2 Operatori in spazi di Hilbert

2.1 Definizioni e prime proprietà

Un'applicazione lineare $L: \mathcal{D}(L) \subseteq H \to H$, dove $\mathcal{D}(L)$ è una varietà lineare in H, si dirà un **operatore** in H. Definiamo il **nucleo** di L:

$$\mathcal{N}(L) = \{ x \in \mathcal{D}(L) : Lx = 0 \},$$

l'**immagine** di L:

$$\mathcal{I}(L) = \{ Lx : x \in \mathcal{D}(L) \},\$$

e il **grafico** di L:

$$\mathcal{G}(L) = \{(x, Lx) \in H \times H : x \in \mathcal{D}(L)\}.$$

Se H è uno spazio avente dimensione infinita, un operatore in H può non essere continuo (considereremo in $\mathcal{D}(L)$ la topologia indotta da H).

Qualora un operatore L in H risulti continuo, esso può essere esteso alla chiusura di $\mathcal{D}(L)$ per uniforme continuità. Se $\mathcal{D}(L)$ non è denso in H, è possibile comunque ulteriormente estendere L a tutto H. Ad esempio, lo si può porre uguale a 0 sullo spazio ortogonale a $\overline{\mathcal{D}(L)}$, e quindi definirlo su tutto H per linearità. Quindi, ogni operatore continuo può essere sempre pensato come restrizione di un operatore di $\mathcal{L}(H)$.

Avendo a che fare con operatori possibilmente non continui, è utile introdurre un sostituto della continuità. Introducendo in $H \times H$ il prodotto scalare

$$\langle (f,g)|(f',g')\rangle = \langle f|f'\rangle + \langle g|g'\rangle,$$

si verifica facilmente che $H \times H$ diventa uno spazio di Hilbert, e la topologia indotta è la topologia prodotto. Un operatore L in H si dice **chiuso** se $\mathcal{G}(L)$ è chiuso in $H \times H$. In altre parole, L è chiuso se per ogni successione (x_n) in $\mathcal{D}(L)$ tale che $x_n \to x$ e $Lx_n \to f$, si ha che $x \in \mathcal{D}(L)$ e f = Lx. Ne segue che, se L è chiuso, allora $\mathcal{N}(L)$ è chiuso.

Teorema 2.1 Un operatore continuo L in H risulta chiuso se e solo se $\mathcal{D}(L)$ è chiuso.

<u>Dimostrazione</u>. Supponiamo che L sia chiuso. Sia $(x_n)_n$ una successione in $\mathcal{D}(L)$ tale che $x_n \to x$. Siccome L è continuo, la successione $(Lx_n)_n$ è di Cauchy, e perciò converge verso un certo $f \in H$. Essendo L chiuso, ne segue che $x \in \mathcal{D}(L)$, e ciò dimostra che $\mathcal{D}(L)$ è chiuso.

Viceversa, se $\mathcal{D}(L)$ è chiuso, presa una successione $(x_n)_n$ tale che $x_n \to x$ e $Lx_n \to f$, si ha che $x \in \mathcal{D}(L)$, e, per la continuità di L, Lx = f. Ciò dimostra che L è chiuso.

¹È noto dall'Analisi Funzionale che, se $\mathcal{D}(L) = H$, allora L è continuo se e solo se il suo grafico è chiuso.

2.2 L'operatore aggiunto

Sia dato un operatore L in H tale che $\mathcal{D}(L)$ sia denso in H. Vogliamo definire il suo operatore **aggiunto** L^* . Il suo dominio $\mathcal{D}(L^*)$ consisterà di tutti i $y \in H$ per i quali la funzione $x \to \langle Lx|y\rangle$ risulti continua su $\mathcal{D}(L)$. Essendo $\mathcal{D}(L)$ denso in H, per ogni $y \in \mathcal{D}(L^*)$, tale funzionale può essere esteso in modo unico ad un funzionale continuo su tutto H. Per il Teorema di Riesz, esiste ed è unico un elemento in H, che indicheremo con L^*y , per cui

$$\langle Lx|y\rangle = \langle x|L^*y\rangle,$$

per ogni $x \in \mathcal{D}(L)$ e $y \in \mathcal{D}(L^*)$. Si può verificare che $L^* : \mathcal{D}(L^*) \subseteq H \to H$ così definita risulta essere un operatore in H. Per poter considerare l'operatore L^* , da ora in poi considereremo soltanto operatori L definiti in un sottospazio denso in H. Scriveremo in tal caso che L è $\mathbf{d.d.}$ in H.

Teorema 2.2 Se $A \in \mathcal{L}(H)$, allora $A^* \in \mathcal{L}(H)$.

Dimostrazione. Si ha

$$||A^*y|| = \sup_{\|x\|=1} |\langle x|A^*y\rangle| = \sup_{\|x\|=1} |\langle Ax|y\rangle| \le \sup_{\|x\|=1} ||Ax|| \, ||y|| = ||A|| \, ||y||,$$

da cui si vede che A^* è limitato, con $||A^*|| \le ||A||$.

Teorema 2.3 Se L è un operatore d.d. in H e $A \in \mathcal{L}(H)$, allora $(L + A)^* = L^* + A^*$.

<u>Dimostrazione</u>. Innanzitutto si noti che $\mathcal{D}(L+A) = \mathcal{D}(L)$ e, per il teorema precedente, $\mathcal{D}(L^* + A^*) = \mathcal{D}(L^*)$. Per ogni $x \in \mathcal{D}(L)$, $y \in \mathcal{D}(L^*)$, si ha

$$\langle (L+A)x|y\rangle = \langle Lx|y\rangle + \langle Ax|y\rangle = \langle x|L^*y\rangle + \langle x|A^*y\rangle = \langle x|(L^*+A^*)y\rangle.$$

Essendo quest'ultima espressione continua in x, abbiamo che $y \in \mathcal{D}((L+A)^*)$ e $(L+A)^*y = L^*y + A^*y$. Quindi, $\mathcal{D}(L^*) \subseteq \mathcal{D}((L+A)^*)$. D'altra parte, se $w \in \mathcal{D}((L+A)^*)$, posto $z = (L+A)^*w$, per ogni $x \in \mathcal{D}(L)$ abbiamo

$$\langle (L+A)x|w\rangle = \langle x|z\rangle,$$

e perciò

$$\langle Lx|w\rangle = \langle x|z\rangle - \langle Ax|w\rangle.$$

Essendo questa continua in x, si ha che $w \in \mathcal{D}(L^*)$, e possiamo concludere che $\mathcal{D}((L+A)^*) = \mathcal{D}(L^*) = \mathcal{D}(L^*+A^*)$. Ne segue la tesi.

Teorema 2.4 Se L è un operatore d.d. in H, allora L^* è chiuso.

<u>Dimostrazione</u>. Sia $(y_n)_n$ una successione in $\mathcal{D}(L^*)$ tale che $y_n \to y$ e $L^*y_n \to w$. Allora, per ogni $x \in \mathcal{D}(L)$ si ha che

$$\langle Lx|y\rangle = \lim_{n} \langle Lx|y_n\rangle = \lim_{n} \langle x|L^*y_n\rangle = \langle x|w\rangle.$$

Ne segue che $y \in \mathcal{D}(L^*)$ e $L^*y = w$.

Teorema 2.5 Se L è un operatore chiuso d.d. in H, allora L^* è d.d. in H e $L^{**} = L.$

Dimostrazione. Sia $w \in H$ tale che

$$\langle w|y\rangle = 0$$
 per ogni $y \in \mathcal{D}(L^*)$.

Se $w \neq 0$, abbiamo che $(0, w) \notin \mathcal{G}(L)$. Quindi, posto $(f, g) = (0, w) - P_{\mathcal{G}(L)}(0, w)$, abbiamo che $(f, g) \in \mathcal{G}(L)^{\perp}$, ossia

$$\langle f|x\rangle + \langle g|Lx\rangle = 0$$
 per ogni $x \in \mathcal{D}(L)$,

per cui $g \in \mathcal{D}(L^*)$ e

$$\langle g|w\rangle = \langle (f,g)|(0,w)\rangle = ||(f,g)||^2 \neq 0,$$

una contraddizione. Quindi deve essere w=0, e ciò prova che $\mathcal{D}(L^*)$ è denso in H, per il Corollario 1.13. Dimostriamo che $L=L^{**}$. Si ha:

$$(y, w) \in \mathcal{G}(L^*) \Leftrightarrow \langle Lx|y \rangle = \langle x|w \rangle$$
 per ogni $x \in \mathcal{D}(L)$
 $\Leftrightarrow -\langle x|w \rangle + \langle Lx|y \rangle = 0$ per ogni $x \in \mathcal{D}(L)$
 $\Leftrightarrow (-w, y) \in \mathcal{G}(L)^{\perp},$

e perciò:

$$\begin{split} (x,y) &\in \mathcal{G}(L^{**}) \Leftrightarrow (-y,x) \in \mathcal{G}(L^*)^{\perp} \\ &\Leftrightarrow \langle (-y,x) | (f,g) \rangle = 0 \quad \text{per ogni } (f,g) \in \mathcal{G}(L^*) \\ &\Leftrightarrow \langle (-y,x) | (g',-f') \rangle = 0 \quad \text{per ogni } (f',g') \in \mathcal{G}(L)^{\perp} \\ &\Leftrightarrow \langle (x,y) | (f',g') \rangle = 0 \quad \text{per ogni } (f',g') \in \mathcal{G}(L)^{\perp} \\ &\Leftrightarrow (x,y) \in (\mathcal{G}(L)^{\perp})^{\perp}. \end{split}$$

Siccome $\mathcal{G}(L)$ è chiuso, per il Corollario 1.15 si ha $\mathcal{G}(L^{**}) = (\mathcal{G}(L)^{\perp})^{\perp} = \mathcal{G}(L)$.

Teorema 2.6 Se L è un operatore chiuso d.d. in H, allora

$$\mathcal{N}(L) = \mathcal{I}(L^*)^{\perp}.$$

Dimostrazione. Per ogni $x \in \mathcal{D}(L)$, si ha:

$$Lx = 0$$
 \Leftrightarrow $\langle Lx|y \rangle = 0$ per ogni $y \in \mathcal{D}(L^*)$
 \Leftrightarrow $\langle x|L^*y \rangle = 0$ per ogni $y \in \mathcal{D}(L^*)$
 \Leftrightarrow $x \in \mathcal{I}(L^*)^{\perp}$.

Se L è iniettivo su $\mathcal{D}(L)$, possiamo definire L^{-1} , l'**operatore inverso** di L, tale che $\mathcal{D}(L^{-1}) = \mathcal{I}(L)$ e

$$L^{-1}(Lx) = x$$

per ogni $x \in \mathcal{D}(L)$. È chiaro dalla definizione che se L è chiaso, lo è anche L^{-1} .

Teorema 2.7 Sia L un operatore d.d. in H, iniettivo e tale che $\mathcal{I}(L)$ sia denso in H. Allora L* è iniettivo, e $(L^*)^{-1} = (L^{-1})^*$.

Dimostrazione. Per ogni $y \in \mathcal{D}(L^*)$ e $w \in \mathcal{D}(L^{-1}) = I(L)$,

$$\langle L^{-1}w|L^*y\rangle = \langle LL^{-1}w|y\rangle = \langle w|y\rangle,$$

per cui $L^*y \in \mathcal{D}((L^{-1})^*)$ e $(L^{-1})^*L^*y = y$. Ne segue che $I(L^*) \subseteq \mathcal{D}((L^{-1})^*)$. D'altra parte, per ogni $x \in \mathcal{D}(L)$ e $z \in \mathcal{D}((L^{-1})^*)$,

$$\langle Lx|(L^{-1})^*z\rangle = \langle L^{-1}Lx|z\rangle = \langle x|z\rangle,$$

per cui $(L^{-1})^*z \in \mathcal{D}(L^*)$ e $L^*(L^{-1})^*z = z$. Quindi, $z \in I(L^*)$, il che dimostra che $\mathcal{D}((L^{-1})^*) \subseteq I(L^*)$. Possiamo concludere che $\mathcal{D}((L^{-1})^*) = \mathcal{I}(L^*)$, e si ha la tesi.

2.3 Insieme risolvente e spettro

Nella teoria che segue sarà conveniente supporre $\mathbb{K} = \mathbb{C}$, ossia considerare il caso di uno spazio di Hilbert complesso. Il caso di uno spazio di Hilbert reale verrà trattato in una sezione successiva.

Chiameremo **autovalore** di un operatore L ogni $\lambda \in \mathbb{C}$ tale che $L - \lambda I$ non sia iniettivo, dove con I abbiamo indicato l'operatore identità su H. In altre parole, λ è un autovalore se esiste un $x \in \mathcal{D}(L) \setminus \{0\}$ tale che

$$Lx = \lambda x$$
.

L'insieme dei $\lambda \in \mathbb{C}$ tali che $L - \lambda I$ abbia un inverso $(L - \lambda I)^{-1} \in \mathcal{L}(H)$ è detto **insieme risolvente** di L ed è indicato con $\rho(L)$. Il suo complementare è detto lo **spettro** di L ed è indicato con $\sigma(L)$. Se $\lambda \in \rho(L)$, l'operatore $(L - \lambda I)^{-1}$ verrà detto il **risolvente** di L in λ .

Se $\rho(L) \neq \emptyset$, allora L è necessariamente un operatore chiuso. Infatti, $(L - \lambda I)^{-1}$ è continuo, quindi chiuso, e tale è pertanto pure $L - \lambda I$, e quindi anche L.

Teorema 2.8 Se L è un operatore d.d. e chiuso in H, allora

$$\lambda \in \sigma(L) \quad \Leftrightarrow \quad \lambda^* \in \sigma(L^*).$$

<u>Dimostrazione</u>. È una immediata conseguenza dei Teoremi 2.2, 2.3 e 2.7.

Teorema 2.9 Sia L un operatore in H, tale che $0 \in \rho(L)$. Allora

$$\lambda \in \sigma(L) \quad \Leftrightarrow \quad \lambda^{-1} \in \sigma(L^{-1}).$$

<u>Dimostrazione</u>. Per ogni $\lambda \in \mathbb{C} \setminus \{0\}$, si ha

$$L - \lambda I = -\lambda [L^{-1} - \lambda^{-1} I] L.$$

Ne segue la tesi.

È chiaro che ogni eventuale autovalore è un elemento dello spettro. Se H ha dimensione finita, si può vedere che ogni elemento dello spettro è un autovalore. Ciò non è vero in generale se H ha dimensione infinita.

Dato $A \in \mathcal{L}(H)$, definiamo per induzione l'operatore A^n : si pone $A^0 = I$ e, supposto definito A^{n-1} , si pone $A^n = A^{n-1}A$.

Teorema 2.10 Se $A \in \mathcal{L}(H)$ è tale che

$$||I - A|| < 1$$
,

allora $0 \in \rho(A)$, ossia $A \in invertibile con <math>A^{-1} \in \mathcal{L}(H)$. Inoltre, si ha

$$A^{-1} = \sum_{k=0}^{\infty} (I - A)^k$$

(la serie di Neumann).

<u>Dimostrazione</u>. Poniamo B = I - A, per cui ||B|| < 1. Dalla

$$\left\| \sum_{k=m}^{n} B^{k} \right\| \leq \sum_{k=m}^{n} \|B^{k}\| \leq \sum_{k=m}^{n} \|B\|^{k} \leq \sum_{k=m}^{\infty} \|B\|^{k} = \frac{\|B\|^{m}}{1 - \|B\|}$$

si vede che la serie $\sum_{k=0}^{\infty} B^k$ è di Cauchy e pertanto converge in $\mathcal{L}(H)$, essendo questo uno spazio metrico completo. Dimostriamo che

$$(I-B)^{-1} = \sum_{k=0}^{\infty} B^k.$$

Infatti,

$$(I - B)\left(\sum_{k=0}^{\infty} B^k\right) = (I - B)\left(\lim_{n} \sum_{k=0}^{n} B^k\right)$$
$$= \lim_{n} \left[(I - B)\left(\sum_{k=0}^{n} B^k\right) \right]$$
$$= \lim_{n} (I - B^{n+1}) = I,$$

e allo stesso modo

$$\left(\sum_{k=0}^{\infty} B^k\right)(I-B) = \left(\lim_{n} \sum_{k=0}^{n} B^k\right)(I-B)$$
$$= \lim_{n} \left[\left(\sum_{k=0}^{n} B^k\right)(I-B)\right]$$
$$= \lim_{n} (I-B^{n+1}) = I,$$

da cui la tesi.

Corollario 2.11 Sia L un operatore in H tale che $0 \in \rho(L)$. Se $A \in \mathcal{L}(H)$ è tale che

$$||A|| < \frac{1}{||L^{-1}||},$$

allora $0 \in \rho(L+A)$.

<u>Dimostrazione</u>. Si ha che $(L+A)L^{-1}=I+AL^{-1}\in\mathcal{L}(H)$. Inoltre,

$$||I - (L + A)L^{-1}|| = ||AL^{-1}|| \le ||A|| \, ||L^{-1}|| < 1.$$

Quindi, per il Teorema 2.10, abbiamo che $1 \in \rho(I - (L + A)L^{-1})$. In altre parole, $(L + A)L^{-1}$ ha un inverso in $\mathcal{L}(H)$. Ne segue che anche (L + A) ha un inverso $(L + A)^{-1} = L^{-1}[(L + A)L^{-1}]^{-1} \in \mathcal{L}(H)$.

Corollario 2.12 Lo spettro di un operatore in H è chiuso.

Dimostrazione. Consideriamo un operatore L in H. Se $\rho(L)=\emptyset$, la tesi è banale. Altrimenti, fissiamo $\lambda\in\rho(L)$, e consideriamo un $\mu\in\mathbb{C}$ tale che $|\mu-\lambda|<1/\|(L-\lambda I)^{-1}\|$. Allora, per il Corollario 2.11, $L+\mu I=L+\lambda I+(\mu-\lambda)I$ è tale che $0\in\rho(L+\mu I)$, ossia $\mu\in\rho(L)$. Perciò $\rho(L)$ è un insieme aperto, e quindi $\sigma(L)$ è chiuso.

Corollario 2.13 Se $A \in \mathcal{L}(H)$, si ha:

$$\lambda \in \sigma(A) \quad \Rightarrow \quad |\lambda| \le ||A||.$$

<u>Dimostrazione</u>. Sia $\lambda \in \mathbb{C}$ tale che $|\lambda| > ||A||$. Essendo

$$\left\|I - \left(I - \frac{1}{\lambda}A\right)\right\| = \left\|\frac{1}{\lambda}A\right\| = \frac{1}{|\lambda|}\|A\| < 1,$$

si ha che $0 \in \rho(I - \frac{1}{\lambda}A)$; ne segue che $\lambda \in \rho(A)$.

2.4 Operatori autoaggiunti

Un operatore L si dice **autoaggiunto** se coincide con il suo aggiunto. Ciò significa che L è d.d. in H, $\mathcal{D}(L) = \mathcal{D}(L^*)$ e, per ogni $x, y \in \mathcal{D}(L)$, si ha

$$\langle Lx|y\rangle = \langle x|Ly\rangle.$$

In particolare, per ogni $x \in \mathcal{D}(L)$, $\langle Lx|x\rangle$ è un numero reale. Se L è autoaggiunto, per ogni $\lambda \in \mathbb{R}$, $L + \lambda I$ è anch'esso autoaggiunto. Segue inoltre dal Teorema 2.4 che ogni operatore autoaggiunto è chiuso.

Un operatore autoaggiunto non può avere autovalori complessi non reali. Infatti, sia L autoaggiunto, λ un suo autovalore e $u \in H \setminus \{0\}$ tale che $Lu = \lambda u$. Allora $\langle Lu|u\rangle = \lambda ||u||^2$, e siccome $\langle Lu|u\rangle \in \mathbb{R}$, anche $\lambda \in \mathbb{R}$. Più in generale, si ha:

Teorema 2.14 Lo spettro di un operatore autoaggiunto è reale.

<u>Dimostrazione</u>. Sia L un operatore autoaggiunto in H e sia $\lambda = a + ib$, con $a, b \in \mathbb{R}, b \neq 0$. Allora λ non può essere un autovalore di L. Quindi, possiamo considerare l'inverso $(L - \lambda I)^{-1}$, che è un operatore definito su $\mathcal{I}(L - \lambda I)$. Siccome $(L - \lambda I)$ è chiuso, anche $(L - \lambda I)^{-1}$ lo è. Dimostriamo che è anche continuo. Per ogni $v \in \mathcal{D}((L - \lambda I)^{-1}) = \mathcal{I}(L - \lambda I)$, sia $u = (L - \lambda I)^{-1}v$. Allora:

$$||v||^{2} = ||(L - \lambda I)u||^{2}$$

$$= \langle (L - aI)u - ibu|(L - aI)u - ibu\rangle$$

$$= ||(L - aI)u||^{2} + |b|^{2}||u||^{2}$$

$$\geq |b|^{2}||u||^{2} = |b|^{2}||(L - \lambda I)^{-1}v||^{2}$$

Perciò, $(L - \lambda I)^{-1}$ è chiuso e continuo e, per il Teorema 2.1, il suo dominio deve essere chiuso. D'altra parte, $\lambda^* = a - ib$ non può essere un autovalore di L, ossia $\mathcal{N}(L - \lambda^* I) = \{0\}$. Per il Teorema 2.6, essendo $\mathcal{I}(L - \lambda I)$ chiuso,

$$H = \mathcal{N}(L - \lambda^* I)^{\perp} = [\mathcal{I}(L - \lambda I)^{\perp}]^{\perp} = \mathcal{I}(L - \lambda I).$$

Quindi, $(L - \lambda I)^{-1} \in \mathcal{L}(H)$, ossia $\lambda \in \rho(L)$.

Teorema 2.15 Se $A \in \mathcal{L}(H)$ è autoaggiunto, allora

$$||A|| = \sup_{||f||=1} |\langle Af|f\rangle|.$$

Dimostrazione. Siccome

$$|\langle Af|f\rangle| \le ||Af|| \, ||f|| \le ||A|| \, ||f||^2,$$

si ha che

$$\sup_{\|f\|=1} |\langle Af|f\rangle| \le \|A\|.$$

Sia $w \in H$ tale che ||w|| = 1. Se $Aw \neq 0$, poniamo $v = \frac{Aw}{||Aw||}$. Allora

$$\begin{split} \|Aw\| &= \frac{1}{4} [\langle A(w+v) | (w+v) \rangle - \langle A(w-v) | (w-v) \rangle] \\ &\leq \sup_{\|f\|=1} |\langle Af | f \rangle| \frac{1}{4} [\|w+v\|^2 + \|w-v\|^2] \\ &= \sup_{\|f\|=1} |\langle Af | f \rangle| \frac{1}{4} [2\|w\|^2 + 2\|v\|^2] \\ &= \sup_{\|f\|=1} |\langle Af | f \rangle|. \end{split}$$

Quindi,

$$||A|| \le \sup_{||f||=1} |\langle Af|f\rangle|,$$

e ciò completa la dimostrazione.

Un operatore autoaggiunto $A \in \mathcal{L}(H)$ si dice **monotono** se, per ogni $f \in H$, si ha

$$\langle Af|f\rangle \geq 0.$$

In tal caso, scriveremo $A \geq 0$. Dati due tali operatori A_1 e A_2 , in $\mathcal{L}(H)$ scriveremo $A_1 \leq A_2$ se $(A_2 - A_1) \geq 0$.

Lemma 2.16 Se $A \in \mathcal{L}(H)$ è autoaggiunto e monotono, allora, per ogni $f, g \in H$,

$$|\langle Af|g\rangle| \le \langle Af|f\rangle^{1/2} \langle Ag|g\rangle^{1/2}.$$

Inoltre, per ogni $f \in H$,

$$||Af||^2 < ||A|| \langle Af|f \rangle.$$

<u>Dimostrazione</u>. Per ogni numero reale γ , sia $w_{\gamma} = f + \gamma \langle Af|g \rangle g$. Allora

$$0 \le \langle Aw_{\gamma}|w_{\gamma}\rangle = \langle Af|f\rangle + 2\gamma |\langle Af|g\rangle|^2 + \gamma^2 \langle Ag|g\rangle |\langle Af|g\rangle|^2.$$

Perciò, deve essere $|\langle Af|g\rangle|^2 - \langle Af|f\rangle\langle Ag|g\rangle \leq 0.$ In
oltre, si ha

$$||Af||^4 = |\langle A^2 f | f \rangle|^2$$

$$\leq \langle Af | f \rangle \langle A^2 f | Af \rangle$$

$$\leq \langle Af | f \rangle ||A^2 f || ||Af ||$$

$$\leq \langle Af | f \rangle ||A|| ||Af ||^2,$$

da cui la tesi.

Teorema 2.17 Sia $A \in \mathcal{L}(H)$ autoaggiunto. Poniamo

$$m = \inf_{\|f\|=1} \langle Af|f\rangle,$$

$$M = \sup_{\|f\|=1} \langle Af|f\rangle.$$

Allora $\sigma(A) \subseteq [m, M], m \in \sigma(A) \ e \ M \in \sigma(A).$

<u>Dimostrazione</u>. Per quanto riguarda la prima affermazione, è sufficiente considerare l'operatore $A - \frac{1}{2}(m+M)I$, e applicare ad esso il Corollario 2.13 e il Teorema 2.15. Dimostriamo ora che $m \in \sigma(A)$. Si ha $A - mI \ge 0$. Inoltre, esiste una successione $(f_n)_n$ tale che $||f_n|| = 1$ e $\langle (A - mI)f_n|f_n\rangle \le 1/n$. Se per assurdo $m \in \rho(A)$, usando il Lemma 2.16 abbiamo:

$$1 = ||f_n||^2 = ||(A - mI)^{-1}(A - mI)f_n||^2$$

$$\leq ||(A - mI)^{-1}|| ||(A - mI)f_n||^2$$

$$\leq ||(A - mI)^{-1}|| ||(A - mI)|| \langle (A - mI)f_n|f_n \rangle.$$

Se n è sufficientemente grande, ottengo una contraddizione. Quindi, $m \in \sigma(A)$, e analogamente si dimostra che $M \in \sigma(A)$.

Corollario 2.18 Se $A \in \mathcal{L}(H)$ è autoaggiunto, allora

$$||A|| = \max\{|\lambda| : \lambda \in \sigma(A)\}.$$

<u>Dimostrazione</u>. È una immediata conseguenza dei Teoremi 2.15 e 2.17.

Teorema 2.19 Sia L un operatore autoaggiunto in H e $\lambda \in \rho(L)$. Allora

$$\|(L - \lambda I)^{-1}\| = \frac{1}{d(\lambda, \sigma(L))}.$$

Dimostrazione. Per il Teorema 2.9,

$$\mu \in \sigma(L) \quad \Leftrightarrow \quad \frac{1}{\mu - \lambda} \in \sigma((L - \lambda I)^{-1}) \setminus \{0\}.$$

Per il Teorema 2.7, $(L - \lambda I)^{-1}$ è autoaggiunto. Allora, per il Corollario 2.18,

$$\|(L - \lambda I)^{-1}\| = \max\left\{\frac{1}{|\mu - \lambda|} : \mu \in \sigma(L)\right\} = [\min\{|\mu - \lambda| : \mu \in \sigma(L)\}]^{-1}.$$

2.5 Operatori in spazi di Hilbert reali

Nel caso si voglia trattare il caso di uno spazio di Hilbert H reale, si può procedere operando una **complessificazione** dello spazio. Si considera cioè lo spazio H^c definito formalmente come $H \oplus iH$, i cui elementi sono del tipo f + ig, con $f, g \in H$. In esso si definisce il prodotto scalare

$$\langle f + ig|f' + ig' \rangle = \langle f|f' \rangle - i\langle f|g' \rangle + i\langle g|f' \rangle + \langle g|g' \rangle,$$

che lo rende uno spazio di Hilbert complesso, con la relativa norma

$$||f + ig|| = (||f||^2 + ||g||^2)^{1/2}.$$

Un operatore $L: \mathcal{D}(L) \subseteq H \to H$ avrà un complessificato $L^c: \mathcal{D}(L)^c \subseteq H^c \to H^c$, dove $\mathcal{D}(L)^c = \mathcal{D}(L) \oplus i\mathcal{D}(L)$, così definito:

$$L^c(x+iy) = Lx + iLy.$$

Le seguenti proposizioni non sono difficili da verificare, per cui preferiamo omettere le dimostrazioni.

Teorema 2.20 Si ha che $A \in \mathcal{L}(H)$ se e solo se $A^c \in \mathcal{L}(H^c)$, e in tal caso

$$||A|| = ||A^c||.$$

Vediamo come si comportano gli operatori aggiunti.

Teorema 2.21 L è d.d. se e solo se lo è L^c e, considerando gli operatori aggiunti, si ha:

$$(L^*)^c = (L^c)^*.$$

In particolare, L è autoaggiunto se e solo se lo è L^c .

Per quanto concerne gli operatori inversi, vale la seguente

Teorema 2.22 L è iniettivo su $\mathcal{D}(L)$ se e solo se L^c è iniettivo su $\mathcal{D}(L^c)$, e in tal caso si ha:

$$(L^{-1})^c = (L^c)^{-1}.$$

Chiamiamo **autovalore** di L ogni possibile autovalore di L^c . Pertanto, l'operatore L, pur essendo reale, può avere autovalori complessi. Nello stesso modo si definiscono l'**insieme risolvente** $\rho(L)$, e lo **spettro** $\sigma(L)$: sono quelli relativi a L^c .

Si noti che il Teorema 2.15 vale anche per operatori autoaggiunti $L \in \mathcal{L}(H)$ in uno spazio di Hilbert reale, per cui, se $A \in \mathcal{L}(H)$ è autoaggiunto, si ha

$$||A|| = \sup_{||f||=1} |\langle Af|f\rangle|.$$

Analogamente per quanto riguarda il Teorema 2.19: se L è un operatore autoaggiunto in H e $\lambda \in \rho(L)$, allora

$$\|(L - \lambda I)^{-1}\| = \frac{1}{d(\lambda, \sigma(L))}.$$

Si possono facilmente verificare le seguenti identità:

$$\left[\mathbb{R}^N\right]^c = \mathbb{C}^N \,, \quad \left[\ell^2(\mathbb{R})\right]^c = \ell^2(\mathbb{C}) \,,$$

$$\left[L^2([a,b],\mathbb{R})\right]^c = L^2([a,b],\mathbb{C}) \,, \quad \left[W^{1,2}([a,b],\mathbb{R})\right]^c = W^{1,2}([a,b],\mathbb{C}) \,.$$