + 1

)
≤ c′fk(t) , for every t ∈ [0, T ] and k ∈ N .

By the Gronwall Lemma, since fk(0) = Vnk
(xk(0), yk(0)) ≤ c2, there exists a

constant c′′ > 0 for which

fk(t) ≤ c′′ , for every t ∈ [0, T ] and k ∈ N .

So, there exists a constant c′′′ > 0 such that

|xk(t)|+ |x′k(t)| ≤ c′′′ , for every t ∈ [0, T ] and k ∈ N .

By the Ascoli–Arzelà Theorem, there exists a subsequence (zkj )j , with zkj (t) =
(xkj (t), ykj (t)), which uniformly converges in [0, T ] to some continuous function
z̄ = (x̄, ȳ) : [0, T ]→ R2. Then,

xkj (t)→ x̄(t) and x′kj (t)→ ȳ(t) , unformly in t ∈ [0, T ] .

As a consequence, x̄ : [0, T ] → R is differentiable, and x̄′(t) = ȳ(t), for every
t ∈ [0, T ]. Since (xkj (0), ykj (0)) ∈ A(c1, c2) and A(c1, c2) is closed, we have that

(x̄(0), ȳ(0)) ∈ A(c1, c2) .

Moreover, there is a subsequence of (tkj )j , for which we use the same notation,
such that tkj → t̄, for some t̄ ∈ [0, T ]. Hence, since N (xkj (tkj ), ykj (tkj )) ≤ %−1,
passing to the limit we have

N (x̄(t̄), ȳ(t̄)) ≤ %−1 .

On the other hand, multiplying the equation x′′kj + gkj (x) = εkjp(t) by x′kj
and integrating, we get

1
2x
′
kj (t)2 +Gkj (xkj (t)) = 1

2x
′
kj (0)2 +Gkj (xkj (0)) + εkj

∫ t

0

p(s)x′kj (s) ds .

Passing to the limit, by (15), since (x′kj )j is uniformly bounded, we see that

1
2 x̄
′(t)2 +G(x̄(t)) = 1

2 x̄
′(0)2 +G(x̄(0)) , for every t ∈ [0, T ] .

In particular, 1
2 ȳ(t̄)2 +G(x̄(t̄)) ≥ c1, and hence, by (8),

N (x̄(t̄), ȳ(t̄)) > %−1 ,

a contradiction, proving the inequality %−1 < N (x(t), y(t)) in the statement. A
similar argument proves the inequality N (x(t), y(t)) < %.
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Concerning the second part, one proceeds by contradiction, similarly as
above, assuming that there is a sequence of positive integers (nk)k and a se-
quence (εk)k in [−1, 1] for which there exists a solution (xk(t), yk(t)) of (14)
such that

1
2yk(0)2 +G(xk(0)) = c1 and Rot((xk, yk), [0, T ]) ≤ 1 .

(We now know that the rotation number is well defined, by the first part of
the proof.) A subsequence of (xk, yk)k converges uniformly on [0, T ] to (x̄, ȳ), a
solution of (5). Since N (xk(t), yk(t)) > %−1 for every t ∈ [0, T ], passing to the
limit we have that

N (x̄(t), ȳ(t)) ≥ %−1 , for every t ∈ [0, T ] ,

hence, by (10),

(x̄(t), ȳ(t)) /∈ [α− ρ̄, α+ ρ̄]× [−ρ̄, ρ̄] , for every t ∈ [0, T ] .

As a consequence, (x̄, ȳ) is a regular solution of (5). Since all these solutions
(x̄, ȳ) and (xk, yk) remain at a safe distance from (α, 0), when k is sufficiently
large, the angle variable varies continuously, hence,

Rot((x̄, ȳ), [0, T ]) = lim
k→∞

Rot((xk, yk), [0, T ]) ≤ 1 ,

contradicting Proposition 7.
The final statement is proved similarly.

3.3 End of the proof
If a ∈ R, we consider the functions g̃n : R→ R defined as

g̃n(x) =

{
gn(x) if x ≥ r̄ ,
gn(r̄) if x < r̄ ,

while, if a = −∞, we set g̃n = gn. We thus have the equation

x′′ + g̃n(x) = εp(t) , (16)

with associated system

x′ = y , −y′ = g̃n(x)− εp(t) . (17)

Proposition 10. The same statement of Proposition 9 holds for system (17),
as well.

Proof. The solutions (x, y) of (17) starting at time t = 0 from A(c1, c2) remain
solutions of (14) as long as x(t) ≥ r̄. By Proposition 9,

N (x(t), y(t)) < % , for every t ∈ [0, T ] ,

hence, by (11),

(x(t), y(t)) ∈ [r̄, R̄]× [−R̄, R̄] , for every t ∈ [0, T ] .

Then, the solutions (x, y) of (17) starting at time t = 0 from A(c1, c2) remain
solutions of (14) for every t ∈ [0, T ]. The conclusion follows.
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By the Poincaré–Birkhoff Theorem (see, e.g., [6]), if n ≥ n̄ and |ε| ≤ ε̄, there
exists a T -periodic solution zεn(t) = (xεn(t), yεn(t)) of (17) such that

(xεn(0), yεn(0)) ∈ A(c1, c2) and Rot((xεn, y
ε
n), [0, T ]) = 1 . (18)

Moreover, by Proposition 9,

%−1 < N (xεn(t), yεn(t)) < % , for every t ∈ [0, T ] , (19)

hence, by (11),

(xεn(t), yεn(t)) ∈ [r̄, R̄]× [−R̄, R̄] , for every t ∈ [0, T ] .

As a consequence, (xεn(t), yεn(t)) is a solution of (14). Let us now fix ε such that
|ε| ≤ ε̄, and consider the sequence (zεn)n in C([0, T ],R2). Setting

fn(t) = Vn(xεn(t), yεn(t)) ,

we have that

f ′n(t) = εp(t)yεn(t) , for every t ∈ [0, T ] and n ∈ N ,

hence there exists a constant c′ > 0 for which

|f ′n(t)| ≤ c′
(
1
2 y

ε
n(t)2 + 1

)
≤ c′fn(t) , for every t ∈ [0, T ] and n ∈ N .

By the Gronwall Lemma, since fn(0) = V (xεn(0), yεn(0)) ≤ c2, there exists a
constant c′′ > 0 for which

fn(t) ≤ c′′ , for every t ∈ [0, T ] and n ∈ N .

So, there exists a constant c′′′ > 0 such that

|xεn(t)|+ |(xεn)′(t)| ≤ c′′′ , for every t ∈ [0, T ] and n ∈ N .

By the Ascoli–Arzelà Theorem, there exists a subsequence (zεnk
)k, with zεnk

(t) =
(xεnk

(t), yεnk
(t)), which uniformly converges in [0, T ] to some function z̄ε =

(x̄ε, ȳε) ∈ C([0, T ],R2). Then,

xεnk
(t)→ x̄ε(t) and (xεnk

)′(t)→ ȳε(t) , unformly in t ∈ [0, T ] .

As a consequence, x̄ε ∈ C1([0, T ],R) and (x̄ε)′(t) = ȳε(t), for every t ∈ [0, T ].

We now extend x̄ε by T -periodicity to the whole real line R and show that
x̄ε : R → R is the regular solution we are looking for. First, notice that x̄ε :
R→ R is still continuously differentiable, since ȳε(0) = ȳε(T ). By (18), passing
to the limit we have that

(x̄ε(0), ȳε(0)) ∈ A(c1, c2) and Rot((x̄ε, ȳε), [0, T ]) = 1 .

Moreover, passing to the limit in (19) yields

%−1 ≤ N (x̄ε(t), ȳε(t)) ≤ % , for every t ∈ [0, T ] ,

hence, by (10),

(x̄ε(t), ȳε(t)) /∈ [α− ρ̄, α+ ρ̄]× [−ρ̄, ρ̄] , for every t ∈ [0, T ] .
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Then, the function x̄ε(·) − α only has isolated zeros; there are precisely two in
the interval [0, T [ . Denote the zeros of x̄ε(·)− α : R→ R, in strictly increasing
order, by (tj)j∈Z, i.e.

· · · < t−2 < t−1 < t0 < t1 < t2 < . . .

Define Fn : R× R2 → R2 as

Fn(t, x, y) = (y,−gn(x) + εp(t)) .

We know that, for every t ∈ R,

zεnk
(t) = zεnk

(0) +

∫ t

0

Fnk
(s, zεnk

(s)) ds . (20)

Let us fix t > 0 and consider the sequence of functions Fk : [0, t] → R2

defined as

Fk(s) = Fnk
(s, zεnk

(s)) = (yεnk
(s),−gnk

(xεnk
(s)) + εp(s)) .

We see that, for any s ∈ [0, t],

x̄ε(s) 6= α ⇒ lim
k
Fk(s) = (ȳε(s),−g(x̄ε(s)) + εp(s)) .

Since the set {s ∈ [0, t] : x̄ε(s) = α} has zero measure, we have that

lim
k
Fk(s) = (ȳε(s),−g(x̄ε(s)) + εp(s)) , for a.e. s ∈ [0, t] .

Moreover, by A1 and the uniform convergence of (xεnk
)k and (yεnk

)k there is a
constant C > 0 such that

|Fk(s)| ≤ C , for every s ∈ [0, t] .

Passing to the limit in (20), the Lebesgue’s Dominated Convergence Theorem
then yields

(x̄ε(t), ȳε(t)) = (x̄ε(0), ȳε(0)) +

∫ t

0

(ȳε(s),−g(x̄ε(s)) + εp(s)) ds .

Now, for every j ∈ Z, we can use the Fundamental Theorem on the interval
]tj−1, tj [ and see that

((x̄ε)′(t), (ȳε)′(t)) = (ȳε(t),−g(x̄ε(t)) + εp(t)) , for every t ∈ ]tj−1, tj [ ,

i.e.,
(x̄ε)′′(t) + g(x̄ε(t)) = εp(t) , for every t ∈ ]tj−1, tj [ .

Finally, for every j ∈ Z, both limits

lim
t→t−j

(x̄ε)′′(t) and lim
t→t+j

(x̄ε)′′(t)

exist and they are equal to either εp(tj)− `−, or εp(tj)− `+.

We have thus proved that x̄ε is a regular T -periodic solution of (1), such
that x̄ε(·)− α has exactly two zeros in [0, T [ .
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4 Conclusions
A racing car is subject to the gravitational force, to the shock-absorber force
which contrasts it, and to some ground effects. The so called porpoising effect
is due to the fact that the car, when traveling with a sufficiently high speed, is
attracted towards the ground by a force which increases as the distance from
the ground decreases until, at a certain critical distance α, it suddenly stalls.
The car then goes back to its initial height and the process starts again, thus
producing a rocking motion (which may recall a porpoise diving into and out of
the sea as it swims). This phenomenon results in giving an extremely unpleasant
ride of the car.

We have built a mathematical model of this situation, and we have shown
that adding a small periodic perturbation may produce large-amplitude sub-
harmonic solutions. Denoting by T the period of the perturbation, Theorem 2
provides the existence of subharmonic solutions of any order, since the integer
` in assumption A4 is equal to zero in this situation.

A possible origin of this small periodic perturbation could come from some
asymmetries of the wheels. A Formula 1 car’s wheels have a 18-inches radius.
Hence, at the speed of 200 km/h, they make about 20 rotations per second.
Analyzing the car driven by Lewis Hamilton in the first races in 2022 (e.g.,
in https://www.youtube.com/watch?v=QPvMNiEOxfs) one sees that his car
oscillates approximately 5 times per second. Hence, these oscillations could
be interpreted as a subharmonic response to the periodic forcing given by the
wheels. In this case, T = 0.05 seconds, and the car’s periodic oscillations are of
minimal period 4T .

Beyond the concrete model under study, mathematically speaking the pres-
ence of subharmonic solutions is a consequence of the jump discontinuity at
point a. This is clear if we realize that Theorem 2 is directly applicable to the
simple model

x′′ + sgn(x) = εp(t) .

This equation was studied in [10] under a symmetry assumption on the forcing
term, which enables the use of a shooting method. Our result is new even for
this simple case.
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