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Abstract. In the first part of the paper we consider periodic pertur-
bations of some planar Hamiltonian systems. In a general setting, we
detect conditions ensuring the existence and multiplicity of periodic
solutions. In the second part, the same ideas are used to deal with
some more general planar differential systems.

1 Introduction

The meaning of the word resonance is well understood for a linear equation
of the type

x′′ + λx = q(t) ,

where λ is a positive constant and q(t) is a 2π-periodic forcing: resonance
occurs when all the solutions are unbounded, both in the past and in the
future. This may happen only when λ = n2, for some integer n. On the
contrary, if λ /∈ {n2 : n ∈ N}, then all solutions of the differential equation
are bounded, and among them there is a 2π-periodic solution, for any 2π-
periodic forcing term q(t).

For a more general nonlinear equation

x′′ + g(x) = q(t) , (1.1)

the meaning of resonance does not appear so clearly. However, it seems to be
commonly accepted to consider as nonresonance conditions on the function
g(x) those ensuring that the differential equation admits at least one 2π-
periodic solution, for any 2π-periodic forcing term q(t).
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Life becomes still more complicated if we consider equations of the type

x′′ + g(x) = q(t, x) , (1.2)

where q(t, x), which is 2π-periodic in its first variable, is considered as some
kind of perturbation of the autonomous equation. There is a huge literature
on the existence of periodic solutions for this type of equations (see e.g. [13]
and the references therein). In this case, “nonresonance conditions” neces-
sarily involve both the functions g(x) and q(t, x), and they are supposed to
guarantee the existence of at least one 2π-periodic solution of the differential
equation.

In this paper, we are looking for “nonresonance conditions” for more
general planar systems of the type

Jz′ = ∇H(z) + r(t, z) . (1.3)

Here, and throughout the paper, J =
(

0 −1
1 0

)
is the standard symplectic

matrix, the Hamiltonian function H : R2 → R is continuously differentiable,
and r : R × R2 → R2 is assumed to be continuous, and 2π-periodic in its
first variable. We search for conditions on H(z) and r(t, z) guaranteeing that
system (1.3) has at least one 2π-periodic solution.

Since we need uniqueness of solutions, we will typically assume ∇H(z)
to be locally Lipschitz continuous, and r(t, z) to have the same regularity
property with respect to its second variable. However, we will also have to
consider autonomous Hamiltonian systems without necessarily assuming the
gradient of their Hamiltonian function to be locally Lipschitz continuous.

For the autonomous system

Jz′ = ∇H(z) , (1.4)

associated with (1.3), it will be assumed that all large amplitude solutions
are periodic. More precisely, we will assume that, for large energy levels
E, the sets H−1(E) are closed curves corresponding to periodic solutions
of (1.4) with some minimal period T (E). In our approach for the study of
system (1.3), we will consider it as some kind of perturbation of the au-
tonomous system (1.4). Through a change of variables, we transform (1.3)
into a system of differential equations having, as variables, the energy and
a phase. By the systematic use of the energy as a parameter, our aim is
to obtain sharp nonresonance results and to provide new insights into the
nonresonance problem.

2



When the forcing term does not depend on z, i.e., when r(t, z) = r(t), one
expects that the system admits a 2π-periodic solution, unless the period 2π
of the forcing term r(t) interferes with the periods of the large amplitude free
oscillations, meaning that T (E) approaches 2π/n, for some integer n, when
E goes to infinity. Consequently, we expect that a nonresonance condition
should be of the type

lim
E→+∞

T (E) 6= 2π

n
, for all integer n , (1.5)

including the case where

lim inf
E→+∞

T (E) 6= lim sup
E→+∞

T (E) . (1.6)

It is the main objective of this paper to present conditions under which the
inequality (1.5) guarantees the existence of a 2π-periodic solution for the
system (1.3).

However, we believe that further restrictions on the Hamiltonian function
H are required in order for (1.5) to become a valid nonresonance condition.
We remark that, even for the particular case of the scalar equation (1.1), it
has been shown in [7] that a nonresonance condition of type (1.5) is sufficient
for the existence of a 2π-periodic solution provided that g is differentiable,
with a globally bounded derivative. Some other set of restrictions on g can be
found in [3].

The paper is organized as follows.

In Section 2 we present the general setting, showing how to cover some
classical situations, like asymmetric oscillators, positively homogeneous Ham-
iltonians of degree 2, or Hamiltonians with separated variables, arising, e.g.,
from differential equations involving the scalar p-Laplacian operator.

Section 3 is devoted to the statement of our first existence theorem; it
provides fairly general conditions which, combined with hypothesis (1.5),
ensure that system (1.3) admits at least one 2π-periodic solution. Due to
their generality, the assumptions of that theorem need to be analyzed in
further detail. The proof of that existence theorem is carried out in Section 5.

In Section 4, we develop an approach to the nonresonance condition (1.5)
by a comparison between the Hamiltonian function of equation (1.4), and
two other Hamiltonians, which would typically be isochronous. Examples
are provided by scalar second order equations and systems where the Hamil-
tonian function H has separated variables.
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In Section 6 we extend our existence theorem in several directions. First,
we consider the case when the limit of period function T (E) is +∞ as E →
+∞. Then, we obtain an existence result in the critical case when, for some
positive integer n0,

lim
E→+∞

T (E) =
2π

n0

,

assuming that the approach to resonance is “not too fast”. As an example,
we can deal with an equation of the type

x′′ + k x+ − a [x−]p−1 = q(t, x) ,

with p > 2 and q(t, x) satisfying a growth condition at infinity. In the last
part of the section, we also show how to formulate some Landesman–Lazer
type conditions in our setting.

In Section 7, assuming that our system has a Hamiltonian structure, we
show how the Poincaré–Birkhoff Theorem can be applied to provide multi-
plicity of periodic solutions when the time map has an oscillatory behaviour,
i.e., when (1.6) holds. In order to be brief we limit our attention to this
situation, where only the asymptotic behaviour of the time map is consid-
ered. Other situations could also be dealt with, following a similar approach;
further developments along these lines are expected in the future.

Finally, in Section 8, we consider the more general system

Jz′ = F (t, z),

and still obtain existence conditions for periodic solutions through a compar-
ison with Hamiltonian systems.

In the following, we always denote by 〈· , ·〉 the Euclidean scalar product
in R2, with associated norm | · |.

2 General setting and preliminaries

In the first part of this section, we list some conditions on the Hamiltonian
function H : R2 → R that will be assumed to hold throughout the paper. In
the second part we define some notation, and we place emphasis on a result
that will be useful in the sequel.
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2.1 The structural assumptions

We recall that the function H : R2 → R is supposed to be continuously
differentiable. We start with two basic assumptions and their consequences
for the autonomous equation

Jz′ = ∇H(z) . (2.1)

A1. The Hamiltonian function H is coercive:

lim
|z|→∞

H(z) = +∞ . (2.2)

A2. There exists a number ρ > 0 such that

∇H(z) 6= 0 , for |z| ≥ ρ.

With those hypotheses, there is uniqueness for the solutions of the asso-
ciated initial value problems with a starting point of sufficiently large norm
(cf. [28]), and it results from the Poincaré–Bendixson theory that all these
solutions are periodic. Because of (2.2), we also see that the solutions of
large amplitude circle the origin, and that the corresponding trajectories are
oriented clockwise; there exists thus an annulus of closed orbits, extending
to infinity. Notice that these orbits are not necessarily star-shaped. Among
them, we select a particular one, denoted by Γ1 and, by convention, we take

H(z) = 1 , for every z ∈ Γ1 .

We assume that Γ1 has been chosen in such a way that |z| ≥ ρ, for all z ∈ Γ1.

We want to parametrize the solutions of large amplitude of equation (2.1)
by the energy. More precisely, we make the following structural assumption.

A3. There exists a differentiable function ϕ : R× ]1,+∞[→ R such that

J
∂ϕ

∂t
(t;E) = ∇H(ϕ(t;E)) , for all t ∈ R and E > 1 ,

and
H(ϕ(0;E)) = E , for all E > 1 .

As a consequence, the system (2.1) being conservative, we have that

H(ϕ(t;E)) = E , for all t ∈ R and E > 1 ,

and, differentiating this relation,〈
∇H(ϕ(t;E)),

∂ϕ

∂E
(t;E)

〉
= 1 , for all t ∈ R and E > 1 . (2.3)
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2.2 About condition A3

Let us describe a standard way to construct the function ϕ. Fix a point z∗0
in Γ1, and consider a solution w(τ) of the Cauchy problem

w′(τ) =
∇H(w(τ))

|∇H(w(τ))|2
, w(1) = z∗0 . (2.4)

Since
d

dτ
H(w(τ)) = 1 , for every τ ≥ 1 ,

integrating on [1, E] we see that

H(w(E)) = E , for every E > 1 .

In other words, E corresponds to the “energy” at the point w(E), which
motivates the notation E. Now, for any E > 1, let ϕ(· ;E) be the solution
of the Hamiltonian system (2.1) such that ϕ(0;E) = w(E). It is clear that
both equalities in A3 hold true. The regularity of ϕ is surely guaranteed if H
is twice continuously differentiable, but we will see that it is satisfied also in
some more general situations. As will appear below, advantage can be taken
of the possibility of carefully choosing z∗0 , in order to get a function ϕ(t;E)
having some convenient properties.

From the definition of ϕ(t;E), we also have that

∂ϕ

∂E
(0;E) =

∇H(ϕ(0;E))∣∣∇H(ϕ(0;E))
∣∣2 , for every E > 1 ; (2.5)

this property of ϕ(0;E) will play an important role in the sequel and we will
assume it to hold throughout.

As a first example, consider a Hamiltonian function of the type

H(x, y) = 1
2
y2 +G(x) , (2.6)

with G(0) = 0. The autonomous system (2.1) is then equivalent to the scalar
second order equation

x′′ + g(x) = 0 ,

where g(x) = G′(x). Notice that conditions A1 and A2 will be satisfied
assuming

x g(x) > 0 , for |x| large , (2.7)
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and
lim
|x|→∞

G(x) = +∞ . (2.8)

In the above example, the regularity assumption in A3 is surely satisfied
if g is continuously differentiable. However, it is also satisfied if, e.g.,

g(x) = a+x
+ − a−x−,

for some positive constants a+, a− (here, as usual, x+ = max{x, 0} and
x− = max{−x, 0}). This last example leads us to study more carefully the
case of positively homogeneous systems of degree 2.

Let the Hamiltonian function H be such that

0 < H(λz) = λ2H(z) , for every λ > 0 and z ∈ R2 \ {0} . (2.9)

In this case, it is well known that the autonomous system (2.1) is isochronous,

all the nonconstant orbits having the same minimal period T̂ . (For the
reader’s convenience, this fact will also be proved below, as an easy conse-
quence of Lemma 2.1.) Assumptions A1, A2 are readily verified. Concern-
ing A3, let us show that in this case it is possible to choose z∗0 in (2.4) so
that the resulting function ϕ(t;E) satisfies

ϕ(t;E) =
√
E ϕ(t; 1) . (2.10)

Indeed, if z is a solution of the autonomous equation (2.1) of energy equal

to 1, because the function t 7→ |z(t)|2 reaches its extremal values in [0, T̂ ],

there exists a number t∗ ∈ [0, T̂ ] such that

〈z(t∗), z′(t∗)〉 = −〈z(t∗), J∇H(z(t∗))〉 = 0 .

Consequently, since 〈z,∇H(z)〉 = 2H(z) > 0, for z 6= 0, there exists ν > 0
such that z(t∗) = ν∇H(z(t∗)). Using the fact that ∇H(λz) = λ∇H(z) for
any λ ≥ 0, if we then take z∗0 = z(t∗) in (2.4), we note that a solution of this
system is given by w(τ) =

√
τ z(t∗), implying that ϕ(0;E) =

√
E ϕ(0; 1),

from which (2.10) follows. As a consequence, in this case we have

∂ϕ

∂E
(t;E) =

1

2
√
E
ϕ(t; 1) . (2.11)

Notice that, as a particular case, we could have H(z) = 1
2
〈Az, z〉, with a

positive definite symmetric matrix A.
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In the sequel, we will also frequently refer to Hamiltonian functions of
the form

H(x, y) = a |x|p + b |y|q,

with a and b positive constants, p > 1 and q > 1. It must be kept in
mind that the gradient of such a function is not necessarily locally Lipschitz
continuous. Nevertheless, its properties will prove useful when comparing
the minimal period of solutions of various Hamiltonian systems. If ϕ(t; 1) is
a solution of (2.1) of energy 1, we observe that

ϕ(t;E) = diag(E1/p, E1/q)ϕ(Eµ t; 1) , (2.12)

where

µ = 1− 1

p
− 1

q
,

is also a solution of (2.1), implying that, for µ > 0, the minimal period tends
to 0 when E tends to +∞, whereas, for µ < 0, it tends to +∞. On the other
hand, if µ = 0, i.e., if

1

p
+

1

q
= 1 , (2.13)

the autonomous system is isochronous, and

∂ϕ

∂E
(t;E) =

1

E
diag

(
1

p
,
1

q

)
ϕ(t;E) = diag

(
1

pE1/q
,

1

q E1/p

)
ϕ(t; 1). (2.14)

If we choose ϕ(0; 1) = ((1/a)1/p, 0), it can be checked that (2.5) is satisfied.

2.3 A basic property

Let us denote by int(Γ1) and ext(Γ1) the bounded and the unbounded con-
nected components of R2 \Γ1, respectively. For every z0 ∈ ext(Γ1), let T (z0)
be the minimal period of the solution issuing from it. We define the contin-
uous function T : ]1,+∞[→ R as

T (E) = T (ϕ(0;E)) ;

it expresses the period as a function of the energy. Moreover, for E > 1, we
introduce the open bounded set

Ω(E) = {z ∈ R2 : H(z) < E} ∪ int(Γ1) .
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Notice that, for E sufficiently large, Ω(E) is the bounded set delimited by the
level curve H−1(E). The following lemma expresses a fundamental relation
between the area a(E) of Ω(E) and the minimal period T (E).

Lemma 2.1. Let the assumptions A1 to A3 hold. Then,

a′(E) = T (E) , for every E > 1 .

Proof. Given E > 1, let us consider the open sets

A = {(τ, e) ∈ R2 : e ∈ ]1,+∞[ , τ ∈ ]0, T (e)[ } ,

B = R2 \
(

Ω(1) ∪ ϕ
(
{0}× ]1,+∞[

))
.

Notice that B differs from R2 \ Ω(1) by a set of zero Lebesgue measure.
Define the function Φ : A → B as Φ(τ, e) = ϕ(τ ; e). It is one-to-one and
onto. Using (2.3), we have

det Φ′(τ, e) =

〈
Jϕ′(τ ; e),

∂ϕ

∂E
(τ ; e)

〉
=

〈
∇H(ϕ(τ ; e)),

∂ϕ

∂E
(τ ; e)

〉
= 1 ,

for every (τ, e) ∈ A, so that Φ is a diffeomorphism. For E > 1, the area of
Ω(E) is then given by

a(E) = a(1) +

∫ E

1

(∫ T (e)

0

|det Φ′(τ, e)| dτ

)
de

= a(1) +

∫ E

1

T (e) de ,

and the conclusion directly follows.

As a first example of application we can show that, when H satisfies (2.9),
the system (2.1) is isochronous. Indeed, the homogeneity property implies
that Ω(E) =

√
E Ω(1), for any E ≥ 0, so that a(E) = E a(1). Consequently,

the period is given by T (E) = a′(E) = a(1).

Remark 2.2. Given a continuous function T : [1,+∞[→ ]0,+∞[ , it is al-
ways possible to construct a Hamiltonian function H : R2 → R for which
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T (E) is the time map for the orbits of energy E ≥ 1. Indeed, define a :
[1,+∞[→ [π,+∞[ by

a(E) = π +

∫ E

1

T (e) de .

This function is strictly increasing and onto, hence invertible; consider a C1-
extension a : [0,+∞[→ [0,+∞[ , for which we keep the same notation, with
a(0) = 0 and a′(E) > 0 for every E ≥ 0. Define f : [0,+∞[→ [0,+∞[
by f(r) = a−1(π r2), and consider the associated Hamiltonian system (2.1),
with H(z) = f(|z|). It is clear that the orbit of energy E > 0 of this system
is a circle with area a(E). Consequently, by Lemma 2.1, for every E ≥ 1 the
minimal period of the corresponding solution is T (E).

3 Existence of periodic solutions

In this section, we first state our existence theorem, its proof being postponed
to Section 5. We then make some remarks on the assumptions of the theorem,
and derive some useful corollaries.

We will make use of the following regularity conditions on H and r.

L1. The function H : R2 → R is differentiable with a locally Lipschitz
continuous gradient.

L2. The function r : R × R2 → R2 is continuous, 2π-periodic in its first
variable, and locally Lipschitz continuous in its second variable.

3.1 Statement of the existence result

Here is the main result of this section.

Theorem 3.1. Let the assumptions A1 to A3 hold, as well as L1, L2, and
the following nonresonance conditions:

A4. The function T (E) is controlled as follows:

lim sup
E→+∞

T (E) > 0 , lim inf
E→+∞

T (E) < +∞ .

A5. For any integer n,

lim
E→+∞

T (E) 6= 2π

n
.

Assume also that:
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A6. There is a constant C > 0 such that

lim sup
|z|→∞

∣∣〈J∇H(z), r(t, z)〉
∣∣

H(z)
≤ C , uniformly in t ∈ [0, 2π] ,

and

A7. For any given compact interval I ⊆ R,

lim
E→+∞

〈
∂ϕ

∂E
(s;E), r(t, ϕ(s;E))

〉
= 0 , uniformly for (t, s) ∈ [0, 2π]× I .

Then, equation (1.3) admits at least one 2π-periodic solution.

Before going to the proof of Theorem 3.1, we make some comments and
draw some consequences.

3.2 About conditions A4 and A5

It is to be understood that assumptions A4 and A5 hold if and only if

- either lim inf
E→+∞

T (E) 6= lim sup
E→+∞

T (E) ,

- or lim inf
E→+∞

T (E) = lim sup
E→+∞

T (E) ∈ ]0,+∞[ \
{2π

n

∣∣∣ n = 1, 2, . . .
}
.

Therefore, assuming A4 and A5 is equivalent to assuming the existence of a
sequence (Ek)k such that

lim
k
Ek = +∞ and lim

k
T (Ek) ∈ ]0,+∞[ \

{2π

n

∣∣∣ n = 1, 2, . . .
}
.

Notice that, by Lemma 2.1 and the general l’Hôpital rule,

lim inf
E→+∞

T (E) ≤ lim inf
E→+∞

a(E)

E
≤ lim sup

E→+∞

a(E)

E
≤ lim sup

E→+∞
T (E) ,

so that conditions A4 and A5 will surely be verified if the following two hold.

A4’. The function a(E)/E is controlled as follows:

lim sup
E→+∞

a(E)

E
> 0 , lim inf

E→+∞

a(E)

E
< +∞ .
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A5’. For any integer n,

lim
E→+∞

a(E)

E
6= 2π

n
.

We can thus state the following immediate consequence of Theorem 3.1.

Corollary 3.2. Let the assumptions A1 to A3 hold, as well as L1, L2, A6,
and A7. Suppose that the nonresonance conditions A4’, A5’ are satisfied.
Then, equation (1.3) admits at least one 2π-periodic solution.

The interest of the above corollary lies in the observation that, under
hypotheses A1 to A3, A6 and A7, a 2π-periodic solution will exist if, for
some integer n0,

2π

n0 + 1
< lim inf

E→+∞

a(E)

E
≤ lim sup

E→+∞

a(E)

E
<

2π

n0

. (3.1)

This condition is less stringent than the condition

2π

n0 + 1
< lim inf

E→+∞
T (E) ≤ lim sup

E→+∞
T (E) <

2π

n0

; (3.2)

it is also likely to be easier to check, since estimates on lim infE→+∞ a(E)/E
and lim supE→+∞ a(E)/E are deduced from estimates on a(E), which, in
turn, can be obtained by comparing the Hamiltonian H to other Hamiltoni-
ans, as will be shown below.

3.3 About conditions A6 and A7

In order to better understand conditions A6 and A7, let us first consider the
particular case when the Hamiltonian function is positively homogeneous of
degree 2, i.e., when (2.9) holds. In this case, taking into account (2.10),
condition A6 holds if there exists a constant c > 0 such that

|r(t, z)| ≤ c(1 + |z|) , for every (t, z) ∈ [0, 2π]× R2.

On the other hand, taking into account (2.11), condition A7 holds if

lim
|z|→∞

r(t, z)

|z|
= 0 , uniformly in t ∈ [0, 2π] . (3.3)

We thus have the following.
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Corollary 3.3. Assume that L1, L2, and (2.9) hold. Let T̂ be the minimal

period of the solutions of the isochronous system (2.1). If T̂ 6= 2π/n, for all
integers n, and the forcing term satisfies (3.3), then equation (1.3) admits at
least one 2π-periodic solution.

In order to deal with more general situations, we introduce an assump-
tion which will ensure that A7 is satisfied for a function H which is twice
continuously differentiable.

A8. There exist a continuous function D : [1,+∞)→ GL(R2) (the group of
invertible 2 × 2 real matrices) and a continuous function κ : R2 → ]0,+∞[
such that, for E > 1,〈

D(E)JH ′′(ϕ(t;E))D−1(E) v, v
〉
≥ −κ(ϕ(t;E)) |v|2,

for all t ∈ R and v ∈ R2, (3.4)

and ∫ t

0

κ(ϕ(s;E)) ds remains bounded for E → +∞,

independently of t in compact sets. (3.5)

Moreover, for any given compact interval I ⊆ R,

lim
E→+∞

|D(E)∇H(ϕ(0;E))|
|∇H(ϕ(0;E))|2

∣∣(DT (E))−1r(t, ϕ(s;E))
∣∣ = 0 ,

uniformly for (t, s) ∈ [0, 2π]× I . (3.6)

Let us show that A8 implies A7. Indeed, from the variational equation

d

dt

∂ϕ

∂E
(t;E) = −J H ′′(ϕ(t;E))

∂ϕ

∂E
(t;E) ,

we see that

d

dt

∣∣∣D(E)
∂ϕ

∂E
(t;E)

∣∣∣2= 2
〈
D(E)

∂ϕ

∂E
(t;E) , D(E)

d

dt

∂ϕ

∂E
(t;E)

〉
= −2

〈
D(E)

∂ϕ

∂E
(t;E) , D(E) J H ′′(ϕ(t;E))

∂ϕ

∂E
(t;E)

〉
,

and we deduce by (3.4) and Gronwall Lemma that∣∣∣D(E)
∂ϕ

∂E
(t;E)

∣∣∣ ≤ ∣∣∣D(E)
∂ϕ

∂E
(0;E)

∣∣∣ exp

∣∣∣∣∫ t

0

κ(ϕ(s;E)) ds

∣∣∣∣ , (3.7)

for every t ∈ R. Using (2.5) and (3.5), we now see that A7 results from (3.6).
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Based on the above considerations, the following corollary is an immediate
consequence of Theorem 3.1.

Corollary 3.4. Let the assumptions A1 to A3, and L2 hold, as well as A6
and A8, H being twice continuously differentiable. Then, if the nonresonance
conditions A4, A5 are satisfied, equation (1.3) admits at least one 2π-periodic
solution.

A noteworthy situation is the case where H ′′ is globally bounded. Taking
as D(E) the identity matrix, we see that (3.4) is plainly satisfied with κ being
a constant function, whereas (3.6) holds if, for any given compact interval
I ⊆ R,

lim
E→+∞

r(t, ϕ(s;E))

|∇H(ϕ(0;E))|
= 0 , uniformly for (t, s) ∈ [0, 2π]× I . (3.8)

Under this condition, we will show that hypothesis A6 also holds, obtaining
the following corollary.

Corollary 3.5. Let the assumptions A1 to A3 hold, as well as L2. Assuming
H to be twice continuously differentiable, let H ′′ be globally bounded and
suppose that (3.8) holds. Then, if the nonresonance conditions A4, A5 are
satisfied, equation (1.3) admits at least one 2π-periodic solution.

Proof. We first observe that, with H ′′ globally bounded, (3.4) implies

d

dt
|∇H(ϕ(t;E))|2 ≤ 2κ |∇H(ϕ(t;E))|2 ;

hence, by Gronwall Lemma,

|∇H(ϕ(s;E))| ≤ |∇H(ϕ(0;E))| eκ|s| , (3.9)

for every s ∈ R. Taking (3.8) into account, it then follows that condition A6
will hold if

lim sup
E→∞

|∇H(ϕ(0;E))|2

E
< +∞ . (3.10)

But, this inequality is a consequence of the boundedness property of H ′′.
Indeed, differentiating |∇H(ϕ(0;E))|2 with respect to E, we get, using (2.5),

∂

∂E
|∇H(ϕ(0;E))|2 = 2

〈
H ′′(ϕ(0;E))

∂ϕ

∂E
(0;E),∇H(ϕ(0;E))

〉
=

1

|∇H(ϕ(0;E))|2
〈H ′′(ϕ(0;E))∇H(ϕ(0;E)),∇H(ϕ(0;E))〉 .
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Since H ′′ is assumed to be globally bounded, it follows that there exist con-
stants C1, C2 such that

|∇H(ϕ(0;E))|2 ≤ C1E + C2 ,

implying (3.10). The proof is thus completed.

Remark 3.6. Because of (3.9), it is clear that, when H ′′ is globally bounded,
condition (3.8) will hold if

lim
|z|→∞

r(t, z)

|∇H(z)|
= 0 , uniformly in t ∈ [0, 2π] . (3.11)

Remark 3.7. Consider the scalar second order equation

x′′ + g(x) = r(t) , (3.12)

with g continuously differentiable, g′ being globally bounded, and r continu-
ous and 2π-periodic. Denoting by G a primitive of g, we can associate with
this equation the Hamiltonian function defined by (2.6). If we assume that,
for some d > 0,

xg(x) > 0 , for |x| > d , (3.13)

it is clear that A1, A2 hold. Condition A3 also holds since g is continu-
ously differentiable. Moreover, if we take ϕ(0;E) = (0,

√
E), it is immediate

that (3.8) is satisfied. Consequently, we are in a situation where Corollary 3.5
applies, and we may conclude that (3.12) admits at least one 2π-periodic so-
lution, provided that the nonresonance conditions A4, A5 are satisfied. This
result had been obtained in [7], under a more restrictive condition than (3.13),
namely, that there exists a positive constant c > 0 such that g(x)/x ≥ c, for
|x| > d.

The above remark can be adapted to the equation

x′′ + g(x) = q(t, x) , (3.14)

provided that

lim
|x|→∞

q(t, x)

x
= 0 , uniformly in t ∈ [0, 2π] . (3.15)

Assuming the existence of η > 0 such that

G(x) ≥ η |x| , for |x| > d , (3.16)

we see that (3.8) is satisfied if we take ϕ(0;E) = (0,
√
E). The following

corollary can thus be deduced from Corollary 3.5.
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Corollary 3.8. Let the function g(x) be continuously differentiable, with a
globally bounded derivative, and such that (3.13) and (3.16) hold. Assume
moreover that q(t, x) is continuous, 2π-periodic in t, locally Lipschitz contin-
uous in x, and satisfies (3.15). Then, if the nonresonance conditions A4, A5
are satisfied, equation (3.14) admits at least one 2π-periodic solution.

4 Comparison between Hamiltonians

In this section we provide some corollaries of the results of the previous
sections. The main idea is to compare the Hamiltonian function H with
other Hamiltonians for which the assumptions are easier to check.

4.1 Comparison with isochronous Hamiltonians

Suppose that, for some number ρ > 0,

H1(z) ≤ H(z) ≤ H2(z) , for |z| ≥ ρ , (4.1)

the three functions H,H1, H2 being continuously differentiable and satisfy-
ing the hypotheses A1 to A3 of Section 2. We do not require however the
gradients of H1, H2 to be locally Lipschitz continuous. For E large enough,
we denote by Ω1(E), Ω(E), Ω2(E) the bounded sets delimited by the curves
H−1

1 (E), H−1(E), H−1
2 (E), and by a1(E), a(E), a2(E) their areas, respec-

tively. Then,
Ω2(E) ⊆ Ω(E) ⊆ Ω1(E) ,

and hence
a2(E) ≤ a(E) ≤ a1(E) .

So, if for some integer n0, one has that

2π

n0 + 1
< lim inf

E→+∞

a2(E)

E
≤ lim sup

E→+∞

a1(E)

E
<

2π

n0

,

it is clear that (3.1) is satisfied. Moreover, if H1, H2 are isochronous Hamil-
tonians with respective minimal periods T1, T2, by Lemma 2.1 we will have
that a1(E) = T1E+C1 and a2(E) = T2E+C2, for some constants C1, C2, and
necessarily T2 ≤ T1. This leads to the following consequence of Theorem 3.1.
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Corollary 4.1. Let H,H1, H2 satisfy (4.1) and the hypotheses A1 to A3,
the Hamiltonians H1, H2 being isochronous with respective minimal periods
T1, T2. Assume moreover that H and r satisfy L1, L2, A6, A7. Then,
equation (1.3) admits at least one 2π-periodic solution, provided that, either
T2 > 2π, or, for some integer n0,

2π

n0 + 1
< T2 ≤ T1 <

2π

n0

. (4.2)

If we now recall the situation considered in Corollary 3.5, we immediately
get the following.

Corollary 4.2. Let H,H1, H2 satisfy (4.1) and the hypotheses A1 to A3, the
Hamiltonians H1, H2 being isochronous with respective minimal periods T1,
T2. With H twice continuously differentiable and r satisfying L2, let H ′′ be
globally bounded, and assume that (3.8) holds. Then, equation (1.3) admits
at least one 2π-periodic solution, provided that, either T2 > 2π, or, for some
integer n0, condition (4.2) holds.

Notice that, for condition (3.8), advantage can be taken of the freedom
of choice in the construction of ϕ(0;E).

4.2 Scalar second order equations

We illustrate the above results with an application to the second order equa-
tion (3.14). As before, we assume the function g(x) to be continuously differ-
entiable, and q(t, x) to be continuous, 2π-periodic in t, and locally Lipschitz
continuous in x. We denote by G a primitive of g, and associate with this
equation the Hamiltonian function defined by (2.6). Assume that G has a
quadratic growth; more precisely, suppose that there exist numbers G−, G+,
G−, G+ such that

0 < G± = lim inf
x→±∞

2G(x)

x2
≤ lim sup

x→±∞

2G(x)

x2
= G± < +∞ . (4.3)

We fix a small ε > 0, and define

H1(x, y) = 1
2

(
G+[x+]2 +G−[x−]2 + y2 − ε(x2 + y2)

)
,

H2(x, y) = 1
2

(
G+[x+]2 +G−[x−]2 + y2 + ε(x2 + y2)

)
.
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The Hamiltonians H1, H2 being positively homogeneous, conditions A1 to A3
are satisfied, and we see that (4.1) holds for ρ sufficiently large. On the other
hand, the minimal periods T1,ε, T2,ε associated with H1, H2 are such that

T̂1 := lim
ε→0+

T1,ε =
π√
G+

+
π√
G−

, T̂2 := lim
ε→0+

T2,ε =
π√
G+

+
π√
G−

.

In order to apply Corollary 3.8, we assume that g′(x) is globally bounded.
Hypothesis (3.16) of that corollary is satisfied because there exists a constant
η > 0 such that G(x) ≥ η x2 for |x| sufficiently large. Using the fact that ε
can be chosen arbitrarily small, we then deduce the following result.

Corollary 4.3. Let the function g(x) be continuously differentiable, with a
globally bounded derivative, and such that (3.13) holds. Denoting by G(x) a
primitive of g(x), assume that positive numbers G±, G

± exist for which (4.3)
holds, these numbers being such that, either

π√
G+

+
π√
G−

> 2π ,

or, for some integer n0,

2π

n0 + 1
<

π√
G+

+
π√
G−
≤ π√

G+

+
π√
G−

<
2π

n0

. (4.4)

Assume moreover that q(t, x) is continuous, 2π-periodic in t, locally Lipschitz
continuous in x, and satisfies (3.15). Then, equation (3.14) admits at least
one 2π-periodic solution.

The conditions (4.4) can be interpreted in terms of the Fuč́ık spectrum for
the 2π-periodic boundary value problem. They amount to requiring that the
rectangle [G+, G

+] × [G−, G
−] lies between two successive Fuč́ık curves (or

below the first one). This is an improvement with respect to the “classical”
conditions of Drábek and Invernizzi [8] for the equation considered here,
which is a perturbation of a Hamiltonian equation. Indeed, our hypotheses
are based on the limits, for x→ ±∞, of the ratio 2G(x)/x2, rather than on
the limits of g(x)/x.

Notice that the assumption (4.4) does not necessarily imply that condi-
tion (3.2) holds for the periods T (E). We illustrate this with the equation

x′′ +
5

2
x+

5

3
x sin(ln(1 + 2x+ + 3x−)) = q(t, x) , (4.5)
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to which we can associate a Hamiltonian function like the one in (2.6), with

G(x) =
5x2

4
+

√
5x2

3
sin
(

ln
(
1 + 2x+ + 3x−

)
+
π

4

)
+O(|x|) , for |x| → ∞ .

We deduce from the above expression that

G+ = G− =
5

2
+

2
√

5

3
, G+ = G− =

5

2
− 2
√

5

3
,

so that (4.4) is satisfied for n0 = 1. However, numerical computations show
that

lim inf
E→+∞

T (E) ' 3.09 . . . < π and lim sup
E→+∞

T (E) ' 6.51 . . . > 2π .

4.3 Hamiltonians with separated variables

We now consider systems with Hamiltonian functions of the form

H(x, y) = G(x) +K(y) ;

we will suppose that G,K : R → R are twice continuously differentiable,
their first derivatives being denoted respectively by g(x), k(y). We assume
that, for some numbers p > 1, q > 1 related by (2.13),

g′(x) = O(|x|p−2) , for x→ ±∞ , k′(y) = O(|y|q−2) , for y → ±∞ .

More precisely, we introduce numbers C1, C2 such that

|g′(x)| ≤ C1 |x|p−2, for |x| ≥ 1 , |k′(y)| ≤ C2 |y|q−2, for |y| ≥ 1 . (4.6)

From there, it is easy to deduce constants C ′1, C ′2 such that

|g(x)| ≤ C ′1 |x|p−1, for |x| ≥ 1 , |k(y)| ≤ C ′2 |y|q−1, for |y| ≥ 1 . (4.7)

We will also assume that for some positive constants c1, c2,

x g(x) ≥ c1 |x|p, for |x| ≥ 1 , y k(y) ≥ c2 |y|q, for |y| ≥ 1 . (4.8)

The above hypotheses imply that there exist constants L ≥ ` > 0 and C > 0
such that

`(|x|p + |y|q)−C ≤ H(x, y) ≤ L(|x|p + |y|q) +C , for all (x, y) ∈ R2, (4.9)

and it can be checked that the function H satisfies the assumptions A1 to A3.
We can also observe that the curves H−1(E) are star-shaped for E large.
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Writing r(t, x, y) = (rx(t, x, y), ry(t, x, y)), we want to apply Corollary 4.1
to the system

x′ = k(y) + ry(t, x, y) , −y′ = g(x) + rx(t, x, y) , (4.10)

assuming rx, ry to be continuous, 2π-periodic in t, and locally Lipschitz con-
tinuous in (x, y). For simplicity, we only deal here with symmetric conditions
on G,K, i.e. with bounds for the limits independent of the signs of x and y.
We therefore take positive numbers α1, α2, β1, β2 such that

α1 < lim inf
x→±∞

pG(x)

|x|p
≤ lim sup

x→±∞

pG(x)

|x|p
< α2 ,

β1 < lim inf
y→±∞

q K(y)

|y|q
≤ lim sup

y→±∞

q K(y)

|y|q
< β2 ,

and consider the Hamiltonian functions H1, H2 defined by

H1(x, y) = α1
|x|p

p
+ β1

|y|q

q
, H2(x, y) = α2

|x|p

p
+ β2

|y|q

q
.

When the exponents p, q satisfy condition (2.13), both H1 and H2 are isochro-
nous (cf. (2.12), with µ = 0); their respective minimal periods are given by

T1 =
2 πp

α
1/p
1 β

1/q
1

, T2 =
2πp

α
1/p
2 β

1/q
2

,

where

πp = 2 (p− 1)1/p π/p

sin(π/p)
(4.11)

(see, e.g., [6, 24]). It is clear that

H1(x, y) ≤ H(x, y) ≤ H2(x, y) , for |(x, y)| sufficiently large .

In order to apply Corollary 4.1, we need to show that

lim inf
E→+∞

T (E) > 0 , (4.12)

T (E) denoting, as before, the minimal period of solutions of (2.1), for E > 1.
Actually, using (4.7) and (4.8), it can be shown that T (E) is bounded away
from 0, as well as bounded above. More precisely,

T̃2 ≤ lim inf
E→+∞

T (E) ≤ lim sup
E→+∞

T (E) ≤ T̃1 ,
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T̃1, T̃2 being the minimal period of the nontrivial solutions of the equations
associated with the Hamiltonians

H̃1(x, y) = c1
|x|p

p
+ c2
|y|q

q
, H̃2(x, y) = C ′1

|x|p

p
+ C ′2

|y|q

q
,

where c1, c2, C
′
1, C

′
2 are the constants appearing in (4.7) and (4.8). We omit

the proof, for briefness, the arguments being similar to those of Theorem 8.2
below. Notice that

T̃2 ≤ T2 ≤ T1 ≤ T̃1 ,

strict inequalities being possible.

Considering that (4.12) holds, we deduce the following result from Corol-
lary 4.1.

Corollary 4.4. Let H(x, y) = G(x) + K(y), with G,K twice continuously
differentiable functions, their first derivatives being denoted by g(x), k(y),
respectively. Assume that the conditions (4.6), (4.8) hold, and that the expo-
nents p, q satisfy condition (2.13). Assume moreover that

rx(t, x, y) = o(|x|p−1) , for x→ ±∞, uniformly in t, y , (4.13)

ry(t, x, y) = o(|y|q−1) , for y → ±∞, uniformly in t, x . (4.14)

Then, system (4.10) admits at least one 2π-periodic solution, provided that,
either T2 > 2π, or there exists an integer n0 such that (4.2) holds.

Proof. We have seen that assumptions A1 to A3 are satisfied. Moreover, it
results from (4.7), (4.9), (4.13), (4.14), using Young’s inequality again, that
condition A6 is satisfied.

Let us show that, if we take D(E) = diag(E
1
q , E

1
p ), condition A8 will be

satisfied, implying that the same holds true for A7.

Let ϕ(t;E) be a solution of energy E for the Hamiltonian system

x′ = k(y) , −y′ = g(x) .

As explained below, we will need later a solution built in a particular way;
but, at this stage, this particular construction plays no role. Denoting by
ϕx(t;E), ϕy(t;E), the components of the solution ϕ(t;E) we compute, with
v = (v1, v2),〈
D(E)JH ′′(ϕ(t;E))D−1(E) v, v

〉
=
(
E

1− 2
q g′(ϕx(t;E))− E1− 2

p k′(ϕy(t;E))
)
v1v2 .
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The inequality (3.4) then holds if we define

κ(x, y) = E1− 2
q |g′(x)|+ E1− 2

p |k′(y)| .

We now have to to show that, with this definition, κ satisfies (3.5). Let us
consider, for instance, the case where p ≥ 2 (the case q ≥ 2 being analo-
gous). Using (4.6), (4.9) and the relation (2.13) between p and q, we observe

that E1− 2
q g′(ϕx(t;E)) is bounded, independently of t and E. The same prop-

erty holds for E1− 2
p k′(ϕy(t;E)), as long as |ϕy(t;E)| ≥ 1. To prove (3.5), it

remains to show that, given any compact interval I,∫
Σ(E)

E1− 2
p |k′(ϕy(s;E))| ds remains bounded for E → +∞ ,

where Σ(E) = {t ∈ I : |ϕy(t;E)| ≤ 1}. The curve H−1(E) being star-shaped
for E large, and the motion being clockwise, the set Σ(E) is contained in the
union of intervals, corresponding to transitions between the values −1 and
+1 for the function ϕy(t;E). Because of (4.12), the number of those intervals
can be assumed to be finite. Considering for instance one of those intervals,
let t1, t2 ∈ [0, T (E)], with t1 < t2, be such

ϕy(t1;E) = +1 , ϕy(t2;E) = −1 , ϕy(t;E) ∈ [−1, 1] , for t ∈ [t1, t2] .

Assuming E sufficiently large, we have ϕx(t;E) > 0, for t ∈ [t1, t2]. Moreover,
by (4.8) and (4.9), we see that if H(x, y) = E and if |y| ≤ 1, then |g(x)| ≥
c0E

1− 2
p for some constant c0 > 0, so that the equation −y′ = g(x) leads to

2 =

∫ t2

t1

g(ϕx(s;E) ds ≥ (t2 − t1) c0E
1− 2

p .

It then follows that t2 − t1 = O
(
E

2
p
−1
)

for E → +∞. Consequently, since
|ϕy(t;E)| ≤ 1 for t ∈ [t1, t2], we have that∫ t2

t1

E1− 2
p |k′(ϕy(s;E))| ds remains bounded for E → +∞ .

This, combined with the observations made above, finally proves that the
function κ indeed satisfies (3.5).
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To establish A8, we still have to prove that (3.6) holds. From (4.13)
and (4.14) we deduce that

lim
E→+∞

(DT (E))−1r(t, z) = 0 , uniformly for t ∈ [0, 2π], z ∈ H−1(E) ,

so that (3.6) will be satisfied if

|D(E)∇H(ϕ(0;E))|
|∇H(ϕ(0;E))|2

remains bounded, for E → +∞ . (4.15)

We will show that this is the case if the function ϕ(0;E) has been built in
an appropriate way. Notice first that, by (4.8), there exists y0 such that
k(y0) = 0. Moreover, the function G is strictly increasing for x ≥ 1, so that,
for E ≥ G(1) +K(y0), we may define ϕ(0;E) by

ϕ(0;E) = (xE, y0) ,

with xE ≥ 1 such that G(xE) = E − K(y0). Since k(y0) = 0, we have
∇H(ϕ(0;E)) = (g(xE), 0) and it is easily checked that ϕ(0;E) satisfies (2.5),
at least for E “large”. Condition (4.15) then amounts to finding a constant
C > 0 such that

E1/q ≤ C g(xE), independently of E ≥ G(1) +K(y0) .

Taking into account the relation (2.13) between p and q, the fact that such
a constant can be found is then deduced from (4.7), (4.8). Condition A8 is
thus satisfied, and the conclusion then follows from Corollary 4.1.

The case where g(x) = α0|x|p, k(y) = |y|q is covered by results of
Jiang [22], who also deals with asymmetric functions g(x). (See also [2] for
a more general system.) It must be emphasized again that our hypotheses
are based on the limits of the ratios G(x)/|x|p, K(y)/|y|q, yielding less re-
strictive conditions with respect to more classical assumptions based on the
limits of the ratios x g(x)/|x|p, y k(y)/|y|q. By Theorem 6.1 below, it will also
be possible to deal with the case where (1/p) + (1/q) > 1; in that situation,
besides conditions (4.6), (4.8) and (4.13) – (4.14), no further hypotheses will
be needed.
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5 Proof of Theorem 3.1

The proof is based upon degree arguments. We will use the homotopy

Jz′ = ∇H(z) + λ r(t, z) , (5.1)

with λ ∈ [0, 1], and denote by P
(λ)
2π the Poincaré map for the period 2π,

associated with the above equation. We look for fixed points of P
(1)
2π , which

correspond to 2π-periodic solutions of (1.3).

We first need to prove that P
(λ)
2π is well-defined for λ ∈ [0, 1], and contin-

uous. Since we will assume ∇H(z) and r(t, z) to be locally Lipschitz contin-
uous in z, uniqueness of the solutions of (5.1) and continuity with respect
to initial conditions are guaranteed. It remains to show that the solutions
of (5.1) do not escape to infinity. This is a consequence of condition A6.
Indeed, if z(λ)(t) denotes a solution and if we define e(λ)(t) = H(z(λ)(t)), we
have

(e(λ))′(t) = λ〈J∇H(z(λ)(t)), r(t, z(λ)(t))〉 . (5.2)

We then deduce from A6 that, for some positive constants C ′, C ′′,

|(e(λ))′(t)| ≤ C ′e(λ)(t) + C ′′, (5.3)

showing that e(λ)(t) remains bounded on any compact interval. It then fol-
lows, by the coercivity condition (2.2), that z(λ)(t) can be extended to the
whole real line.

We are now in a position to formulate a lemma which describes the guiding
idea of the proof of Theorem 3.1. We recall that, for E0 > 1,

Ω(E0) = {z ∈ R2 : H(z) < E0} ∪ int(Γ1) .

Lemma 5.1. Let the assumptions A1 to A3 hold, as well as L1, L2, and
let E0 > 1 be such that T (E0) 6= 2π/n, for any integer n. Then, we have

deg(I − P (0)
2π ,Ω(E0), 0) = 1. Moreover, if

P
(λ)
2π (z0) 6= z0 , for any z0 ∈ H−1(E0) and any λ ∈ [0, 1] , (5.4)

then deg(I − P (1)
2π ,Ω(E0), 0) = 1 and, consequently, equation (1.3) admits at

least one 2π-periodic solution.
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Proof. The degree deg(I − P (0)
2π ,Ω(E0), 0) is clearly well-defined if T (E0) 6=

2π/n, for all integer n. Indeed, we then have P
(0)
2π (z0) 6= z0, for all z0 be-

longing to the boundary of Ω(E0). Moreover, the closed set Ω(E0), which

is homeomorphic to a closed ball, is mapped into itself by P
(0)
2π , so that the

result concerning I − P
(0)
2π follows from Brouwer’s theorem. Finally, using

hypothesis (5.4), the property of invariance of the degree with respect to a
homotopy implies that

deg(I − P (1)
2π ,Ω(E0), 0) = deg(I − P (0)

2π ,Ω(E0), 0) = 1 ,

so that P
(1)
2π has a fixed point in Ω(E0).

To apply the above lemma for proving Theorem 3.1, we need to estimate
P

(λ)
2π (z0). This will be done by considering the large amplitude solutions of

equation (5.1) as perturbations of the solutions of the autonomous equa-
tion (1.4). We therefore write the solutions of (5.1) under the form

z(t) = ϕ
(
t+ τ (λ)(t); e(λ)(t)

)
,

so that

∇H
(
ϕ
(
t+ τ (λ)(t); e(λ)(t)

))
(τ (λ))′(t) + J

∂ϕ

∂E

(
t+ τ (λ)(t); e(λ)(t)

)
(e(λ))′(t) =

= λ r
(
t, ϕ
(
t+ τ (λ)(t); e(λ)(t)

))
.

Simple calculations making use of (2.3) then lead to the system

(τ (λ))′=λ
〈 ∂ϕ
∂E

(
t+ τ (λ); e(λ)

)
, r
(
t, ϕ
(
t+ τ (λ); e(λ)

))〉
, (5.5)

(e(λ))′=λ
〈
J∇H

(
ϕ
(
t+ τ (λ); e(λ)

))
, r
(
t, ϕ
(
t+ τ (λ); e(λ)

))〉
. (5.6)

Notice by the way that this last equation is just a rewrite of (5.2). Let us
denote the solution of the above system for the initial conditions τ (λ)(0) = τ0,
e(λ)(0) = E0 by (τ (λ)(t; τ0, E0), e(λ)(t; τ0, E0)), or briefly by (τ (λ)(t), e(λ)(t)),
when there is no risk of ambiguity in omitting the initial conditions. The
basic point for the proof of our existence results is the observation that (5.4)
will be satisfied unless, for some integer n, some τ0 ∈ [0, T (E0)], and some
λ ∈ [0, 1], we have

e(λ)(2π; τ0, E0) = E0 , 2π + τ (λ)(2π; τ0, E0) = τ0 + nT (E0) . (5.7)
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By assumptions A4 and A5, it is always possible to find a sequence (Ek)k,
with limk Ek = +∞, such that T (Ek) converges to some strictly positive finite
value T ∗, with T ∗ 6= 2π/n for any integer n. Hence, a number η > 0 exists
such that, for k sufficiently large, |2π − nT (Ek)| ≥ η, for any integer n. On
the other hand, it follows from (5.3) that

lim
k
e(λ)(t; τ0, Ek) = +∞ , uniformly in (t, τ0, λ) ∈ [0, 2π]× [0, 2T ∗]× [0, 1] ,

and, considering (5.5), we deduce from A7 that

lim
k
τ (λ)(t; τ0, Ek) = τ0 , uniformly in (t, τ0, λ) ∈ [0, 2π]× [0, 2T ∗]× [0, 1]

(the above choice of the interval [0, 2T ∗] is somehow arbitrary; what is needed,
is just an interval going beyond T ∗). Consequently, the second equality
in (5.7) is impossible for any integer n, when E0 is replaced by a sufficiently
large element Ek.

6 Some extensions of Theorem 3.1

In this section, we extend Theorem 3.1 in several directions. First, in Sec-
tion 6.1, we consider the case when the limit of the period function T (E) is
+∞ as E → +∞. Then, the critical case when the limit of T (E) is equal
to some 2π/n0 is considered, with two different approaches: in Section 6.2
we approach resonance, but “not too fast”, while in Section 6.3 we add some
conditions of Landesman–Lazer type.

6.1 The case when limE→+∞ T (E) = +∞
The nonresonance conditions A4 - A5 are satisfied when

lim sup
E→+∞

T (E) > 2π and lim inf
E→+∞

T (E) < +∞ ,

so that Theorem 3.1 can be invoked to deal with such situations. On the
other hand, Theorem 3.1 does not apply when

lim
E→+∞

T (E) = +∞ . (6.1)

However, it is still possible to obtain existence conditions for this last case, as
shown by the next theorem, where an auxiliary Hamiltonian function H0 is
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introduced. We associate with it a function ϕ0(0;E) defined by an equation
of the type (2.4).

Theorem 6.1. Let the assumptions A1 to A3 hold, as well as L1, L2, A6, A7,
and

lim sup
E→+∞

T (E) > 2π . (6.2)

Assume also the following condition:

A9. There exist a differentiable function H0 : R2 → R, satisfying the as-
sumptions A1 to A3, and a constant E∗ > 0 such that

〈∇H0(z),∇H(z) + λ r(t, z)〉 > 0 , with z = ϕ0(0;E) ,

for every (t, λ) ∈ [0, 2π]× [0, 1] and E ≥ E∗.

Then, equation (1.3) admits at least one 2π-periodic solution.

Proof. As already observed, we only need to consider the case when (6.1)
holds. Referring to Lemma 5.1, we aim to show that, for sufficiently large
values of E0 ,

P
(λ)
2π (z0) 6= z0 , for any z0 ∈ H−1(E0) and any λ ∈ [0, 1] ,

where P
(λ)
2π denotes, as before, the Poincaré map for the period 2π, associated

with equation (5.1). Assume by contradiction that this is not true. Let
z(λ)(t; 0, z0) denote the solution of (5.1) corresponding to the initial condition
z(0) = z0 ; that solution is assumed to be 2π-periodic. Arguing as in the proof
of Theorem 3.1, and using hypothesis A6, we can show that H(z(λ)(t; 0, z0))
can be made arbitrarily large by choosing E0 large enough, uniformly for
t ∈ [0, 2π]. Provided that E0 is taken sufficiently large, it then results from A9
that, when the trajectory of the solution z(λ)(t; 0, z0) crosses the gradient
curve E 7→ ϕ0(0;E), associated with the Hamiltonian H0, the crossing occurs
in the clockwise direction. That solution being, by assumption, 2π-periodic,
we then conclude that, on the interval [0, 2π], the trajectory must make at
least one turn around the origin, in the clockwise direction. We will show
that the other hypotheses prevent this possibility.

For this aim, we want to use the same arguments as in the proof of
Theorem 2. Some modification is needed however, because condition A7
holds only for s in a compact set, whereas the natural domain of this variable
is [0, T (E)], with the period T (E) of the free oscillations going to +∞, for
E → +∞. We will therefore manage to consider only values of the argument
s of ∂ϕ(s;E)/∂E in an interval slightly larger than [0, 2π].

27



The curve [0, 2π] → R2 : t 7→ z(λ)(t; 0, z0), making at least one turn in
the phase plane, must also cross all the gradient curves associated with the
Hamiltonian H, provided that E0 = H(z0) is large enough. It will cross in
particular the curve E 7→ ϕ(0;E). Therefore, we can find a value t∗ ∈ [0, 2π]
such that

z(λ)(t∗; 0, z0) = ϕ(0;H(z(λ)(t∗; 0, z0))) .

Define then
z̃(t) = z(λ)(t+ t∗; 0, z0) ,

a solution of
Jz̃ ′ = ∇H(z̃) + λ r(t+ t∗, z̃) ,

with the initial condition z̃(0) = z(λ)(t∗; 0, z0) = ϕ(0;H(z̃(0))). We have
already observed that H(z(λ)(t∗; 0, z0)) can be made arbitrarily large by
choosing E0 large enough. We will now compare z̃(t) with ϕ(t;H(z̃(0)) for
t ∈ [0, 2π], and show that, because of hypothesis A7, the difference in “phase”
remains “small”. More precisely, letting

z̃(t) = ϕ
(
t+ τ (λ)(t); e(λ)(t)

)
,

we see that the function τ (λ) satisfies an equation similar to (5.5), i.e.,

(τ (λ))′ = λ
〈 ∂ϕ
∂E

(
t+ τ (λ); e(λ)

)
, r
(
t+ t∗, ϕ

(
t+ τ (λ); e(λ)

))〉
,

with the initial conditions τ (λ)(0) = 0, e(λ)(0) = H(z̃(0)). The hypothesis of
the contradiction argument would then imply that

2π + τ (λ)(2π; 0, H(z̃(0))) = nT (H(z̃(0))) , (6.3)

for some integer n 6= 0. Using A7 (with s in an interval slightly larger than
[0, 2π]) and working as in the proof of Theorem 3.1, it can be proved that

lim
E0→+∞

τ (λ)(2π; 0, H(z̃(0))) = 0 , uniformly in z0 ∈ H−1(E0) ,

showing that the equality (6.3) is impossible if E0 is taken sufficiently large,
since limE→+∞ T (E) = +∞.

It is, of course, admissible to choose H0 = H in assumption A9. There-
fore, that condition is fulfilled if there exists a E∗ > 1 such that

|r(t, ϕ0(0;E))| < |∇H(ϕ0(0;E))| , for every t ∈ [0, 2π] and E ≥ E∗ .

This observation, together with those made at the end of Section 3.3, lead
to the following corollary.
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Corollary 6.2. Let the assumptions A1 to A3 hold, as well as (6.2). With
H twice continuously differentiable and r satisfying L2, let H ′′ be globally
bounded, and assume that (3.8) holds. Then, equation (1.3) admits at least
one 2π-periodic solution.

We remark that a similar situation has been considered by Fernandes
and Zanolin in [12] for a second order scalar equation of the type (1.1). See
also [19, 20].

6.2 Approaching resonance

When

lim
E→+∞

T (E) =
2π

n0

, for some positive integer n0 , (6.4)

Theorem 3.1 cannot be invoked to prove the existence of 2π-periodic solutions
for equation (1.3). But, adapting the arguments of the proof of Theorem 3.1,
it is still possible to provide some existence conditions. This is the object of
the next theorem.

Theorem 6.3. Let the Hamiltonian H satisfy assumptions A1 to A3, and
be such that (6.4) holds. Assume that L1, L2 hold, that

A6’.

lim
|z|→∞

〈J∇H(z), r(t, z)〉
H(z)

= 0 , uniformly in t ∈ [0, 2π] ,

and that

A7’. there exists a number γ > 0, and a constant C ≥ 0 such that, for any
given compact interval I ⊆ R,

lim sup
E→+∞

Eγ

∣∣∣∣〈 ∂ϕ∂E (s;E), r(t, ϕ(s;E))

〉∣∣∣∣ ≤ C ,

uniformly for (t, s) ∈ [0, 2π]× I .

Then, equation (1.3) admits at least one 2π-periodic solution, provided that,
either

lim sup
E→+∞

Eγ (n0 T (E)− 2π) > 2π C , (6.5)

or
lim inf
E→+∞

Eγ (n0 T (E)− 2π) < −2π C . (6.6)
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Proof. By hypotheses (6.5), (6.6), it is possible to find a sequence (Ek)k, with
limk Ek = +∞, such that

T (Ek) 6=
2π

n0

, for all k ,

so that, by (6.4) and Lemma 5.1, the degree deg(I − P (0)
2π ,Ω(Ek), 0) is equal

to 1. Working as in the proofs of Theorem 3.1 and Theorem 6.1, we want to
show that, for k sufficiently large,

P
(λ)
2π (z0) 6= z0 , for any z0 ∈ H−1(Ek), and any λ ∈ [0, 1] .

where P
(λ)
2π denotes, as usual, the Poincaré map for the period 2π associated

with equation (5.1). Writing, as in the proof of Theorem 3.1, the solutions
of equation (5.1) under the form

z(t) = ϕ
(
t+ τ (λ)(t); e(λ)(t)

)
,

we have to find values Ek such that, for any integer n,

2π+τ (λ)(2π; τ0, Ek) 6= τ0+nT (Ek), for all τ0 ∈
[
0,

4π

n0

]
and λ ∈ [0, 1]. (6.7)

As already explained, the choice of the interval [0, 4π/n0] is somehow arbi-
trary, as long as it contains 2π/n0 in its interior. Notice that, A6’, A7’ being
stronger than A6, A7, it is clear that

lim
k
τ (λ)(t; τ0, Ek) = τ0 , uniformly in t ∈ [0, 2π], τ0 ∈

[
0,

4π

n0

]
, λ ∈ [0, 1] ,

so that, by (6.4), the above inequality is certainly verified if n 6= n0. Re-
ferring to the system (5.5)–(5.6), and using the same notation τ (λ)(t; τ0, E0),
e(λ)(t; τ0, E0) as in the proof of Theorem 3.1, we deduce from A6’ that

lim
E0→+∞

e(λ)(t; τ0, E0))

E0

= 1 , uniformly in t ∈ [0, 2π], τ0 ∈
[
0,

4π

n0

]
, λ ∈ [0, 1] .

Using that result, it follows from A7’ that

lim sup
E0→+∞

Eγ
0

∣∣τ (λ)(t; τ0, E0))− τ0

∣∣ ≤ 2π C ,

uniformly in t ∈ [0, 2π], τ0 ∈
[
0,

4π

n0

]
, λ ∈ [0, 1] . (6.8)

The combination of (6.8) with (6.5) or (6.6) then implies that large values
Ek can be found for which (6.7) holds also with n = n0.
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We notice that similar nonresonance results have been proposed by Hao
and Ma in [21] for the second order equation (1.1), with γ = 1/2. A some-
what related approach to resonance was also proposed by Omari and Zanolin
in [26].

We now provide an example of application of Theorem 6.3 to the second
order equation

x′′ +
m2

4
x+ − a [x−]p−1 = q(t, x) , (6.9)

where m is an integer, p > 2, a > 0, and where q(t, x) is assumed to be
continuous and 2π-periodic in t, with

q(t, x) = o(|x|2/p) , for |x| → ∞ , uniformly in t ∈ [0, 2π] . (6.10)

This condition is surely satisfied if q(t, x) is globally bounded. The Hamilto-
nian function associated to the unperturbed equation is

H(x, y) =
y2

2
+
m2

8
[x+]2 +

a

p
[x−]p, (6.11)

and the minimal periods of the free oscillations are given by

T (E) =
2π

m
+ T−(E) ,

where T−(E) is the transit time in the negative phase plane. It can be
computed that

T−(E) =
2

1
2

+ 1
p
√
π Γ

(
1 + 1

p

)
a

1
p E

1
2
− 1

p Γ
(

1
2

+ 1
p

) ,
where Γ(·) is the Euler gamma function. Consequently,

lim
E→+∞

T (E) =
2π

m
,

lim
E→+∞

E
1
2
− 1

p

(
T (E)− 2π

m

)
=

2
1
2

+ 1
p
√
π Γ

(
1 + 1

p

)
a

1
p Γ
(

1
2

+ 1
p

) .

The condition (6.5) is thus fulfilled with γ = (1/2) − (1/p) , for some posi-
tive constant C. Consider now the solution ϕ(t;E) associated with the au-
tonomous equation for the Hamiltonian (6.11), built from the initial value
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ϕ(0; 1) = (0,
√

2). It is fairly immediate that

ϕ(t;E) =

(√
2E sin

(
mt

2

)
,
√

2E cos

(
mt

2

))
, for t ∈

[
0,

2π

m

]
.

On the other hand, denoting by ϕx, ϕy the components of ϕ, and adapt-
ing (2.12) with µ = 1− (1/2)− (1/p) , we see that

ϕ(t;E) =
(
E

1
p ϕx(E

µ t; 1), E
1
2 ϕy(E

µ t; 1)
)
, for t ∈

[2π

m
,
2π

m
+ T−(E)

]
.

From there, it can be checked that
√
E ∂ϕx(t;E)/∂E remains bounded for

E → +∞, uniformly for t in compact sets. Hence, using (6.10), it follows
that A7’ holds with γ = (1/2)− (1/p), the limit being equal to 0. Moreover,
under (6.10), hypothesis A6’ is also satisfied. We conclude by Theorem 6.3
that equation (6.9) admits at least one 2π-periodic solution.

Remark 6.4. Actually, the conclusion still holds for the equation

x′′ + k x+ − a [x−]p−1 = q(t, x) ,

no matter what value the coefficient k > 0 takes. Indeed, if k 6= m2/4 for
any integer m, Theorem 3.1 applies.

Remark 6.5. Similar situations have been considered in [4, 5, 15, 31] for
more general nonlinearities. Since problems “near resonance” are concerned,
some restrictions must be imposed on the nonlinearity (in our approach,
condition (6.10)). They may take the form of conditions of Landesman–
Lazer type.

6.3 Landesman–Lazer conditions

A huge literature exists concerning existence conditions for periodic solutions
based on the so-called Landesman–Lazer conditions (see, for instance, [13]
and [25] for references). We want to discuss briefly the relation between those
conditions and the results presented above.

Since the forcing term r(t, z) in equation (1.3) is 2π-periodic in t, Landes-
man–Lazer conditions would typically concern situations where the Hamilto-
nian function H is isochronous (at least for solutions of large amplitude), with
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solutions having a minimal period of the form 2π/n0, for some positive inte-
ger n0. In that case, it is no longer possible to resort directly to Lemma 5.1,
since deg(I − P

(0)
2π ,Ω(E0), 0) is no longer defined. But the arguments still

work with an adapted homotopy, i.e.,

Jz′ = [1 + (1− λ)σ]∇H(z) + λ r(t, z) , (6.12)

the choice of σ 6= 0, its sign in particular, being explained below. It is
immediate that, for λ = 0, the minimal period of the large solutions now
becomes 2π/(n0(1+σ)). Hence, if P

(λ)
2π now denotes the Poincaré map for the

period 2π associated with equation (6.12), the arguments used in Lemma 5.1
tell us that, provided that σ 6= 0 is taken small enough, the degree deg(I −
P

(0)
2π ,Ω(E0), 0) is well-defined for E0 large, and equal to 1. In order to obtain

an existence result, it remains once more to find conditions ensuring that,
for well-chosen values E0,

P
(λ)
2π (z0) 6= z0 , for any z0 ∈ H−1(E0) and any λ ∈ [0, 1] . (6.13)

Here is our result.

Theorem 6.6. Let the assumptions A1 to A3 hold, as well as L1, L2, A6’
and A7’. Let H be isochronous with period 2π/n0. With γ the constant ap-
pearing in assumption A7’, assume that there exists η > 0 such that either,
for every τ0 ∈ [0, 4π/n0],∫ 2π

0

lim inf
E→+∞

Eγ min
|s−t|≤η

〈 ∂ϕ
∂E

(τ0 + s;E), r(t, ϕ(τ0 + s;E))
〉
dt > 0 , (6.14)

or, for every τ0 ∈ [0, 4π/n0],∫ 2π

0

lim sup
E→+∞

Eγ min
|s−t|≤η

〈 ∂ϕ
∂E

(τ0 + s;E), r(t, ϕ(τ0 + s;E))
〉
dt < 0 . (6.15)

Then, equation (1.3) admits at least one 2π-periodic solution.

Proof. As in the proof of Theorem 3.1, we write the solutions of equa-
tion (6.12) under the form

z(t) = ϕ
(
t+ τ (λ)(t); e(λ)(t)

)
.
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Adapting (5.5), (5.6) leads to

(τ (λ))′= (1− λ)σ + λ
〈 ∂ϕ
∂E

(
t+ τ (λ); e(λ)

)
, r
(
t, ϕ
(
t+ τ (λ); e(λ)

))〉
, (6.16)

(e(λ))′= [1 + (1− λ)σ]
〈
J∇H

(
ϕ
(
t+ τ (λ); e(λ)

))
, r
(
t, ϕ
(
t+ τ (λ); e(λ)

))〉
.(6.17)

Assume that (6.14) holds. In this case, since T (E0) = 2π/n0, we will take
σ > 0 small enough, in order to show that, for any integer n,

2π+τ (λ)(2π; τ0, E0) 6= τ0 +n
2π

n0

, for all τ0 ∈
[
0,

4π

n0

]
and λ ∈ [0, 1] . (6.18)

Using A6’ in (6.17), we have that

lim
E0→+∞

e(λ)(t; τ0, E0))

E0

= 1 , uniformly in t ∈ [0, 2π], τ0 ∈
[
0,

4π

n0

]
, λ ∈ [0, 1] ,

while using A7’ in (6.16), we get, for any compact interval I ⊆ R,

lim
E→+∞

〈 ∂ϕ
∂E

(s;E), r(t, ϕ(s;E))
〉

= 0 ,

uniformly for (t, s) ∈ [0, 2π]× I ,

and hence, by Lebesgue’s Theorem,

lim sup
E0→+∞

|τ (λ)(t; τ0, E0)− τ0| ≤ 2π σ ,

uniformly in t ∈ [0, 2π], τ0 ∈
[
0,

4π

n0

]
, λ ∈ [0, 1] .

Then, taking σ > 0 small enough, we see that (6.18) could hold only if
n = n0; moreover, by (6.14),∫ 2π

0

lim inf
E→+∞

Eγ min
|s−t|≤3πσ

〈 ∂ϕ
∂E

(τ0 + s;E), r(t, ϕ(τ0 + s;E))
〉
dt > 0 ,

for every τ0 ∈ [0, 4π/n0]. It then follows from Fatou’s Lemma and A7’ that
there exists a number η > 0 such that

lim inf
E0→+∞

Eγ
0

(
τ (λ)(2π; τ0, E0)− τ0

)
≥ η ,

uniformly in τ0 ∈
[
0,

4π

n0

]
, λ ∈ [0, 1] . (6.19)
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Hence, if E0 is taken large enough,

τ (λ)(2π; τ0, E0) 6= τ0 , for any τ0 ∈
[
0,

4π

n0

]
and λ ∈ [0, 1] .

showing that (6.18) cannot hold even if n = n0.

The case when (6.15) holds can be treated similarly.

Remark 6.7. We notice that it is not really necessary that H be isochronous
of period 2π/n0; under the above conditions, it suffices that

lim
E0→+∞

Eγ
0

(
T (E0)− 2π

n0

)
= 0 .

Remark 6.8. Conditions like (6.14) and (6.15) appear in [1, 14, 17] for
Hamiltonians which are positively homogeneous of degree 2. Also the “double
resonance” situation has been considered there (see also [9, 10, 11]).

As an illustration, consider the case of the Hamiltonian function

H(x, y) = 1
2

(
a+[x+]2 + a−[x−]2 + y2

)
,

with
1
√
a+

+
1
√
a−

=
2

n0

,

n0 being a positive integer, and let r(t, x, y) = (rx(t, x), 0). We are thus
dealing with the scalar second order differential equation

x′′ + a+ x
+ − a− x− + rx(t, x) = 0 .

The solutions of the autonomous equation all have the same minimal pe-
riod 2π/n0. Denoting by ϕx, ϕy the components of ϕ, using (2.11), condi-
tion (6.14) with γ = 1/2 reduces to∫ 2π

0

lim inf
λ→+∞

min
|s−t|≤η

[ϕx(τ0 + s; 1) rx(t, λ ϕx(τ0 + s; 1))] dt > 0 ,

for every τ0 ∈ [0, 2π/n0]. Since η can be taken arbitrarily small, if we assume
rx(t, x) to be globally bounded, this condition is fulfilled when, for every
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τ0 ∈ [0, 2π/n0],∫
ϕx(τ0+ · ;1)>0

ϕx(τ0 + t ; 1) lim inf
x→+∞

rx(t, x) dt+

+

∫
ϕx(τ0+ · ;1)<0

ϕx(τ0 + t ; 1) lim sup
x→−∞

rx(t, x) dt > 0 .

This is the classical Landesman–Lazer condition (first introduced in [23] for
the Dirichlet problem). For the example considered here, the problem has
been treated by Dancer [4, 5] (in the case where r does not depend on x).
See also [13] and the references therein.

7 Multiplicity of periodic solutions

When the equation (1.3) has a Hamiltonian structure, i.e., when the per-
turbation r(t, z) is a gradient, with respect to z, of a function R(t, z), it is
possible to obtain multiplicity results for the periodic solutions by the use of
a generalized version of the Poincaré–Birkhoff Theorem, cf. [13, 18, 28].

Let us then consider the system

Jz′ = ∇H(z) +∇zR(t, z) . (7.1)

We will prove the existence of an infinite number of periodic solutions under
the assumptions of Theorem 3.1, only replacing A5 by the following.

A5′′. The function T (E) is such that

0 ≤ lim inf
E→+∞

T (E) < lim sup
E→+∞

T (E) < +∞ .

The idea of a using a condition on the period of the free oscillations in
order to apply the Poincaré–Birkhoff Theorem can also be found, for instance,
in [16].

We need a preliminary result concerning the forced system (1.3); it does
not require r(t, z) to be a gradient. In the following, we will denote by z(t; z0)
the solution of (7.1) with initial condition z(0) = z0.
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Lemma 7.1. Let the function H : R2 → R be twice continuously differen-
tiable. Assume that the hypotheses of Theorem 3.1 hold, except for A5, not
needed here. Then, for any given compact interval I ⊆ R,

lim
E0→+∞

[
T (H(z(t; z0))− T (H(z0))

]
= 0 ,

uniformly in (t, z0) ∈ I ×H−1(E0) .

Proof. Let us write

∆(t; z0) = T (H(z(t; z0))− T (H(z0)) .

Since the function H is twice continuously differentiable, it is well-known that
the function E 7→ T ′(E) is continuously differentiable (see, for instance, [27,
Theorem 3.4.1]). Since ∆(0; z0) = 0, the lemma will be proven if we can show
that

lim
E0→+∞

∂∆

∂t
(t; z0) = 0 , uniformly in (t, z0) ∈ I ×H−1(E0) .

Writing z(t) for z(t; z0), since z(t) is a solution of (1.3), we have

∂∆

∂t
(t; z0) = T ′(H(z(t))) 〈∇H(z(t)), z′(t)〉

= T ′(H(z(t))) 〈J∇H(z(t)), r(t, z(t))〉 . (7.2)

Assuming E0 to be sufficiently large, working as in Theorem 3.1, we can write
z(t) under the form

z(t) = ϕ(t+ τ(t); e(t)) ,

where e(t) = H(z(t)), and ϕ(t;E) being, as before, a solution of the au-
tonomous system (2.1), as introduced in Section 2.1. Since ϕ(t;E) is, by
definition, of period T (E) in t, we have obviously

ϕ(t+ T (E);E) = ϕ(t;E) , for every t ∈ R ,

from which follows, differentiating with respect to E,

∂ϕ

∂t
(t+ T (E);E)T ′(E) =

∂ϕ

∂E
(t;E)− ∂ϕ

∂E
(t+ T (E);E) ,

or

−J∇H(ϕ(t;E))T ′(E) =
∂ϕ

∂E
(t;E)− ∂ϕ

∂E
(t+ T (E);E) . (7.3)
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Since the above relation holds for all t ∈ R, and all E sufficiently large, we
can also write

−J∇H(z(t))T ′(e(t)) =
∂ϕ

∂E
(t+ τ(t); e(t))− ∂ϕ

∂E
(t+ τ(t) + T (e(t)); e(t)) .

Taking the scalar product with r(t, z(t)) and remembering that

lim
E0→+∞

e(t) = lim
E0→+∞

H(z(t; z0)) = +∞ , uniformly in (t, z0) ∈ I×H−1(E0) ,

and
ϕ(t+ τ(t) + T (e(t)); e(t)) = ϕ(t+ τ(t); e(t)) ,

the conclusion follows from (7.2) and assumption A7.

We are now in a position to state a multiplicity result based on a gener-
alized version of the Poincaré–Birkhoff Theorem.

Theorem 7.2. Let the function H : R2 → R be twice continuously differen-
tiable and satisfy

〈∇H(z), z〉 > 0 , for H(z) sufficiently large . (7.4)

Assume that the hypotheses of Theorem 3.1 hold, with r(t, z) = ∇zR(t, z),
except for the nonresonance condition A5, replaced by A5 ′′. Moreover, let

lim
E→+∞

T ′(E)R(t, z) = 0 , uniformly for (t, z) ∈ [0, 2π]×H−1(E) . (7.5)

Then, system (7.1) admits an infinite number of periodic solutions.

Proof. By assumption A5′′, it is possible to find positive integers m,n, and
a positive number ε, such that

lim inf
E→+∞

T (E) <
2πm

n
− 2 ε <

2πm

n
+ 2 ε < lim sup

E→+∞
T (E) .

We then build increasing sequences (Ek)k, (E∗k)k, with Ek → +∞, such that
E2k < E∗2k < E∗2k+1 < E2k+1 and

T (E2k) =
2πm

n
− 2 ε , T (E∗2k) =

2πm

n
− ε ,

2πm

n
− 2 ε < T (E) <

2πm

n
− ε , for E ∈ ]E2k, E

∗
2k[ ,

T (E∗2k+1) =
2πm

n
+ ε , T (E2k+1) =

2πm

n
+ 2 ε ,

2πm

n
+ ε < T (E) <

2πm

n
+ 2 ε, for E ∈ ]E∗2k+1, E2k+1[ .
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We may assume that ε > 0 has been chosen small enough so that

3 ε ≤ 2πm

n(n+ 1)
,

which implies that

|n∗T (E)− 2πm| ≥ ε n∗, (7.6)

for any integer n∗ and any E ∈ [E2k, E
∗
2k] ∪ [E∗2k+1, E2k+1] .

To the above defined sequences we associate, for large values of k, the annuli

A∗k = Ω(E∗2k+1) \ Ω(E∗2k) , Ak = Ω(E2k+1) \ Ω(E2k) .

Notice that A∗k is contained in Ak.
For some sufficiently large k, to be fixed below, we now modify our system.

The idea is to leave it unchanged in A∗k, and to cancel the forcing term on
R2 \ Ak, the transition in the zone Ak \ A∗k being built as described below.
We thus replace R(t, z) by

R̃(t, z) =


R(t, z) , for z ∈ A∗k ,
χ(T (H(z)))R(t, z) , for z ∈ Ak \ A∗k ,
0 , for z ∈ R2 \ Ak ,

with χ : R→ R a C∞-function, built in such a way that

χ(s) =

{
1 , if s ∈

[
2πm
n
− 5

4
ε, 2πm

n
+ 5

4
ε
]
,

0 , if s ∈
[

2πm
n
− 7

4
ε, 2πm

n
+ 7

4
ε
]
.

We may assume that |χ′(s)| ≤ 4/ε, for every s ∈ R.

We now consider the modified system

Jz′ = ∇H(z) +∇zR̃(t, z) . (7.7)

Since

∇zR̃(t, z) =


∇zR(t, z) , for z ∈ A∗k ,
χ(T (H(z)))∇zR(t, z)+

+χ′(T (H(z)))T ′(H(z))R(t, z)∇H(z) , for z ∈ Ak \ A∗k ,
0, for z ∈ R2 \ Ak ,
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it is readily seen that r̃(t, z) := ∇zR̃(t, z) inherits from r(t, z) the regularity
properties required for the application of Theorem 3.1. Moreover, using
hypothesis (7.5), we observe that ∇zR̃(t, z) satisfies the same conditions A6
and A7 as r(t, z). Consequently, arguing as in the proof of Theorem 3.1, if
we write a solution z̃(t; z0) of the modified system (7.7) under the form

z̃(t; z0) = ϕ(t+ τ̃(t; τ̃0, ẽ0); ẽ(t; τ̃0, ẽ0)) , (7.8)

we can show that, if k is large enough, we will have

|τ̃(t; τ̃0, ẽ0)− τ̃0| ≤
ε

4
, for every (τ̃0, ẽ0) ∈ R× [E2k, E2k+1] . (7.9)

Let us first show that, if k is sufficiently large, any solution z̃(t; z0) of
system (7.7) issued from a point z0 in A∗k does not enter the zone where the
equation has been modified, when t ∈ [0, 2πm]. Indeed, with z0 ∈ A∗k, assume
that for some t0 ∈ [0, 2πm] either H(z̃(t0; z0)) = E∗2k, or H(z̃(t0; z0)) = E∗2k+1,
and

E∗2k ≤ H(z̃(s; z0)) ≤ E∗2k+1 , for every s ∈ [0, t0] .

Applying Lemma 7.1 with z̃(t0; z0) instead of z0, if k is taken large enough,
then

|T (H(z̃(t; z0)))− T (H(z̃(t0; z0)))| ≤ ε

4
, for any t ∈ [0, 2πm] ,

from which follows that

2π
m

n
− 5 ε

4
≤ T (H(z̃(t; z0))) ≤ 2π

m

n
+

5 ε

4
, for any t ∈ [0, 2πm] .

This means that, for any t ∈ [0, 2πm], either z̃(t; z0) belongs to A∗k, or
χ(T (H(z̃(t; z0)))) = 1. In any case, we have that r̃(t, z̃(t; z0)) = r(t, z̃(t; z0)),
for t ∈ [0, 2πm], meaning that z̃(t; z0) is actually a solution of the original
system (7.1).

On the other hand, we claim that there are no 2πm-periodic solutions
z̃(t; z0) of system (7.7) starting from a point z0 in Ak \ A∗k, with k large
enough. Indeed, if z̃(t; z0) is such a solution, writing it under the form (7.8),
we have

2πm+ τ̃(t; τ̃0, ẽ0) = τ̃0 + n∗T (H(z0))) ,

for some integer n∗. But, using (7.6) and (7.9), we see that, if k is large
enough, this equality is impossible, for any integer n∗.
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We will now apply the version of Poincaré–Birkhoff Theorem presented
in [18, Theorem 1.2]. To this aim, first notice that, by assumption (7.4), for
k large enough the two curves delimiting the set Ak are strictly star-shaped
with respect to the origin; moreover, if z0 ∈ Ak, then z(t; z0) 6= (0, 0), for
every t ∈ [0, 2πm]. This allows us to consider continuous determinations
arg z(t; z0) of the argument function along these trajectories, and to define
their rotation numbers

Rot(z(t; z0); [0, 2πm]) =
arg z(2πm; z0)− arg z(0; z0)

2π
.

Let us now estimate these rotation numbers when z0 belongs to the inner and
to the outer boundary of the annulus Ak. For k sufficiently large, by (7.4)
the function arg z(· ; z0) is strictly decreasing when z0 ∈ H−1(E2k), and by
the definition of E2k we get

Rot(z(t; z0), [0, 2πm]) < −n , if z0 ∈ H−1(E2k) .

By a similar argument, using the definition of E2k+1 we see that, for k suffi-
ciently large,

Rot(z(t; z0), [0, 2πm]) > −n , if z0 ∈ H−1(E2k+1) .

Then, by [18, Theorem 1.2], system (7.7) has at least two 2πm-periodic
solutions z(1)(t), z(2)(t), starting from the interior of Ak, such that

Rot(z(1)(t), [0, 2πm]) = Rot(z(2)(t), [0, 2πm]) = −n .

By the above arguments, these are 2πm-periodic solutions of the original
system (7.1), and the proof is thus completed.

We end this section with two remarks.

Remark 7.3. When the system satisfies assumption A8, it is possible to
deduce condition (7.5) in Theorem 7.2 from conditions based more directly
on H(z) and R(t, z). In particular, if H is twice differentiable and H ′′ globally
bounded, using (3.7) (with D(E) the identity matrix) and (3.9), it results
from (7.3) that there exists a constant such that

|T ′(E)| |∇H(ϕ(0;E))|2 ≤ C ,
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so that condition (7.5) reduces to

lim
|z|→∞

R(t, z)

|∇H(z)|2
= 0 .

For the second order equation

x′′ + g(x) = p(t) ,

with g differentiable and g′ globally bounded, this allows to recover multi-
plicity results obtained in [7] (see also [32] and the references therein).

Remark 7.4. In a situation of resonance, i.e. when

lim
E→+∞

T (E) =
2π

n0

,

for some positive integer n0, conditions of existence of infinitely many periodic
solutions can still be obtained, the idea being then to use the hypotheses of
Theorem 6.3 rather than those of Theorem 3.1. We will not give the details
here, but simply indicate that a “twist condition” would be met by asking
the conditions (6.5) and (6.6) to hold simultaneously, whereas (7.5) should
be replaced by the stronger condition

lim
E→+∞

Eγ T ′(E)R(t, z) = 0 , uniformly for (t, z) ∈ [0, 2π]×H−1(E) ,

with γ > 0 the same constant as in (6.5) and (6.6). The resulting periodic
solutions would then be of period 2π, making n0 turns around the origin on
a time interval of length 2π.

8 More general differential equations

In this section, we consider the planar system

Jz′ = F (t, z) . (8.1)

We will assume throughout that F (t, z) is continuous, 2π-periodic in t, and
locally Lipschitz continuous in z. We will provide existence conditions for
2π-periodic solutions, through a comparison with Hamiltonian systems.
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We first state a preliminary result concerning the number of turns, around
the origin, of a closed curve; il will be applied below to trajectories of (pos-
sible) periodic solutions of equations like (8.1).

Lemma 8.1. Let H∗ : R2 → R satisfy conditions A1 to A3, and let ϕ∗(t;E)
be the function associated with H∗ by hypothesis A3. Assume that ϕ∗(t;E)
is of minimal period T ∗ in t, the period being independent of E, for E > 1,
and that ϕ∗(0;E) satisfies (2.5). Consider a parametric curve t 7→ z(t) =
ϕ∗(σ(t); e(t)), with z(T ) = z(0), the functions σ(t), e(t) being differentiable
on R, and such that e(t) > 1, for all t ∈ [0, T ]. Assume that

σ(t) = 0 mod T ∗ =⇒ 〈∇H∗(z(t)), Jz′(t)〉 > 0 . (8.2)

If the curve t 7→ z(t) makes n turns around the origin on the interval [0, T ],
then

σ(T ) = σ(0) + nT ∗. (8.3)

Conversely, if the above equality holds for some nonnegative integer n, the
curve t 7→ z(t) makes n turns around the origin on the interval [0, T ], in the
clockwise sense.

Proof. The curve z : t 7→ z(t) crosses the gradient curve E 7→ ϕ∗(0;E), when
and only when σ(t) = 0 mod T ∗. The condition (8.2) means that the curve
z is transversal to the gradient curve ϕ∗(0; ·), the crossing occurring in the
clockwise direction. This gradient curve extends from a point on the closed
curve H(z) = 1 to infinity. Since the curve z remains in the unbounded
set {z ∈ R2 | H(z) > 1} for t ∈ [0, T ], the number of turns of z around the
origin on the interval [0, T ) is equal to the number of crossings with the curve
ϕ∗(0; ·). Because of (8.2) and (2.5), we have σ′(t) > 0 when σ(t) = 0 mod
T ∗. Hence, each revolution of the curve z corresponds to an increase T ∗ of
the parameter t. Therefore, the number n in (8.3) is necessarily the number
of turns of the curve z, around the origin, on the interval [0, T ].

Notice that the above result also makes sense with n = 0.

8.1 An existence result

We now state an existence result for equation (8.1) based on a comparison
between F (t, z) and the gradients of two Hamiltonian functions H1, H2. The
proof is based again on degree arguments, a homotopy

Jz′ = (1− λ)∇H(z) + λF (t, z) . (8.4)
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being used. The hypotheses on the third Hamiltonian function H, which
appears in that equation, aim essentially at controlling the energy of the
possible periodic solutions, whereas the hypotheses on H1, H2 concern their
number of revolutions in the plane.

Many existence results have been obtained in the past by considering this
number of turns, namely by means of a so-called “rotation number” (see, for
instance, [1, 33]). Our aim, here, is to present a result in the line of our
approach of Section 3, transforming again the system (8.4) into a system
whose variables are the energy and the phase. An objective will then be
to compare, for an equation like (1.3), the results presented below to the
results of Section 3. As will be seen, the main difference is that, in the
present section, the hypotheses used for the comparison are based essentially
on ∇H1, ∇H2, whereas, in Section 3, the hypotheses concern more directly
the functions H1, H2 themselves, through the relations (4.1).

Let the three Hamiltonian functions H, H1, H2 satisfy conditions A1
to A3. Assume that the functions ϕ1(t;E), ϕ2(t;E), associated respectively
with H1, H2, satisfy equation (2.5). The respective minimal periods of H,
H1, H2, will be denoted by T (E), T1, T2, the Hamiltonian functions H1 and
H2 being assumed to be isochronous. Notice that ∇H1(z), ∇H2(z) are not
required to be locally Lipschitz continuous.

Theorem 8.2. Assume that the functions H,H1, H2 satisfy the assump-
tions A1 to A3, that ∇H is locally Lipschitz continuous, and that the Hamil-
tonian functions H1 and H2 are isochronous. Assume that

〈J∇H(z), F (t, z)〉
H(z)

remains bounded for |z| → ∞, uniformly in t . (8.5)

With
F (λ)(t, z) = (1− λ)∇H(z) + λF (t, z) , (8.6)

assume that

〈∇H1(ϕ1(0;E)), F (λ)(t, ϕ1(0;E))〉 > 0 , (8.7)

〈∇H2(ϕ2(0;E)), F (λ)(t, ϕ2(0;E))〉 > 0 , (8.8)

for λ ∈ {0, 1}, t ∈ [0, 2π], and E sufficiently large. Assume moreover that,
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for any given compact interval I ⊆ R,

1 ≤ lim inf
E→+∞

〈
∂ϕ1

∂E
(s;E), F (λ)(t, ϕ1(s;E))

〉
, (8.9)

lim sup
E→+∞

〈
∂ϕ2

∂E
(s;E), F (λ)(t, ϕ2(s;E))

〉
≤ 1 , (8.10)

for λ ∈ {0, 1}, uniformly for (t, s) ∈ [0, 2π]× I. If for some integer n0,

2π

n0 + 1
< T2 and T1 <

2π

n0

, (8.11)

then equation (8.1) admits at least one 2π-periodic solution.

The hypotheses in the above theorem may seem awkward, but have been
stated at that level of generality to allow applications in a large variety of
situations. We will provide below various sets of conditions ensuring that
these hypotheses are satisfied.

Proof. We denote by P
(λ)
2π the Poincaré map for the period 2π, associated

with equation (8.4); reasoning as in the proof of Theorem 3.1, this map
can be shown to be well defined. Indeed, letting z(λ)(t; z0) denote the so-
lution of (8.4) for the initial condition z(0) = z0, and defining e(λ)(t; z0) =
H(z(λ)(t; z0)), we have

(e(λ))′(t; z0) = λ〈J∇H(z(λ)(t; z0)), F (t, z(λ)(t; z0))〉 . (8.12)

We then deduce from (8.5) that e(λ)(t; z0) remains bounded on any compact
interval, from which follows, by the coercivity condition A1, that z(λ)(t; z0)
can be extended to the whole real line and |z(λ)(t; z0)| tends to +∞, for
E0 → +∞, uniformly for z0 ∈ H−1(E0). Notice that, by hypothesis A1
for H1 and H2, both H1(z(λ)(t; z0)) and H2(z(λ)(t; z0)) also tend to +∞ for
E0 → +∞, uniformly for z0 ∈ H−1(E0), t ∈ [0, 2π], λ ∈ [0, 1].

The theorem will be proved if we can show that, for E0 sufficiently large,

P
(λ)
2π (z0) 6= z0 , for any z0 ∈ H−1(E0) and λ ∈ [0, 1] . (8.13)

In order to prove that (8.13) holds for E0 sufficiently large, we will look
at the number of turns of possible 2π-periodic solutions of (8.4) around the
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origin. For that purpose, we will, in a first stage, consider those solutions as
perturbations of the solutions of equation

Jz′ = ∇H1(z) . (8.14)

We therefore write them under the form

z(λ)(t; z0) = ϕ1

(
t+ τ

(λ)
1 (t); e

(λ)
1 (t)

)
.

Taking (2.3) into account, simple calculations lead to the system

(τ
(λ)
1 )′ =

〈
∂ϕ1

∂E

(
t+ τ

(λ)
1 ; e

(λ)
1

)
, F (λ)

(
t, ϕ1

(
t+ τ

(λ)
1 ; e

(λ)
1

))〉
− 1 , (8.15)

(e
(λ)
1 )′ = λ

〈
J∇H1

(
ϕ1

(
t+ τ

(λ)
1 ; e

(λ)
1

))
, F (λ)

(
t, ϕ1

(
t+ τ

(λ)
1 ; e

(λ)
1

))〉
. (8.16)

The solution of the above system for the initial conditions τ
(λ)
1 (0) = τ0,

e
(λ)
1 (0) = H1(z0), where τ0 is such that z0 = ϕ1(τ0, H1(z0)), will be denoted

by τ
(λ)
1 (t; τ0, H1(z0)), e

(λ)
1 (t; τ0, H1(z0)).

Condition (8.13) will be satisfied unless, for some integer n (which may
be positive, negative or zero), some τ0 ∈ [0, T1], some λ ∈ [0, 1], we have

e
(λ)
1 (2π; τ0, H1(z0)) =H1(z0) ,

2π + τ
(λ)
1 (2π; τ0, H1(z0)) = τ0 + nT1 . (8.17)

Using Lemma 8.1 with H∗ = H1, we see that n is the number of turns of the
solution around the origin, counted positively in the clockwise sense. Indeed,
condition (8.2) follows from hypothesis (8.7), for any λ ∈ [0, 1]. Using (8.9),
we deduce from (8.15) that, given any η > 0, for sufficiently large values of
E0,

τ1
(λ)(2π; τ0, H1(z0))− τ0 ≥ −η ,

for any z0 ∈ H−1(E0) (remember that τ0 depends on z0). Hence, by (8.11),
the periodicity condition (8.17) can hold only if n > n0.

A similar argument, with the solutions of (8.4) considered as perturba-
tions of the solutions of

Jz′ = ∇H2(z) , (8.18)

shows that n < n0 + 1, so that (8.17) is impossible, n being an integer.
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We illustrate the above theorem by considering the simple case where H1

and H2 are positively homogeneous of degree 2, i.e., they satisfy (2.9). Due
to the homogeneity property of H1, H2, as observed in Section 2.2, we can
build ϕ1(;E), ϕ2(t;E) in such a way that

∂ϕi
∂E

(t;E) =
1

2E
ϕi(t;E) (i = 1, 2)

(see (2.10) and (2.11)). Moreover, for i = 1, 2, the gradients ∇Hi(ϕi(0;E)),
i = 1, 2, are then positive multiples of ϕi(0;E) so that conditions (8.7), (8.8)
are satisfied if

〈z, F (λ)(t, z))〉 > 0 , for t ∈ [0, 2π] and |z| “large”.

On the other hand, conditions (8.9), (8.10) hold if

1 ≤ lim inf
|z|→∞

〈F (t, z), z〉
2H1(z)

, lim sup
|z|→∞

〈F (t, z), z〉
2H2(z)

≤ 1 , uniformly in t . (8.19)

Notice that, by the homogeneity property of H1, H2, the conditions (8.19)
imply that, for any ε > 0, we have H1(z) ≤ (1 + ε)H2(z), for |z| sufficiently
large. Using, for instance, the arguments of Section 4.1, this in turn entails
that T2 ≤ T1. We can deduce the following corollary from Theorem 8.2.

Corollary 8.3. Assume that the functions H, H1, H2 satisfy the assump-
tions A1 to A3, that ∇H is locally Lipschitz continuous, and that the func-
tions H1, H2 satisfy (2.9), and hence are isochronous, their respective mini-
mal periods being denoted by T1, T2. Assume moreover that (8.5) is satisfied.
If conditions (8.19) hold and if, for some integer n0,

2π

n0 + 1
< T2 ≤ T1 <

2π

n0

, (8.20)

then equation (8.1) admits at least one 2π-periodic solution.

Remark 8.4. When H1 is positively homogeneous of degree 2, the compu-
tation of the “rotation number” associated with the auxiliary function H1,
as introduced, for instance, in [1, 33], is equivalent to the computation of

2π + τ
(λ)
1 (t; τ0, H1(z0))− τ0, with τ

(λ)
1 being defined by (8.15).
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It is interesting to compare the above corollary to results of Section 4.
We will do this for the equation

Jz′ = ∇H(z) + r(t) , (8.21)

with r continuous and 2π-periodic, assuming that H is twice continuously
differentiable, that H ′′ is globally bounded, and that

H1(z) ≤ H(z) ≤ H2(z) , for |z| large, (8.22)

the Hamiltonians H1 and H2 satisfying (2.9). Notice that condition (8.5) is
then automatically satisfied. With T1, T2 denoting the minimal periods of
the nontrivial solutions of the systems associated with H1, H2, respectively,
assume that (8.20) holds. The application of Corollary 8.3 requires that

1 ≤ lim inf
|z|→∞

〈∇H(z), z〉
2H1(z)

, lim sup
|z|→∞

〈∇H(z), z〉
2H2(z)

≤ 1 ,

whereas such conditions on ∇H are not needed in Corollary 4.2, the condi-
tion (8.22) combined with the hypotheses on T1, T2 being sufficient. This
difference is explained by the fact that Corollary 8.3 does not exploit the
Hamiltonian structure of the autonomous equation associated with (8.21).
The application of the above corollary to equation (8.21) allows to recover
results obtained long ago by Sȩdziwy [30].

8.2 The case when n0 = 0

In the case when n0 = 0, the function H1 is superfluous, and the following
result can be stated.

Theorem 8.5. Assume that the functions H, H2 satisfy the hypotheses A1
to A3, and that ∇H is locally Lipschitz continuous. Let H(z), F (t, z) be such
that (8.5) holds. Assume that

〈∇H2(z), F (t, z)〉 > 0 , 〈∇H2(z),∇H(z)〉 > 0 , (8.23)

for t ∈ [0, 2π], |z| sufficiently large. Assume moreover that, for any given
compact interval I ⊆ R,

lim sup
E→+∞

〈
∂ϕ2

∂E
(s;E), F (t, ϕ2(s;E))

〉
≤ 1 ,
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lim sup
E→+∞

〈
∂ϕ2

∂E
(s;E),∇H(ϕ2(s;E))

〉
≤ 1 ,

uniformly for (t, s) ∈ [0, 2π]× I. If

lim inf
E→+∞

T2(E) > 2π ,

then equation (8.1) admits at least one 2π-periodic solution.

The proof is analogous to the one of Theorem 8.2, hence we omit it, for
brevity. Notice however the difference between conditions (8.23) and (8.8).
The conditions (8.23) ensure that a possible periodic solution of (8.4) crosses
all the gradient curves associated with H2, whereas in Theorem 8.2, condi-
tion (8.8), which concerns only one particular gradient curve, suffices. Notice
also that it is not necessary here to assume the Hamiltonian function H2 to
be isochronous.

8.3 Application to equations with separated variables

Consider the case where the variables are “separated” in the planar sys-
tem (8.1), i.e., the right-hand side has the form

F (t, (x, y)) = (g(t, x), k(t, y)) .

We will assume that g, k are continuous, 2π-periodic in t, locally Lipschitz
continuous in x, y, and that, for some p > 1, q > 1 related by condition (2.13),
we have

g(t, x) = O(|x|p−1) , for |x| → ∞ , k(t, y) = O(|y|q−1) , for |y| → ∞ ,

uniformly in t. More precisely, we will assume that there exist numbers α2 ≥
α1 > 0 and β2 ≥ β1 > 0 such that

α1 ≤ lim inf
|x|→+∞

x g(t, x)

|x|p
≤ lim sup
|x|→+∞

x g(t, x)

|x|p
≤ α2 , (8.24)

β1 ≤ lim inf
|y|→+∞

y k(t, y)

|y|q
≤ lim sup
|y|→+∞

y k(t, y)

|y|q
≤ β2 , (8.25)

the limits being assumed to be uniform in t. Actually, we could write more
general results by considering separately the limits for x going to +∞ and for
x going to −∞, and analogously for y. This involves no particular difficulty,
but makes the formulation of the hypotheses more involved.
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In order to apply Theorem 8.2 or Theorem 8.5, we will use the following
functions as references for the comparison:

H1(x, y) = α1
|x|p

p
+ β1

|y|q

q
, H2(x, y) = α2

|x|p

p
+ β2

|y|q

q
. (8.26)

We also need a Hamiltonian function H having the properties required for
Theorem 8.2 and Theorem 8.5; it is possible to choose a function, whose
gradient is locally Lipschitz continuous, and which is of the form

H(z) = 1
2

(H1(z) +H2(z)) +R(z) ,

with |∇R(z)| = o(|z|) for |z| → +∞. Denoting, as before, by ϕ1(t;E),
ϕ2(t;E) the functions associated with the Hamiltonians H1, H2, and remem-
bering (2.14), i.e.,

∂ϕi
∂E

(t;E) =
1

E
diag

(
1

p
,
1

q

)
ϕi(t;E) (i = 1, 2) ,

it can be checked that all the conditions for the application of Theorem 8.2
or Theorem 8.5 are satisfied. Altogether, the following corollary is obtained.

Corollary 8.6. Assume that, for some p > 1, q > 1 related by (2.13), the
conditions (8.24), (8.25) hold (with α1, β1 positive). Let the Hamiltonians H1,
H2 then be defined by (8.26), the minimal period of their nontrivial solutions
being denoted by T1, T2, respectively. If either T2 > 2π, or for some integer
n0, condition (8.20) holds, then the system

x′ = k(t, y) , −y′ = g(t, x)

admits a 2π-periodic solution.

A result close to the above corollary can be found in [6], for the case of
a second order equation with a p-Laplacian operator, corresponding to the
choice k(t, y) = c |y|q, for some constant c > 0.

As already observed above in the case of systems with positively homoge-
neous Hamiltonians of degree 2, sharper results can be obtained for systems
of the form

x′ = k(y) + ry(t) , −y′ = g(x) + rx(t) ,

by exploiting the Hamiltonian structure and resorting to the results of Sec-
tion 4, the Hamiltonian being defined by H(x, y) = G(x) + K(y), where G
and K denote some primitives of g and k, respectively.
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orem for Hamiltonian flows, Ann. Inst. H. Poincaré Anal. Non Linéaire
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