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Abstract. For a continuous function f , the set Vf made of those points
where the lower left derivative is strictly less than the upper right deriva-
tive is totally disconnected. Besides continuity, alternative assumptions
are proposed so to preserve this property. On the other hand, we con-
struct a function f whose set Vf coincides with the entire domain, and
nevertheless f is continuous on an infinite set, possibly having infinitely
many cluster points. Some open problems are proposed.

1 Introduction and main result

Dini derivatives take their names after Ulisse Dini, who introduced them in
1878, cf. [4]; let us recall their standard notations

D+f(x) = lim inf
h→0+

f(x+ h)− f(x)

h
, D+f(x) = lim sup

h→0+

f(x+ h)− f(x)

h
,

D−f(x) = lim inf
h→0−

f(x+ h)− f(x)

h
, D−f(x) = lim sup

h→0−

f(x+ h)− f(x)

h
.

Here, and in the rest of the paper, we assume that f : I → R is defined on some
open interval I ⊆ R. A fundamental step in the study of Dini derivatives was
achieved in the first quarter of the twentieth century by Denjoy [3] for continuous
functions, Young [8] for measurable functions, and Saks [7] for arbitrary ones.
The Denjoy–Young–Saks theorem states that at each point x, except for a set
of measure zero, one of the following four alternatives holds:

1. f has a finite derivative at x ;

2. D−f(x) = D+f(x) ∈ R , D−f(x) = +∞ , D+f(x) = −∞ ;

3. D−f(x) = D+f(x) ∈ R, D+f(x) = +∞ , D−f(x) = −∞ ;

4. D−f(x) = D+f(x) = +∞ , D−f(x) = D+f(x) = −∞ .

Denjoy also explicitly constructed a continuous function realizing each of the
previous four conditions on a perfect set of positive Lebesgue measure; a highly
remarkable result, in consideration of the fact that continuous functions can
exhibit very pathological behaviors (see, e.g., [5]). We refer to the book by
Bruckner [1] for an extensive study of Dini derivatives and a more complete
historical account.

In this paper, for any function f : I → R, we are interested in studying the
set

Vf := {x ∈ I : D−f(x) < D+f(x)} .
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It should be noticed that, in the above mentioned example by Denjoy, the set
Vf is totally disconnected, i.e., it does not contain any nontrivial interval. The
main question is: how large can this set be?

It is well known that there exist non-continuous functions f : R → R for
which Vf = R (see for instance [2], where the function f : R → R has a
dense graph in R2). On the contrary, we will prove that there are no continuous
functions with such a property. To be more precise, let us introduce the following
class of functions.

Definition 1. We say that a function f : I → R is upper well behaved if for
every compact interval J contained in I there is a xJ ∈ J such that f(xJ) =
max f(J).

Clearly, every continuous function is upper well behaved. On the other hand,
one can easily find examples of upper well behaved functions which are nowhere
continuous (e.g., the well known Dirichlet function).

Here is our first result.

Theorem 2. If f : I → R is upper well behaved, then the set Vf is totally
disconnected.

Our theorem complements Denjoy’s example of a continuous function, for
which µ(Vf ) > 0; it suggests that, if f is continuous, the set Vf should be
“small”, in some sense. Some questions then arise:

Q1. If f : I → R is continuous, or even upper well behaved, is the set Vf of
first Baire category?

Q2. If I = (a, b) and f : I → R is continuous, can µ(Vf ) be equal to b− a?

Let us now investigate on the possibility for a function f : R → R to be
such that Vf = R and, at the same time, to be continuous at some points of its
domain. We will prove that such a function exists, and the set of its continuity
points A can be infinite. However, we need to assume that the points of D(A),
i.e., the cluster points of A, are all isolated. Here is the precise statement.

Theorem 3. For any closed set A ⊆ R such that D(D(A)) = ∅, there exists
a function f : R → R, with Vf = R, whose set of continuity points coincides
with A.

A further question then arises:

Q3. If Vf = R, can the function f : R → R be continuous on a dense set of
points?

The proofs of Theorem 2 and Theorem 3 are provided in the next section.
They are based on the knowledge that every monotone function is differentiable
almost everywhere, and on some simple properties of continued fractions.

2 Proofs

Proof of Theorem 2. By contradiction, let [a, b] ⊆ Vf , with a < b. Let (xn)n
be a sequence in [a, b] such that f(xn) → inf f([a, b]). Passing if necessary to
a subsequence, we can assume that xn → x̌, for some x̌ ∈ [a, b]. We have two
cases.
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Case 1: x̌ ∈ [a, b). We will prove that f is increasing in (x̌, b], hence almost
everywhere differentiable there, a contradiction.

By contradiction, let α, β in (x̌, b] be such that α < β and f(α) > f(β).
Being x̌ < α and f(α) > inf f([a, b]), there is a n such that xn < α and
f(xn) < f(α). Since f is upper well behaved, there is a x̂ ∈ [xn, β] such that
f(x̂) = max f([xn, β]). Being f(x̂) ≥ f(α) > max{f(xn), f(β)}, it has to be
x̂ ∈ (xn, β), whence D−f(x̂) ≥ 0 ≥ D+f(x̂), a contradiction, since x̂ ∈ Vf .

Case 2: x̌ = b. One proves in an analogous way that f is decreasing in [a, b),
hence almost everywhere differentiable there, a contradiction.

The proof is thus completed.

Remark 4. If we define a function f : I → R to be lower well behaved when
(−f) is upper well behaved, then it can be proved that the set

Λf := {x ∈ I : D−f(x) > D+f(x)}

is totally disconnected.

In order to prove Theorem 3, we need a preliminary result.

Lemma 5. Let ψ : R→ R be a non-negative continuous function, and define

f(x) =


ψ(x) , if x = 0 or x ∈ R \Q ,(

2− 1

p

)
ψ(x) , if x ∈ Q \ {0} and |x| = p

q with gcd (p, q) = 1 .

Then, the set of continuity points of f coincides with the set of zeros of ψ;
moreover,

• if ψ(x) 6= 0, then D+f(x) = +∞ and D−f(x) = −∞ ;

• if ψ(x) = 0, then D+f(x) = 2D+ψ(x) and D−f(x) = 2D−ψ(x).

Proof. The result is proved by means of the theory of continued fractions, for
which we refer to [6]. We fix x ∈ R and consider two cases.

Case 1: ψ(x) 6= 0. It is easy to prove that f is not continuous at these points.

If x ∈ (0,+∞) \ Q , let (cn(x))n∈N be the sequence of convergents of the
continued fraction representing x. Define

x+
n =

a2n

b2n
= c2n(x) , x−n =

a2n+1

b2n+1
= c2n+1(x) .

The sequence (x+
n )n converges to the right while (x−n )n converges to the left to

x. Since the fractions cn(x) are in lowest terms, we have

f(x+
n )− f(x)

x+
n − x

=

(
2− 1

a2n

)
ψ(c2n(x))− ψ(x)

c2n(x)− x
→ +∞ ,

because the numerator tends to ψ(x) > 0 as n→ +∞. Analogously,

f(x−n )− f(x)

x−n − x
=

(
2− 1

a2n+1

)
ψ(c2n+1(x))− ψ(x)

c2n+1(x)− x
→ −∞ ,

Hence, D+f(x) = +∞ and D−f(x) = −∞.
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If x ∈ (0,+∞) ∩ Q , let x = a
b with gcd(a, b) = 1 , and define, for every

n ∈ N,

y+
n =

a

b
+

1

(2b)n
=

2nabn−1 + 1

2nbn
, y−n =

a

b
− 1

(2b)n
=

2nabn−1 − 1

2nbn
.

For every n ≥ 2, the fractions are reduced to lowest terms, while their numera-
tors tend to infinity as n→ +∞. So,

f(y+
n )− f(x)

y+
n − x

=

(
2− 1

2nabn−1 + 1

)
ψ (y+

n )−
(

2− 1

a

)
ψ (x)

(2b)−n
→ +∞ ,

because the numerator tends to 1
aψ(x) > 0 as n→ +∞. Analogously,

f(y−n )− f(x)

y−n − x
= −

(
2− 1

2nabn−1 − 1

)
ψ (y−n )−

(
2− 1

a

)
ψ (x)

(2b)−n
→ −∞ .

Hence, D+f(x) = +∞ andD−f(x) = −∞. We have thus proved the conclusion,
in this case, for every x > 0.

A similar argument leads to the conclusion when x < 0. Finally, if x = 0,
we define, for every n ≥ 1,

z+
n =

n+ 1

n2
, z−n = −n+ 1

n2
,

so that

f(z±n )− f(0)

z±n − 0
=

(
2− 1

n+ 1

)
ψ (z±n )− ψ (0)

z±n
→ ±∞ ,

since ψ(0) > 0, hence proving again that D+f(0) = +∞ and D−f(0) = −∞.

Case 2: ψ(x) = 0. The continuity of f at x is trivial, since

ψ(y) ≤ f(y) ≤ 2ψ(y) , for every y ∈ R . (1)

The function

rx(y) =
ψ(y)− ψ(x)

y − x
=

ψ(y)

y − x
is continuous in its domain R \ {x}, and

rx(y)(y − x) ≥ 0 , for every y ∈ R \ {x} . (2)

Moreover,

D+ψ(x) = lim sup
y→x+

rx(y) , D−ψ(x) = lim inf
y→x−

rx(y) .

Correspondingly, we can find two sequences of irrational numbers (ξ−n )n in
(−∞, x) and (ξ+

n )n in (x,+∞) such that limn ξ
±
n = x and

lim
n
rx(ξ+

n ) = D+ψ(x) , lim
n
rx(ξ−n ) = D−ψ(x) .

4



We now assume x > 0. Recalling the notation (cn(ζ))n for the sequence of
the convergents of the continued fraction representing ζ /∈ Q, we can find two
sequences of positive rational numbers (ζ±n )n such that

ζ−n = c2κ(n)+1(ξ−n ) =
γ−n
δ−n

and ζ+
n = c2κ(n)(ξ

+
n ) =

γ+
n

δ+
n
,

where the choice κ(n) > n is such that |ξ±n −ζ±n | < n−1, |rx(ξ±n )−rx(ζ±n )| < n−1,
and γ±n > n. In particular, we can ensure that limn ζ

±
n = x and

lim
n
rx(ζ+

n ) = D+ψ(x) , lim
n
rx(ζ−n ) = D−ψ(x) .

Finally,

f(ζ+
n )− f(x)

ζ+
n − x

=
f(ζ+

n )

ζ+
n − x

=

(
2− 1

γ+
n

)
ψ(ζ+

n )

ζ+
n − x

→ 2D+ψ(x) ,

f(ζ−n )− f(x)

ζ−n − x
=

f(ζ−n )

ζ−n − x
=

(
2− 1

γ−n

)
ψ(ζ−n )

ζ−n − x
→ 2D−ψ(x) .

Hence, D+f(x) = 2D+ψ(x) and D−f(x) = 2D−ψ(x), taking into account (1)
and (2).

The cases when x < 0 or x = 0 can be carried out similarly. The proof is
thus completed.

Proof of Theorem 3. The aim is to construct a non-negative continuous function
ψ whose set of zeros coincides with A, satisfying

D+ψ(x) = +∞ and D−ψ(x) = −∞ , for every x ∈ A .

Let us first introduce some notations. We define the function

]
√
x =

{√
x , if x ≥ 0 ,

0 , if x < 0 ,

and the following functions: for an interval [c, d] ⊆ R ∪ {±∞} and a constant
η > 0,

gη[c,d] =



η
]

√
1−

(
2x− c− d
d− c

)2

, if c, d ∈ R and c < d ,

]
√
x− c , if c ∈ R and d = +∞ ,

]
√
d− x , if c = −∞ and d ∈ R ,

1 , if c = −∞ and d = +∞ ,

0 , if c = d .

Let us treat the case D(A) 6= ∅, the other case being simpler. By hypothesis,
D(A) is countable and made of isolated points, so we can list its elements as

−∞ = · · · = ā−p−1

or
−∞ < · · · < ā−p−1

 < ā−p < · · · < ā0 < · · · < āq <

 āq+1 = · · · = +∞ ,
or
āq+1 < · · · < +∞ ,
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depending on the boundedness of the set. Fix j ∈ Z and consider the interval
[āj , āj+1].

If (āj , āj+1) ∩A = ∅ , we set ψj(x) = g1
[āj ,āj+1] .

Otherwise, let aj0 ∈ (āj , āj+1)∩A. We are going to define a bilateral increasing
sequence (ajn)n∈Z in [āj , āj+1] ∩A such that

lim
n→−∞

ajn = āj , lim
n→+∞

ajn = āj+1 .

If (āj , a
j
0) ∩ A has infinitely-many elements, since D(A) ∩ (āj , a

j
0) = ∅, we can

order them as
aj−1 > aj−2 > · · · > aj−n > · · · . (3)

Otherwise, if (āj , a
j
0) ∩ A has finitely-many elements, say M , we can list them

in order to have

aj−1 > aj−2 > · · · > aj−M > aj−(M+1) = aj−(M+2) = · · · = āj . (4)

Similarly, if (aj0 , āj+1) ∩A has infinitely-many elements we can order them as

aj1 < aj2 < · · · < ajn < · · · .

Otherwise, if (aj0 , āj+1)∩A has finitely-many elements, say N , we can list them
in order to have

aj1 < aj2 < · · · < ajN < ajN+1 = ajN+2 = · · · = āj+1 .

If ajn and ajn+1 are real numbers, we set

sjn =
ajn+1 + ajn

2
, and ηjn = min{qjn, 1} ,

where

qjn =


√
sjn − āj , if n < 0 ,

√
āj+1 − sjn , if n ≥ 0 .

Otherwise, if ajn = −∞ or ajn+1 = +∞, we set ηjn = 1. So, we can define

ψj(x) =
∑
n∈Z

g
ηjn
[ajn , a

j
n+1]

(x) .

Notice that, by definition, for every j ∈ Z the function ψj is null outside
(āj , āj+1), while for every x ∈ (āj , āj+1), we have that ψj(x) = 0 if and only if
x ∈ {ajn : n ∈ Z}.

Finally, we set

ψ(x) =
∑
j∈Z

ψj(x) .

By the above construction, it is easy to verify that the set of zeros of ψ coincides
with A. We now prove that ψ is continuous, with

D+ψ(x) = +∞ and D−ψ(x) = −∞ , for every x ∈ A . (5)

Let us fix x ∈ R, and consider three different cases.
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If x 6∈ A, we have that x ∈ (ajn , a
j
n+1), for some j, n in Z. The continuity at

x is trivial since ψ = g
ηjn
[ajn , a

j
n+1]

in a neighborhood of x.

If x ∈ A \ D(A), there exists j ∈ Z and n ∈ Z such that

ajn−1 < x = ajn < ajn+1 ,

so we have

ψj(y) = g
ηjn−1

[ajn−1 , a
j
n]

(y) + g
ηjn
[ajn , a

j
n+1]

(y) , for every y ∈ [ajn−1 , a
j
n+1] .

The continuity at x and property (5) follow by a simple calculation; in this case,
the function ψ admits left and right derivatives at x = ajn.

Let us now consider the case when x = āj ∈ D(A). In order to prove that
limy→ā+

j
ψ(y) = 0 and D+f(āj) = +∞, we need to consider separately the

two cases (3) or (4). Case (4) can be treated as above, since ψ coincides with

g
ηj−(M+1)

[aj−(M+1)
, aj−M ]

in a right neighborhood of āj .

Assume now that we are in case (3). Consider the sequence (sjn)n∈Z defined
above, so that limn→−∞ sjn = āj . Since, in a right neighborhood of āj ,

ψ(y) = ψj(y) =
∑
n<0

g
ηjn
[ajn , a

j
n+1]

(y)

≤
∑
n<0

ηjn χ[ajn , a
j
n+1](y) ≤

∑
n<0

√
sjn − āj χ[ajn , a

j
n+1](y)

(here χE denotes the characteristic function of the interval E), we have that
limy→ā+

j
ψ(y) = 0.

On the other hand, in order to prove that D+f(āj) = +∞, notice that, since
limn→−∞ qjn = 0, for n < 0 with |n| sufficiently large we have

ψ(sjn) = ψj(s
j
n) = g

ηjn
[ajn , a

j
n+1]

(sjn) = ηjn =

√
sjn − āj ,

thus giving us

ψ(sjn)− ψ(āj)

sjn − āj
=

√
sjn − āj − 0

sjn − āj
→ +∞ , as n→ −∞ .

A similar procedure shows that limy→ā−
j
ψ(y) = 0 and D−f(āj) = −∞.

We have thus proved that ψ is continuous and property (5) holds. Recalling
Lemma 5, the proof is completed.
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