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Abstract. We prove the existence of an arbitrarily large number of sub-
harmonic solutions for a class of weakly coupled Hamiltonian systems
which includes the case when the Hamiltonian function is periodic in all
of its variables and its critical points are non-degenerate. Our results
are obtained through a careful analysis of the dynamics of the planar
components, combined with an application of a generalized version of
the Poincaré–Birkhoff Theorem.

1 Introduction

We consider a Hamiltonian system of the type

Jż = ∇H(z) + ε∇P (t, z) , (1)

where J =
(

0 −IN
IN 0

)
denotes the standard 2N × 2N symplectic matrix,

the Hamiltonian function H : R2N → R is twice continuously differentiable,
P : R×R2N → R is a continuous function, T -periodic in its first variable and
continuously differentiable with respect to its second variable (with ∇P (t, z)
denoting the gradient with respect to z), and ε is a small real parameter.

Writing z = (x, y), with x = (x1, . . . , xN) ∈ RN and y = (y1, . . . , yN) ∈ RN ,
we use the notation zk = (xk, yk) ∈ R2, and we assume that there are N
functions Hk : R2 → R such that

H(z) =
N∑
k=1

Hk(zk) . (2)

Under this assumption, system (1) is said to be weakly coupled, since ε is
supposed to be a small parameter.

We are looking for subharmonic solutions, i.e., periodic solutions z : R →
R2N whose minimal period is mT , for some integer m ≥ 2. Clearly enough,
under the sole above assumptions the existence of these solutions is not guar-
anteed, as the simple example H = P = 0 shows; this is why, for this kind of
problem, some further assumptions are necessary.
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In [3], Conley and Zehnder consider a general Hamiltonian system of the
type

Jż = ∇H(t, z) , (3)

assuming the Hamiltonian function H to be T -periodic in t and also periodic in
all its remaining variables, a setting already adopted by the same authors in [2].
They ask all the iterates of the possible T -periodic solutions of the Hamiltonian
system to be non-degenerate; in other words, if z(t) is a T -periodic solution
of (3), denoting by Z(t) the 2N × 2N matrix solution of

JŻ = H ′′z (t, z(t))Z , Z(0) = Id ,

the number 1 cannot be an eigenvalue of Z(mT ), for any integer m ≥ 1.
Under these assumptions, it is proved in [3] that for any sufficiently large prime
number m there is a periodic solution having minimal period mT . (See also [9,
11, 13, 17] for similar results.) Although their non-degeneracy assumption
seems to be generically satisfied (see e.g. [14]), it is very difficult to verify it in
concrete examples.

We are looking here for some conditions which can be more easily checked
in practice. For instance, we will prove that if the function H of the form (2) is
periodic in all its variables and has only non-degenerate critical points, then for
ε small enough system (1) has a large number of subharmonic solutions, whose
planar components perform a prescribed number of rotations in their period
time. (We recall that Q is a non-degenerate critical point of the Hamiltonian
function H if detH ′′(Q) 6= 0.)

In order to precisely state our results, let us first recall the definition of
rotation number associated with a planar curve, around a point Q. For τ1 < τ2,
let ζ : [τ1, τ2]→ R2 be continuously differentiable and such that ζ(t) 6= Q, for
every t ∈ [τ1, τ2]. Writing ζ(t) = Q + ρ(t)(cos θ(t), sin θ(t)), with ρ(t) > 0 and
θ(t) continuous functions, one has

Rot (ζ;Q; [τ1, τ2]) = −θ(τ2)− θ(τ1)

2π
.

If Q is the origin, we will simply write Rot (ζ; [τ1, τ2]).

We can now present our first result.

Theorem 1.1. Assume that the Hamiltonian function H, of the form (2), has
at least two critical points, one of which is a non-degenerate local minimum
point Q = (Q1, . . . ,QN) ∈ R2N . In addition assume that, for ε = 0, the
solutions of (1) are globally defined.

Let M1, . . . ,MN be arbitrary positive integers. Then, there is a positive in-
teger m with the following property: for every integer m ≥ m, there exists
εm > 0 such that, if |ε| ≤ εm, system (1) has at least N + 1 distinct mT -
periodic solutions z(t), whose components satisfy

Rot(zk;Qk; [0,mT ]) = Mk , for every k = 1, . . . , N .
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Taking into account (2), in Theorem 1.1 we are assuming that all the
functions Hk have at least two critical points, one of which is a non-degenerate
local minimum point. A similar statement holds in the case when there is
a non-degenerate local maximum point, taking M1, . . . ,MN to be negative
integers.

Let us clarify what we mean by distinct subharmonic solutions. Being
the nonlinearities T -periodic in t, once an mT -periodic solution z(t) has been
found, many others appear by just making a shift in time, thus giving rise to
the periodicity class

z(t), z(t+ T ), z(t+ 2T ) , . . . , z(t+ (m− 1)T ) .

We say that two mT -periodic solutions are distinct if they are not related to
each other in such a way.

As already noticed in [7], if at least one of the components of a solution z(t)
makes exactly one rotation in its period time mT , then necessarily this solution
has minimal period equal to mT . As a consequence, if N ≥ 2, there will be a
myriad of periodic solutions having minimal period mT : when one of the com-
ponents performs exactly one rotation, the others rotate an arbitrary number
of times. We thus have the following direct consequence of Theorem 1.1.

Corollary 1.2. Under the assumptions of Theorem 1.1, let N ≥ 2 and fix
an arbitrary positive integer ℵ. Then, there is a positive integer m with the
following property: for every integer m ≥ m, there exists εm > 0 such that,
if |ε| ≤ εm, system (1) has at least ℵ distinct periodic solutions with minimal
period mT .

We then easily deduce the following result.

Corollary 1.3. Let N ≥ 2, and assume that the Hamiltonian function H is
of the form (2), it is periodic with respect to all variables xk and yk, and all its
critical points are non-degenerate. Then, the same conclusion of Corollary 1.2
holds.

Indeed, by Weierstrass Theorem, there surely is a minimum point for H,
and it is non-degenerate, by assumption. Moreover, being ∇H periodic in all
its variables, it is bounded, so the solutions of (1) with ε = 0 are globally
defined. Corollary 1.2 thus applies.

Let us compare this result with the above quoted one by Conley and Zehn-
der. Clearly, we have a strong restriction in dealing here only with weakly
coupled systems, while in [3] the general Hamiltonian system (3) was studied.
However, the non-degeneracy is now assumed only on the critical points of H,
a condition which is rather easy to verify in practice. Moreover, we now have,
for any sufficiently large integer m, an arbitrarily large number of periodic so-
lutions having minimal period mT , provided that ε is chosen sufficiently small.
Notice also that we do not require the function P (t, z) to be periodic in the
space variables.
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We also recall that a perturbation theory has been developed in the litera-
ture for nearly integrable Hamiltonian systems (see, e.g. [1, 4]). However, we
emphasize that our results are not of perturbative type, since the periodic so-
lutions we find do not bifurcate from some particular solution of the uncoupled
system corresponding to ε = 0.

The paper is organized as follows. The next three sections are devoted
to the study of planar Hamiltonian systems, providing some new existence re-
sults in this setting. In Section 2 we develop some preliminaries on autonomous
Hamiltonian systems, which will be used in the subsequent existence theorems.
In Section 3 we prove our main result for planar Hamiltonian systems, followed
by some useful corollaries. In Section 4 we analyse in detail some more spe-
cific systems, and propose more explicit conditions so to get the existence of
subharmonic solutions. In particular, we obtain an existence result for scalar
second order equations which turns out to be optimal. Finally, in Section 5
we provide a generalization of Theorem 1.1 along the lines developed in the
previous sections.

2 Some preliminaries on autonomous planar

Hamiltonian systems

In this section we concentrate on autonomous planar Hamiltonian systems of
the type

Jζ̇ = ∇H (ζ) , (4)

where H : R2 → R is a twice continuously differentiable function. We are first
interested in the dynamics near a nonconstant periodic solution. We recall that
the orbit Γ of such a solution is a Jordan curve, so that R2 \ Γ is the disjoint
union of two open connected sets, int(Γ), the “interior” set, which is bounded,
and ext(Γ), the “exterior” set, which is unbounded. As we now recall, such a
solution “generates” a period annulus, i.e., a connected set in the plane (which
may be unbounded) covered by orbits of nonconstant periodic solutions.

Proposition 2.1. Any nonconstant periodic orbit of (4) is contained in the
interior of a period annulus.

Proof. Let ζ∗(t) be a nonconstant periodic solution of (4), with minimal period
τ ∗ > 0, and set h∗ = H (ζ∗(t)) (recall that the Hamiltonian is constant along
the orbits). We know that ∇H (ζ∗(t)) 6= 0 for every t ∈ [0, τ ∗], hence, by
continuity and compactness, there is an open neighborhood U∗ of the orbit of
ζ∗ on which ∇H remains away from 0.

Let us consider in U∗ the system

ż =
∇H (z)

|∇H (z)|
, (5)
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and for every s ∈ R let zs(t) be the solution of (5) satisfying zs(0) = ζ∗(s).
We can then fix δ > 0 such that the set

U∗∗ = {zs(t) : t ∈ [−δ, δ] and s ∈ [0, τ ∗]}

is contained in U∗. Let f, g : [0, τ ∗] → R be the continuous functions defined
by

f(s) = min{H (zs(t)) : t ∈ [−δ, δ]} , g(s) = max{H (zs(t)) : t ∈ [−δ, δ]} .

Since ∇H 6= 0 on U∗, the function t 7→ H (zs(t)) is strictly increasing on
[−δ, δ], for every s ∈ [0, τ ∗], hence f(s) < h∗ < g(s), for every s ∈ [0, τ ∗].
Then, defining

h∗− = max{f(s) : s ∈ [0, τ ∗]} , h∗+ = min{g(s) : s ∈ [0, τ ∗]} ,

we have that h∗− < h∗ < h∗+, and

H (zs(−δ)) ≤ h∗− , H (zs(δ)) ≥ h∗+ , for every s ∈ [0, τ ∗] .

The set U∗∗ ∩H −1( ]h∗−, h
∗
+[ ) contains the orbit of ζ∗, it is open and arcwise

connected; to conclude the proof, we need to show that every solution of (4)
starting from this set is periodic.

Fix any h] ∈ ]h∗−, h
∗
+[ , any P ∈ U∗∗∩H −1(h]), and let ζ(t) be the solution

of (4) such that ζ(0) = P . Since H (ζ(t)) = h] for every t ∈ R and ζ(0) ∈ U∗∗,
by the choice of h∗− and h∗+, it has to be that ζ(t) ∈ U∗∗ for every t ∈ R, hence
ζ(t) is bounded. Therefore, by the Poincaré–Bendixson Theorem, the ω-limit
of ζ is a periodic orbit. Let us show that ω(ζ) coincides with the orbit of ζ
itself. First notice that ω(ζ) ⊆H −1(h]). Next, let Q ∈ ω(ζ). By the Implicit
Function Theorem, there is an r > 0 such that the set H −1(h]) ∩ B(Q, r) is
the graph of a C1-function, hence it is an arc of the periodic orbit ω(ζ). On
the other hand, being Q in ω(ζ), by definition there is a sequence (Qn)n in the
orbit of ζ which belongs to H −1(h]) ∩B(Q, r). Then Qn belongs both to the
orbit of ζ and to ω(ζ), which is also an orbit of (4). Therefore, the orbit of ζ
must coincide with ω(ζ). We have thus shown that ζ(t) is periodic.

In the following, we will denote by A(Γ) the maximal period annulus deter-
mined by a nonconstant periodic orbit Γ, i.e., the maximal connected set cov-
ered by the orbits of nonconstant periodic solutions containing Γ. By Propo-
sition 2.1, A(Γ) is an open set. Clearly, it may be unbounded, but it cannot
coincide with the whole space R2, since it is well-known that, when there is a
nonconstant periodic orbit Γ, there must exist an equilibrium point in int(Γ).
By Hopf’s Theorem (the Umlaufsatz [12]), we can associate a direction of ro-
tation to the nonconstant periodic solution ζ∗(t), according to whether the
degree of its derivative is +1 or −1; in the first case, we say that the solution
rotates clockwise, while in the second case it rotates counter-clockwise. Since
the period annulus is connected, all the periodic solutions contained in it have
the same direction of rotation.
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We denote by T (ζ0) the period of the solution with initial position ζ0 = ζ(0)
in A(Γ) (in the following, the “period” of a solution of an autonomous system
is always meant to be its minimal period). It is well-known that, since H is
a C2-function, the function ζ0 7→ T (ζ0) is continuously differentiable on A(Γ).
The periods of all the orbits in A(Γ) thus determine what we will call the
associated period interval I(Γ).

Proposition 2.2. Let Γ be a nonconstant periodic orbit of (4), and assume
that A(Γ)∪ int(Γ) 6= R2. If the solutions of (4) are globally defined, then I(Γ)
is unbounded. More precisely, the periods of the orbits of (4) in A(Γ)∩ ext(Γ)
cover an unbounded interval.

Proof. Let P be a point belonging to Γ, and v be a vector such that P + v /∈
A(Γ)∪ int(Γ). Consider the set of points pλ = P + λv, with λ ∈ [0, 1], i.e., the
segment joining P with P + v, and set

α = max{λ ∈ [0, 1] : pλ ∈ Γ} , λ̄ = sup{λ ∈ [α, 1] : pλ ∈ A(Γ)} .

By Proposition 2.1, we know that λ̄ > α.

For λ ∈ [α, 1], let ζλ(t) be the solution of (4) satisfying the initial condition
ζλ(0) = pλ. Denoting by τ(λ) the period of ζλ(t), with λ ∈ [α, λ̄[ , we want to
prove that

lim
λ→λ̄−

τ(λ) = +∞ .

By contradiction, assume that there is an increasing sequence (λn)n such that
λn → λ̄ and (τ(λn))n remains bounded. Then, for a subsequence, keeping the
same notation, τ(λn) → τ̄ , for some τ̄ ∈ [0,+∞[ . Since the solutions of (4)
are globally defined, the set

K = {ζλ(t) : λ ∈ [α, 1], t ∈ [0, τ̄ + 1]}

is compact in R2. For n large enough, the orbit of ζλn(t) is contained in the
set K. Moreover, there is a constant c̄ > 0 such that

|∇H (ζ)| ≤ c̄ , for every ζ ∈ K . (6)

Let Q 6= P be another point belonging to Γ. Observing that, when λ varies in
]α, λ̄[ , the orbit of ζλ(t) belongs to the period annulus associated to Γ and is
contained in ext(Γ), it is easy to see, using (6), that

τ̄ ≥ 2|Q− P |
c̄

.

So, τ̄ cannot be equal to zero.

By (6), the sequence (ζλn)n is equi-uniformly continuous on [0, τ̄ + 1], and
we know that it is uniformly bounded. By the Ascoli–Arzelà Theorem, there
is a subsequence, for which we maintain the same notation, and a continuous
function ζ̄ : [0, τ̄ + 1] → R2 such that ζλn(t) → ζ̄(t), uniformly on [0, τ̄ + 1].
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By a standard argument, ζ̄(t) is a τ̄ -periodic solution of (4), and ζ̄(0) = pλ̄.
By Proposition 2.1, the orbit of ζ̄(t) is contained in the interior of a period
annulus, contradicting the definition of λ̄.

Remark 2.3. The assumption A(Γ) ∪ int(Γ) 6= R2 is verified if, e.g., (4) has
an equilibrium point in ext(Γ). This situation surely occurs if ∇H : R2 → R2

is periodic along some vector v ∈ R2 \ {0}, i.e.,

∇H (ζ + v) = ∇H (ζ) , for every ζ ∈ R2. (7)

Indeed, in this case Γ + v is a periodic orbit of (4), with int(Γ + v) ⊆ ext(Γ),
and we know that there is an equilibrium point in int(Γ + v).

In order to provide the existence of a nonconstant periodic solution of (4),
we will need the following result.

Proposition 2.4. Let Ω be a bounded connected open subset of R2 such that,
either

min
∂Ω

H > min
Ω

H , (8)

or
max
∂Ω

H < max
Ω

H . (9)

Then, there exists a nonconstant periodic solution of (4) whose orbit is con-
tained in Ω.

Proof. Let us assume (8). By Sard’s Lemma, there exists a c ∈ R such that

min
Ω

H < c < min
∂Ω

H , (10)

and
∇H (ζ) 6= 0 , for every ζ ∈H −1(c) . (11)

Fix ζ0 ∈ Ω ∩H −1(c) and let ζ(t) be the solution of (4) such that ζ(0) = ζ0.
Since H (ζ(t)) = c for every t ∈ R, by (10) it has to be that ζ(t) ∈ Ω, for
every t ∈ R. By the Poincaré–Bendixson Theorem, the ω-limit of ζ is either a
nonconstant periodic orbit, or contains an equilibrium point. But the second
possibility is excluded, because of (11). Hence, it is a nonconstant periodic
orbit which, by (10), is contained in Ω.

The case when (9) holds can be treated in a similar way.

Remark 2.5. Condition (8) is surely verified if ∂Ω is smooth and

〈∇H (ζ), ν(ζ)〉 > 0 , for every ζ ∈ ∂Ω ,

where ν(ζ) denotes the outward unit normal to ∂Ω at ζ. A similar observation
holds for (9), reversing the inequality.

In the following, we say that a critical point ζ0 ∈ R2 of H is non-degenerate
if det H ′′(ζ0) 6= 0.
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Proposition 2.6. Let ζ0 be a non-degenerate local minimum point of H .
Then, in any neighbourhood of ζ0 there exists a nonconstant periodic solution
of (4), rotating in clockwise sense. Similarly if ζ0 is a non-degenerate local
maximum point of H , the nonconstant periodic solutions rotating in counter-
clockwise sense in this case.

Proof. Being ∇H (ζ0) = 0, we can write

H (ζ) = H (ζ0) + 〈H ′′(ζ0 + ξ(ζ − ζ0))(ζ − ζ0), ζ − ζ0〉 ,

for some ξ ∈ ]0, 1[ . The conclusion easily follows from Proposition 2.4, taking
Ω = B(ζ0, ρ), with ρ > 0 sufficiently small.

3 Subharmonic solutions in the plane

We consider the time-dependent planar Hamiltonian system

Jζ̇ = ∇H (ζ) + ε∇P(t, ζ) . (12)

Here, the Hamiltonian function H : R2 → R is twice continuously differen-
tiable, P : R×R2 → R is a continuous function, T -periodic in its first variable
and continuously differentiable with respect to ζ = (x, y), and ε is a small real
parameter. We denote by ∇P(t, ζ) the gradient with respect to ζ.

Theorem 3.1. Let the solutions of (4) be globally defined, and assume that
there exists a nonconstant periodic orbit Γ of (4) such that A(Γ)∪int(Γ) 6= R2.
Then, there exists an integer m ≥ 2 such that, for every integer m ≥ m, there
is a ε̄m > 0 with the following property: if |ε| ≤ ε̄m, then system (12) has at
least two periodic solutions having minimal period mT .

Proof. We first concentrate on the autonomous system (4), corresponding
to (12) with ε = 0. To fix the ideas, assume for instance that the orbit Γ
rotates clockwise. By Propositions 2.1 and 2.2, Γ generates a period annulus
A(Γ), and the periods of the orbits of (4) in A(Γ) ∩ ext(Γ) cover an interval

[τ̂ ,+∞[ . Let Γ̂ be an orbit in A(Γ)∩ ext(Γ) with period τ̂ . Let m be the min-
imal positive integer such that mT > τ̂ , and take m ≥ m. Let Γm be an orbit
in A(Γ)∩ ext(Γ̂) with period mT . Finally, let Γ̃ be an orbit in A(Γ)∩ ext(Γm)

with period τ̃ > mT . The orbits Γ̂ and Γ̃ determine a bounded open annulus
A in the plane.

We can now proceed as in [6, Lemma 4.3] and construct a symplectic dif-
feomorphism Λ : A → B, where B is an open annulus of the type {v ∈
R2 : ri < |v| < re}, such that the change of variables v(t) = Λ(ζ(t)) trans-
forms the orbits of the autonomous system (4) in A into the orbits in B of
a Hamiltonian system with Hamiltonian function L(v) = H (Λ−1(v)), with
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∇L(v) = 2π
T (Λ−1(v))

v, while preserving their periods. Notice that L : B → R is

a C2-function. We thus have the new system

Jv̇ =
2π

T (Λ−1(v))
v . (13)

All the orbits of this system are circular, and the periods vary in an interval
containing ]τ̂ , τ̃ [ . In particular, the periods of those lying near the circle of
radius ri are close to τ̂ , while the periods of those lying near the circle of
radius re are close to τ̃ . The orbit Γm is transformed into a circle of radius
rm ∈ ]ri, re[ , whose period is still equal to mT .

The same change of variables translates the solutions of the perturbed sys-
tem (12) lying in A into solutions of a Hamiltonian system with Hamiltonian
function

Lε(t, v) = L(v) + εP(t,Λ−1(v)) ,

defined on R×B. We now modify and extend from B to the whole plane R2

this Hamiltonian function. We fix some numbers r′i, r
′
e, r
′′
i , r
′′
e , with

ri < r′i < r′′i < rm < r′′e < r′e < re ,

and in such a way that, denoting by τ(r′′i ), τ(r′′e ) the periods of the circular
orbits of (13) with radius r′′i , r

′′
e , respectively, we have that

τ(r′′i ) < mT < τ(r′′e ) . (14)

Consider a C∞-function χ : [0,+∞[→ [0, 1] , whose support is contained

in ]ri, re[ , such that χ(r) = 1 when r ∈ [r′i, r
′
e], and let L̃ε : R × R2 → R be

defined as

L̃ε(t, v) =


χ(|v|)Lε(t, v) if v ∈ B ,

0 if v ∈ R2 \B .

This is a continuous function, T -periodic in its first variable, and continuously
differentiable in its second variable. We can then consider the Hamiltonian
system

Jv̇ = ∇L̃ε(t, v) . (15)

Notice that all the points in R2 \B are equilibria for (15). Moreover, if ε = 0,
system (15) coincides with (13) on

B ′ = {v ∈ R2 : r′i ≤ |v| ≤ r′e} .

Let us see how the solutions of (15) behave when starting from the set

B ′′ = {v ∈ R2 : r′′i ≤ |v| ≤ r′′e} .

If ε = 0, we know from (14) that the solutions v(t) of (13) starting with
|v(0)| = r′′i rotate clockwise more than once in the time interval [0,mT ], while
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those starting with |v(0)| = r′′e make less than one clockwise rotation in the
same time interval. In symbols we thus have, for the solutions of (15),[

ε = 0 and |v(0)| = r′′i
]
⇒ Rot(v; [0,mT ]) > 1 ,[

ε = 0 and |v(0)| = r′′e
]
⇒ Rot(v; [0,mT ]) < 1 .

(16)

We claim that, for ε small enough, the solutions of (15) starting with v(0) ∈ B ′′

will be such that

v(t) ∈ B ′, for every t ∈ [0,mT ] . (17)

Indeed, since L is twice continuously differentiable on B, and B ′ is a compact
subset of B, there are two constants C > 0 and L > 0 such that

|∇L(v1)−∇L(v2)| ≤ L|v1 − v2| , for every v1, v2 ∈ B ′, (18)

and
|∇(P(t, ·) ◦ Λ−1)(v)| ≤ C , for every (t, v) ∈ R×B ′. (19)

Fix ε̃ > 0 such that

ε̃ <
1

CmTeLmT
min{r′′i − r′i, r′e − r′′e} , (20)

and assume that |ε| ≤ ε̃. Let v(t) be a solution of (15) with v(0) ∈ B ′′, let
w(t) be a solution of (13) with w(0) = v(0), and let t ∈ [0,mT ] be such that
v(s) ∈ B ′ for every s ∈ [0, t]. Then, by (18) and (19),

|v(t)− w(t)| =

∣∣∣∣∫ t

0

J∇L̃ε(s, v(s))− J∇L(w(s)) ds

∣∣∣∣
≤
∫ t

0

|∇L(v(s))−∇L(w(s))| ds+

+ε

∫ t

0

|∇(P(s, ·) ◦ Λ−1)(v(s))| ds

≤ L

∫ t

0

|v(s)− w(s)| ds+ εCmT .

By Gronwall Lemma,

|v(t)− w(t)| ≤ εCmTeLt ≤ ε̃CmTeLmT ,

showing that v(t) /∈ ∂B ′, by (20). This proves that, if |ε| ≤ ε̃, the solution
v(t) remains in B ′ for every t ∈ [0,mT ].

Then, by (16) and (19), there exists ε̄ ∈ ]0, ε̃ ] such that[
|ε| ≤ ε̄ and |v(0)| = r′′i

]
⇒ Rot(v; [0,mT ]) > 1 ,[

|ε| ≤ ε̄ and |v(0)| = r′′e
]
⇒ Rot(v; [0,mT ]) < 1 .
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Hence, we can apply the generalized version of the Poincaré–Birkhoff The-
orem in [8, Theorem 1.2] (which does not require the uniqueness for initial
value problems), providing the existence of two distinct mT -periodic solutions
v1(t), v2(t) of (15), with v1(0), v2(0) ∈ B ′′, such that

Rot (vj; [0,mT ]) = 1 , for every j = 1, 2 .

The minimal period of these solutions is mT and, by the above considerations,

vj(t) ∈ B ′, for every t ∈ [0,mT ] .

Hence, since L̃ε(t, v) = Lε(t, v) when v ∈ B ′, by the inverse change of variables
we obtain two distinct periodic solutions of the original system (12),

ζj(t) = Λ−1(vj(t)) , with j = 1, 2 ,

both having minimal period mT .

Remark 3.2. In the above proof, assuming that the orbit Γ rotates clockwise,
we could fix an arbitrary positive integer M and choose m to be the minimal
positive integer such that mT > Mτ̂ . Then, taking m ≥ m, it is possible to
find r′′i < rm < r′′e such that the orbit of (13) with radius r′′i has a smaller period
than mT/M , while the period of the orbit with radius r′′e is greater than mT .
The corresponding annulus B ′′ is such that the solutions v(t) starting with
|v(0)| = r′′i rotate clockwise more than M times in the time interval [0,mT ],
while those starting with |v(0)| = r′′e make less than one clockwise rotation
in the same time interval. We thus eventually find two mT -periodic solutions
of (15) such that

Rot (vj; [0,mT ]) = M , for every j = 1, 2 .

A similar argument holds when the orbit Γ rotates counter-clockwise, provided
that M is negative. This remark will be useful in the proof of Theorem 1.1.

We now provide some useful corollaries of Theorem 3.1.

Corollary 3.3. Let the solutions of (4) be globally defined, assume that there
exists a bounded connected open subset Ω of R2 such that either (8) or (9) is
satisfied, and that there is a ζ0 in the unbounded connected component of R2\Ω
such that ∇H (ζ0) = 0. Then, the same conclusion of Theorem 3.1 holds.

Proof. In this case, by Proposition 2.4, there is a nonconstant periodic orbit
Γ of (4) contained in Ω. Since ζ0 is an equilibrium point which belongs to
the unbounded connected component of R2 \ Ω, it surely does not belong to
A(Γ) ∪ int(Γ), so that Theorem 3.1 applies.

Corollary 3.4. Let the solutions of (4) be globally defined, and assume that
∇H is periodic along some vector v ∈ R2 \ {0} (i.e., that (7) holds). If there
exists a bounded connected open subset Ω of R2 such that either (8) or (9) is
satisfied, then the same conclusion of Theorem 3.1 holds.
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Proof. By Proposition 2.4 there is a nonconstant periodic orbit Γ of (4) con-
tained in Ω, and hence there is an equilibrium point in ζ∗ ∈ int(Γ). By the
periodicity assumption, all points ζ∗+kv, with k ∈ Z, are still equilibria, hence
the conclusion follows from Corollary 3.3.

Corollary 3.5. Let the solutions of (4) be globally defined, and assume that H
has at least two critical points, one of which is a non-degenerate local minimum
or maximum point. Then, the same conclusion of Theorem 3.1 holds.

Proof. We use Proposition 2.6 to find a sufficiently small nonconstant orbit
Γ surrounding the non-degenerate local minimum or maximum point, so that
the second critical point belongs to ext(Γ). Hence, Theorem 3.1 applies, in
view of Remark 2.3.

Corollary 3.6. Let the solutions of (4) be globally defined, and assume that
∇H is periodic along some vector v ∈ R2\{0}. If there exists a non-degenerate
local minimum or maximum point ζ0 of H , then the same conclusion of The-
orem 3.1 holds.

Proof. It is a direct consequence of Corollary 3.5.

We now consider the case when the Hamiltonian function H is periodic in
two different directions.

Corollary 3.7. Let H be periodic along two linearly independent vectors
v, w ∈ R2 \ {0}, and assume that all its critical points are non-degenerate.
Then, the same conclusion of Theorem 3.1 holds.

Proof. By Weierstrass Theorem, there surely are a minimum and a maximum
point for H , and they are non-degenerate, by assumption. Moreover, ∇H is
periodic along the same vectors v, w, hence bounded, so the solutions of (4)
are globally defined. Corollary 3.6 thus applies.

We end this section dealing with the case when the gradient of H is peri-
odic in two different directions.

Corollary 3.8. Let ∇H be periodic along two linearly independent vectors
v, w ∈ R2 \ {0}. Assume that there exist α, β ∈ R such that

∂H

∂v
(αv + λw) · ∂H

∂v
(βv + λw) < 0 , for every λ ∈ R ,

and that there exist a, b ∈ R such that

∂H

∂w
(λv + aw) · ∂H

∂w
(λv + bw) < 0 , for every λ ∈ R .

Then, the same conclusion of Theorem 3.1 holds.
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Proof. By the periodicity assumptions, ∇H is bounded, so the solutions of (4)
are globally defined. Moreover we can always assume, without loss of general-
ity, that α < β, a < b,

∂H

∂v
(αv + λw) < 0 <

∂H

∂v
(βv + λw) ,

and
∂H

∂w
(λv + aw) < 0 <

∂H

∂w
(λv + bw) ,

for every λ ∈ R. Defining the bounded connected open set

Ω = {γ1v + γ2w : α < γ1 < β, a < γ2 < b} ,

we see that (8) holds, and Corollary 3.4 applies.

4 Further existence results

The aim of this section is to provide the existence of subharmonic solutions
in a more specific setting, which includes as a special case the planar systems
generated by scalar second order differential equations. The final result of the
section will indeed be specifically stated for such type of equations, involving a
periodic nonlinearity, thus proving the existence of subharmonic solutions for
a periodically perturbed pendulum-type equation.

As in the previous section, we consider the planar system (12), with the
same regularity assumptions on the Hamiltonian function H : R2 → R and
on P : R× R2 → R.

Theorem 4.1. Let the solutions of (4) be globally defined, and assume that
there exist three real constants α < β < γ with the following properties:
A1 either

max

{
∂H

∂x
(α, y),

∂H

∂x
(γ, y)

}
< 0 <

∂H

∂x
(β, y) , for every y ∈ R ,

or

∂H

∂x
(β, y) < 0 < min

{
∂H

∂x
(α, y),

∂H

∂x
(γ, y)

}
, for every y ∈ R ;

A2 for x ∈ [α, γ], the function y 7→H (x, y) is convex;
A3 there exist two real constants a < b such that

∂H

∂y
(x, a) < 0 <

∂H

∂y
(x, b) , for every x ∈ [α, γ] .

Then the same conclusion of Theorem 3.1 holds.
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Proof. We first notice that, if A2 holds, then A3 is equivalent to

lim
|y|→∞

H (x, y) = +∞ , uniformly for x ∈ [α, γ] .

Assume the first of the two conditions in A1 holds. We want to construct a
bounded connected open set Ω ⊂ ]α, β[×R satisfying condition (8). Let us
introduce the multivalued function µ which associates to every x ∈ [α, β] the
compact interval

µ(x) = {y ∈ R : H (x, y) = min H (x, ·)} .

There exists a ρ > 0 such that µ(x) ⊆ [−ρ, ρ], for every x ∈ [α, β]. Indeed,
assuming the contrary, for every positive integer n there would exist a xn ∈
[α, β] and a yn ∈ µ(xn) with |yn| > n. But, since ∂H

∂y
(xn, yn) = 0, we would

find a contradiction with A2 and A3.

Let us show that µ(x) is an upper semicontinuous multivalued function, i.e.,
that for every x ∈ [α, β] and every ε > 0 there is a δ > 0 such that |ξ − x| < δ
implies µ(ξ) ⊆ Bε(µ(x)). (Here Bε(A) denotes the open ε-neighbourhood of
the set A.)

Indeed, assume by contradiction that there are x ∈ [α, β], ε > 0, a sequence
(xn)n in [α, β] and a sequence (yn)n in [−ρ, ρ] such that xn → x, yn ∈ µ(xn) and
dist(yn, µ(x)) ≥ ε. Then, up to a subsequence, yn → y, for some y ∈ [−ρ, ρ],
and dist(y, µ(x)) ≥ ε. As a consequence,

η := H (x, y)−min H (x, ·) > 0 .

Fix ȳ ∈ µ(x); then, since

H (xn, ȳ)→H (x, ȳ) = min H (x, ·) and H (xn, yn)→H (x, y) ,

for n large enough,

H (xn, ȳ) ≤ min H (x, ·) +
η

2
= H (x, y)− η

2
< H (xn, yn) ,

contradicting the fact that H (xn, yn) = min H (xn, ·).
By a compactness argument, for every ε > 0 there are a finite number

of points xk in [α, β] and corresponding constants δk > 0 such that the open
intervals ]xk − δk, xk + δk[ , with k = 1, . . . , n, cover [α, β] and

x ∈ ]xk − δk, xk + δk[ ⇒ µ(x) ⊆ Bε(µ(xk)) . (21)

Define

Ω =
( n⋃
k=1

]xk − δk, xk + δk[×Bε(µ(xk))
)
∩
(

]α, β[×R
)
.

This is a bounded connected open subset of R2 and, by A1 and (21), con-
dition (8) is satisfied. By A1 and A3, the Poincaré–Miranda Theorem (see,
e.g., [5]) ensures the existence of a point (x0, y0) in ]β, γ[× ]a, b[ such that
∇H (x0, y0) = (0, 0). The conclusion follows from Corollary 3.3.
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If the second condition in A1 holds, one proceeds similarly, defining the
multivalued function µ(x) on [β, γ] and finding (x0, y0) in ]α, β[× ]a, b[ .

As a particular case, let H (x, y) = F (x) + G(y), so that system (12)
becomes

ẋ = g(y) + ε
∂P

∂y
(t, x, y) , −ẏ = f(x) + ε

∂P

∂x
(t, x, y) , (22)

where f(x) = F ′(x) and g(y) = G′(y).

We first assume both functions f, g to be periodic.

Corollary 4.2. Let f, g : R→ R be periodic, and assume that

there exist α, β ∈ R such that f(α)f(β) < 0 ,

and that

there exist a, b ∈ R such that g(a)g(b) < 0 .

Then, the same conclusion of Theorem 3.1 holds for system (22).

Proof. It is an immediate consequence of Corollary 3.8.

We now enter into the framework of Theorem 4.1. We have the following
two corollaries.

Corollary 4.3. Let g : R → R be increasing. Assume the existence of a
constant C > 0 such that

|f(x)|+ |g(y)| ≤ C(1 + |x|+ |y|) , for every x ∈ R and y ∈ R .

If there exist α < β < γ and a < b such that

either max{f(α), f(γ)} < 0 < f(β) or f(β) < 0 < min{f(α), f(γ)} ,

and
g(a) < 0 < g(b) ,

then the same conclusion of Theorem 3.1 holds for system (22).

Proof. It is an immediate consequence of Theorem 4.1.

Corollary 4.4. Let f : R→ R be periodic, and assume that

there exist α, β ∈ R such that f(α)f(β) < 0 .

Let g : R→ R be increasing, assume that

lim sup
|y|→∞

g(y)

y
< +∞ ,

and that

there exist a < b such that g(a) < 0 < g(b) .
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Then, the same conclusion of Theorem 3.1 holds for system (22).

Proof. If f is τ -periodic, we can assume without loss of generality that α <
β < α+ τ and f(α) < 0 < f(β). Moreover, the global existence is guaranteed
by the fact that f is bounded and g has an at most linear growth. Taking
γ = α + τ , the conclusion follows from Corollary 4.3.

We end this section with an application of the above two corollaries to a
scalar differential equation of the type

ẍ+ f(x) = εp(t, x) . (23)

Here, f : R→ R is continuously differentiable and p : R×R→ R is continuous,
and T -periodic in its first variable.

Corollary 4.5. Assume the existence of a constant C > 0 such that

|f(x)| ≤ C(1 + |x|) , for every x ∈ R .

If there exist α < β < γ such that

either max{f(α), f(γ)} < 0 < f(β) or f(β) < 0 < min{f(α), f(γ)} ,

then the same conclusion of Theorem 3.1 holds for system (22).

Proof. Equation (23) can be written into the equivalent Hamiltonian system

ẋ = y , −ẏ = f(x)− εp(t, x) ,

which is of the type (22), with g(y) = y. Corollary 4.3 then applies, yielding
to the conclusion.

Corollary 4.6. Let f : R→ R be periodic, and assume that

there exist α, β ∈ R such that f(α)f(β) < 0 .

Then, the same conclusion of Theorem 3.1 holds for equation (23).

Proof. It is an immediate consequence of Corollary 4.5, following the argument
in the proof of Corollary 4.4.

Notice that the above result is optimal since, in the case when p(t, x) is
identically equal to zero, if f(x) does not change sign, the only possible periodic
solutions of (23) are constant.

As an illustrative example, we see that Corollary 4.6 directly applies to the
perturbed pendulum equation

ẍ+

√
g

`
sinx = λ+ εp(t, x) ,

when λ2` < g, yielding the existence of an arbitrarily large number of sub-
harmonic solutions when |ε| is small enough. We remark that the existence of
subharmonic solutions for such kind of equations has been already considered,
e.g., in [4, 9, 10, 14, 15, 18].
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The results of these last two sections can be easily extended to weakly
coupled systems in R2N , with N ≥ 2. For example, for a system of the type

ẍ1 + f1(x1) = ε
∂P

∂x1

(t, x1, . . . , xN)

· · ·

ẍN + fN(xN) = ε
∂P

∂xN
(t, x1, . . . , xN) ,

assuming that the functions fi : R→ R are periodic and change sign, we have
an arbitrarily large number of subharmonic solutions, as in the statement of
Corollary 1.2.

5 The main result

We are in the position of considering the general system (1) in R2N . We
recall that the Hamiltonian function H : R2N → R is twice continuously
differentiable and satisfies (2), i.e., H(z) =

∑N
k=1Hk(zk). Hence, if ε = 0, we

have the uncoupled planar systems

Jζ̇ = ∇Hk(ζ) , (24)

with k = 1, . . . , N .

Let us state the main result of this paper.

Theorem 5.1. Assume that the Hamiltonian function H is of the form (2)
and that, for ε = 0, the solutions of (1) are globally defined. For every k =
1, . . . , N , assume that there exists a nonconstant periodic orbit Γk of (24) such
that A(Γk) ∪ int(Γk) 6= R2, and let Qk ∈ int(Γk) be such that ∇Hk(Qk) = 0.

Let M1, . . . ,MN be arbitrary positive integers. Then there is a positive inte-
ger m with the following property: for every integer m ≥ m, there exists εm > 0
such that, if |ε| ≤ εm, system (1) has at least N + 1 distinct mT -periodic so-
lutions z(t), whose components satisfy∣∣Rot(zk;Qk; [0,mT ])

∣∣ = Mk , for every k = 1, . . . , N .

Proof. Let us first assume that all the orbits Γk rotate clockwise. As seen
in the proof of Theorem 3.1, for each k = 1, . . . , N there is a bounded open
annulus Ak for (24) and a symplectic diffeomorphism Λk : Ak → Bk, where
Bk is an open annulus of the type {v ∈ R2 : rik < |v| < rek}, transforming the
orbits of (24) in Ak into circular orbits in Bk, without changing their periods.
By the argument in Remark 3.2, we can then find a positive integer mk with
the property that for every m ≥ mk there exists a smaller annulus Bk,m =
{υ ∈ R2 : rk,m ≤ |υ| ≤ Rk,m} such that the solutions of the transformed planar
system starting from the interior boundary circle rotate clockwise more than
Mk times in the time interval [0,mT ], while those starting from the exterior
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boundary circle make less than one clockwise rotation in the same time interval.
Setting

m = max{m1, . . . ,mN} ,
for every m ≥ m, we choose

B = B1,m × · · · ×BN,m .

We now consider system (1) with arbitrary ε, and apply the change of
variables v(t) = Λ(z(t)) to the solutions lying in A1 × · · · ×AN , where

Λ(z) = (Λ1(z1), . . . ,ΛN(zN)) .

Arguing as in the proof of Theorem 3.1, we can modify the transformed Hamil-
tonian function and extend it to the whole space R2N , so that the twist proper-
ties of each component of the solutions are preserved when |ε| is small enough.
We can thus apply [8, Theorem 1.2] to obtain the existence of N + 1 dis-
tinct mT -periodic solutions v0(t), . . . , vN(t) of the transformed system, whose
components satisfy

Rot(vjk; [0,mT ]) = Mk , for every k = 1, . . . , N and j = 0, . . . , N .

Moreover, if |ε| is small enough, the orbits of these solutions lie in the region
where the transformed Hamiltonian function has not been modified.

These solutions are distinct, according to the definition given in the In-
troduction, since they are obtained as critical points of a suitable functional
ϕ : TN × H → R, using a generalized Lusternik–Schnirelmann Theorem (see
the proof of [8, Theorem 1.2]). Here, TN is the N -dimensional torus, and H
is a suitable Hilbert space. Hence, either all the corresponding N + 1 critical
levels are different, or the set of critical points is not contractible in TN ×H.
The claim then follows, since if two solutions vi(t) and vj(t) are not distinct
according to the definition given in the Introduction, then ϕ(vi) = ϕ(vj).

Going back to the original system with the inverse change of variables
zi(t) = Λ−1(vi(t)), we obtain N + 1 distinct mT -periodic solutions of (1),
whose components satisfy

Rot(zik;Qk; [0,mT ]) = Mk , for every k = 1, . . . , N and i = 0, . . . , N .

In the case when some of the orbits Γk rotate counter-clockwise the argu-
ment is similar, the only difference being that the corresponding components
of the solutions zi(t) satisfy Rot(zik;Qk; [0,mT ]) = −Mk .

The proof is thus completed.

Clearly enough, Theorem 1.1 follows directly from Theorem 5.1, by the
same argument in the proof of Corollary 3.5.
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